Усреднение случайных аффинных преобразований аргумента функций
Ключевые слова:
итерации Фейнмана-Чернова, теорема Чернова, операторнозначный случайный процесс, уравнение Фоккера-Планка.Аннотация
Изучаются усреднения итераций Фейнмана-Чернова случайных операторнозначных сильно непрерывных функций, значениями которых являются ограниченные линейные операторы на сепарабельном гильбертовом пространстве. В данной работе мы рассматриваем усреднения для определенного семейства таких случайных операторнозначных функций. Линейные операторы, являющиеся значениями рассматриваемых функций, действуют в гильбертовом пространстве квадратично интегрируемых функций на конечномерном евклидовом пространстве и задаются случайными аффинными преобразованиями аргумента. При этом композиции независимых одинаково распределенных случайных аффинных преобразований представляют собой некоммутативный аналог случайных блужданий. Для операторнозначной функции, являющейся усреднением итераций Фейнмана-Чернова, мы доказываем оценку сверху на норму и что замыкание производной этой операторнозначной функции в нуле является генератором сильно непрерывной полугруппы. В работе получены достаточные условия для сходимости математического ожидания последовательности итераций Фейнмана-Чернова к полугруппе, разрешающей задачу Коши для соответствующего уравнения Фоккера-Планка.Загрузки
Опубликован
20.06.2023
Выпуск
Раздел
Статьи