О неустойчивости экстремалей функционала потенциальной энергии
Ключевые слова:
вариация функционала, экстремальная поверхность, функционал типа площади, функционал объемной плотности сил, функционал потенциальной энергии, $G$-емкость, $G$-параболичность, устойчивость.Аннотация
Работа посвящена исследованию экстремалей функционала потенциальной энергии на устойчивость и неустойчивость. Частным случаем этого функционала являются функционалы типа площади. Функционал потенциальной энергии представляет собой сумму функционалов типа площади и объемной плотности сил. Функционал потенциальной энергии так построен, чтобы учитывать нагрузки на поверхность снаружи и внутри. Под устойчивостью понимается знакоопределенность второй вариации функционала. Доказаны формулы первой и второй вариации функционала. В следствии доказано, что экстремальная поверхность может быть локально минимальной и локально максимальной, в зависимости от знакоопределенности матрицы $G.$ С помощью $G$-емкости и второй вариации функционала были получены признаки неустойчивости экстремалей функционала потенциальной энергии. Эта техника доказательства была развита в работах В.М. Миклюкова и В.А. Клячина. Для $G$-параболических экстремальных поверхностей доказана вырожденность в плоскость. Этот результат является аналогом теоремы М. до Кармо и Ч.К. Пенга. На примере $n$-мерных поверхностей вращения показано применение формул первой и второй вариаций функционала. Также доказаны критерий экстремальности и критерий устойчивости и неустойчивости $n$-мерных поверхностей вращения. Подобные экстремальные поверхности возникают в приложениях, в физических задачах (например, мыльные пленки, капиллярные поверхности, магнитные жидкости в гравитационном поле с потенциалом), а свойства экстремальных поверхностей применяются в прикладных задачах (например, моделирование тентовых покрытий).Загрузки
Опубликован
20.09.2018
Выпуск
Раздел
Статьи