О порожденной двоякопериодической группой проблеме моментов для целых функций
Ключевые слова:
метод регуляризации, краевые задачи для эллиптических функций, моменты целых функций экспоненциального типа.Аннотация
Рассматривается лакунарная проблема моментов Стильтьеса с экспоненциальным весом. Решение ищется в классе целых функций экспоненциального типа, индикаторной диаграммой которых является некоторый квадрат. Построены нетривиальные решения соответствующей однородной задачи. Эта проблема сводится к исследованию линейного суммарного уравнения в классе функций, голоморфных вне четырех квадратов. На бесконечности у них нуль кратности не менее трех. Их граничные значения удовлетворяют условию Гельдера на любом компакте, не содержащем вершин квадратов. В вершинах допускаются, самое большее, логарифмические особенности. Решение ищется в виде интеграла типа Коши с неизвестной плотностью по границе этих квадратов. Предложен метод регуляризации суммарного уравнения. Выяснено условие равносильности этой регуляризации. Выделены частные случаи, когда полученное уравнение Фредгольма второго рода разрешимо. Для этого используется принцип сжимающих отображений в банаховом пространстве.Загрузки
Опубликован
20.06.2020
Выпуск
Раздел
Статьи