Spectral properties of two particle Hamiltonian on one-dimensional lattice

Authors

  • M.E. Muminov
    A. Navoi Samarkand State University, Samarkand, Uzbekistan
    Faculty of Sains, Universiti Teknologi Malaysia (UTM), Skudai, 81310, s. Johor, Malaysia
  • A.M. Khurramov
    A. Navoi Samarkand State University, Samarkand, Uzbekistan

DOI:

https://doi.org/10.13108/2014-6-4-99

Keywords:

two-particle Hamiltonian on one dimensional lattice, eigenvalue, multiple eigenvalue.

Abstract

We consider a system of two arbitrary quantum particles on a one-dimensional lattice with special dispersion functions (describing site-to-site particle transport), where the particles interact by a chosen attraction potential. We study how the number of eigenvalues of the family of the operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T$ (where $\mathbb T$ is a one-dimensional torus). Depending on the particle interaction energy, we obtain conditions for existence of multiple eigenvalues below the essential spectrum of operator $h(k)$.

Downloads

Published

20.12.2014