Решения аналогов временных уравнений Шредингера, определяемых изомонодромной гамильтоновой системой $H^{2+1+1+1}$
Ключевые слова:
гамильтоновы системы, уравнение Шредингера, уравнения Пенлеве, метод изомонодромных деформаций.Аннотация
Строятся совместные решения двух аналогов временных уравнений Шредингера, определяемых гамильтонианами $H^{2+1+1+1}_{s_k}(s_1,s_2, q_1,q_2, p_1, p_2)$ $(k=1,2)$ системы $H^{2+1+1+1}$. Данная система является первым представителем известной иерархии вырождений изомонодромной системы Гарнье, описанной Х. Кимурой в 1986 году. (Посредством явного преобразования данное вырождение может быть сведено к симметричной гамильтоновой системе. В построениях нашей статьи мы существенно опираемся на матричные линейные уравнения метода измонодромных деформаций для этой эквивалентной симметричной системы, выписанных в 2012 году в статье Х. Каваками, А. Накамуры и Х. Сакая.) Данные аналоги уравнений Шредингера представляют собой линейные эволюционные уравнения с временами $s_1$ и $s_2$, каждое из которых зависит от двух пространственных переменных. Из канонических временных уравнений Шредингера они получаются после формальной замены постоянной Планка на $-2\pi i$. В терминах решений соответствующих линейных систем обыкновенных дифференциальных уравнений метода изомонодромных деформаций, условием совместности которых является гамильтонова система $H^{2+1+1+1}$, решения данных аналогов уравнений Шредингера строятся явно. Обсуждаются перспективы построения подобных решений аналогов временных уравнений Шредингера, соответствующих гамильтонианам всей иерархии вырождений системы Гарнье.Загрузки
Опубликован
20.12.2018
Выпуск
Раздел
Статьи