On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity

Authors

  • Y.Sh. Il'yasov
    Institute of Mathematics, Ufa Scientific Center, RAS, Chernyshevsky str. 112, 450077, Ufa, Russia
  • E.E. Kholodnov
    Institute of Mathematics, Ufa Scientific Center, RAS, Chernyshevsky str. 112, 450077, Ufa, Russia

DOI:

https://doi.org/10.13108/2017-9-4-44

Keywords:

stability of solutions, nonlinear hyperbolic equations, Nehari manifold method, $p$-Laplacian.

Abstract

In a bounded domain $\Omega \subset \mathbb{R}^n$, we consider the following hyperbolic equation \begin{equation*} \begin{cases} v_{tt} = \Delta_p v+\lambda |v|^{p-2}v-|v|^{\alpha-2}v,& x\in \Omega, \\ v\bigr{|}_{\partial \Omega}=0. \end{cases} \end{equation*} We assume that $1<\alpha

Downloads

Published

20.12.2017