Интегралы и характеристические кольца Ли полудискретных систем уравнений

Авторы

  • А. В. Жибер
    Институт математики c ВЦ УФИЦ РАН, ул.Чернышевского, 112, 450077, г. Уфа, Россия
  • М. Н. Кузнецова
    Институт математики c ВЦ УФИЦ РАН, ул.Чернышевского, 112, 450077, г. Уфа, Россия

Ключевые слова:

полудискретная система уравнений, характеристическое кольцо, $x$-интеграл, система, интегрируемая по Дарбу.

Аннотация

Работа посвящена исследованию систем полудискретных уравнений $\bar{r}_{n+1,x} = \bar{h}(x,n, \bar{r}_n, \bar{r}_{n+1}, \bar{r}_{n,x})$ в рамках подхода, основанного на понятии характеристического кольца Ли. Здесь $\bar{r}_n = (r^1_n, r^2_n, \ldots, r^N_n)$, $\bar{h} = (h^1, h^2, \ldots, h^N)$, $n \in \mathbb{Z}$. Среди интегрируемых нелинейных уравнений и систем в частных производных в отдельный широкий класс выделены нелинейные гиперболические уравнения и системы, интегрируемые «по Дарбу». Отличительным свойством таких уравнений является наличие интегралов по каждому характеристическому направлению (так называемых $x$- и $y$-интегралов). Последнее позволяет сводить интегрирование уравнения в частных производных к интегрированию системы обыкновенных дифференциальных уравнений. Уравнения и системы, интегрируемые «по Дарбу» эффективно поддаются исследованию и классификации при помощи характеристических колец Ли. Основополагающими в формировании алгебраического подхода исследования нелинейных гиперболических систем являются работы Лезнова, Смирнова, Шабата, Ямилова [1, 2]. В настоящее время алгебраический подход распространен на полудискретные и дискретные уравнения. В данной работе доказано, что система обладает $N$ $x$-интегралами, независимыми в главном, тогда и только тогда, когда характеристическое кольцо Ли, соответствующее непрерывному характеристическому направлению, конечномерно.

Загрузки

Опубликован

20.06.2021