Completeness and minimality of systems of Bessel functions

Authors

  • B.V. Vynnyts'kyi
    Institute of Physics, Mathematics and Informatics, Ivan Franko Drohobych State Pedagogical University, 3 Stryiska Str., 82100 Drohobych, Ukraine
  • R.V. Khats'
    Institute of Physics, Mathematics and Informatics, Ivan Franko Drohobych State Pedagogical University, 3 Stryiska Str., 82100 Drohobych, Ukraine

DOI:

https://doi.org/10.13108/2013-5-2-131

Keywords:

Paley–Wiener theorem, Bessel function, entire function, complete system, minimal system, biorthogonal system, basis.

Abstract

We find the necessary and sufficient conditions for the completeness and minimality in the space $L^2(0;1)$ of system $(\sqrt{x\rho_k}J_{\nu}(x\rho_k):k\in\Bbb N)$ generated by Bessel function of the first kind of index $\nu\ge -1/2$. Moreover, we establish a criterion for the completeness and minimality of system $(x^{-2}\sqrt{x\rho_k}J_{3/2}(x\rho_k):k\in\Bbb N)$ in the space $L^2((0;1);x^2 dx)$.

Downloads

Published

20.06.2013