Об антипериодической краевой задаче для полулинейного дифференциального включения дробного порядка с отклоняющимся аргументом в банаховом пространстве
Ключевые слова:
дробная производная Капуто, полулинейное дифференциальное включение, краевая задача, неподвижная точка, уплотняющее мультиотображение, мера некомпактности.Аннотация
Рассматривается краевая задача для полулинейного дифференциального включения с дробной производной Капуто и отклоняющимся аргументом в банаховом пространстве. Предполагается, что линейная часть включения порождает ограниченную $C_0$-полугруппу. Нелинейная часть включения представляет из себя многозначное отображение, зависящее от времени и предыстории функции до данного момента времени. Краевое условие является функциональным и антипериодическим, в смысле равенства одной функции другой, взятой с противоположным знаком. Для разрешения поставленной задачи будет использоваться теория дробного математического анализа, свойства функции Миттаг-Леффлера, а также теория топологической степени для многозначных уплотняющих отображений. Идея решения состоит в следующем: исходная задача сводится к задаче о существовании неподвижных точек соответствующего разрешающего многозначного интегрального оператора в пространстве непрерывных функций. Для доказательства существования неподвижных точек разрешающего мультиоператора будет использоваться обобщенная теорема типа Б. Н. Садовского о неподвижной точке. Поэтому мы показываем, что разрешающий интегральный мультиоператор является уплотняющим относительно векторной меры некомпактности в пространстве непрерывных функций и преобразует замкнутый шар в этом пространстве в себя.Загрузки
Опубликован
20.09.2020
Выпуск
Раздел
Статьи