Конечнозонные решения нелокальных уравнений АКНС иерархии

Авторы

  • А. О. Смирнов
    Санкт-Петербургский государственный университет аэрокосмического приборостроения, ул. Большая Морская, 67А, 190000, г. Санкт-Петербург, Россия
  • В. Б. Матвеев
    Санкт-Петербургское отделение Математического института им. В.А. Стеклова РАН, Наб. р. Фонтанки, 27, 191023, г. Санкт-Петербург, Россия

Ключевые слова:

уравнение НШ, иерархия АКНС, нелокальное уравнение, PT симметрия, конечнозонное решение, спектральная кривая, тэта функция.

Аннотация

Нелинейные нелокальные модели существуют во многих областях физики. Наиболее известными из них являются модели, обладающие $\mathcal{PT}$-симметрией. Кроме $\mathcal{PT}$-симметричных моделей активно исследуются нелокальные модели с обратным временем и/или координатой. Другие виды нелокальностей встречаются намного реже. Как правило, в работах, посвященых нелинейным нелокальным уравнениям, рассматриваются солитонные или квази-рациональные решения одного из этих уравнений. В представленной нами работе рассмотрены нелокальные симметрии, которым удовлетворяют все уравнения из иерархии Абловица-Каупа-Ньюэлла-Сигура. На основании свойств решений, удовлетворяющих нелокальным редукциям уравнений из иерархии АКНС, предложена модификация тэта-функциональной формулы для функции Бейкера-Ахиезера. Найдены условия на параметры спектральных кривых, ассоциированных с многофазными решениями, не имеющих экспоненциального роста на бесконечности. Показано, что при выполнении данных условий происходит разделение переменных. Большинство утверждений нашей работы является верным и для солитонных и квази-рациональных решений, поскольку они являются предельными случаями многофазных.

Загрузки

Опубликован

20.06.2021