Sampling sets for the space of holomorphic functions of polynomial growth in a ball

Authors

  • A.V. Abanin
    Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russia
    Southern Federal University, Rostov-on-Don, Russia

DOI:

https://doi.org/10.13108/2015-7-4-3

Keywords:

sampling sets, weakly sufficient sets, space of holomorphic functions of polynomial growth.

Abstract

We develop a new approach to study sampling sets in the space of holomorphic functions of polynomial growth in a ball in the sense of Horowitz, Korenblum, and Pinchuk (Michigan Math. J., 44:2, 1997). It is based on involving weakly sufficient sets for intermediate inductive limits. By means of this approach we obtain a complete topological description of such sets and, as an application of this description, some new properties of sampling sets of general and special type are established. In particular, the main result of the above mentioned paper on sampling sequences of circles is extended to the multi-dimensional case.

Downloads

Published

20.12.2015