Алгебраические свойства квазилинейных двумеризованных цепочек, связанные с интегрируемостью
Ключевые слова:
двумеризованная интегрируемая цепочка, $x$-интеграл, интегрируемая редукция, условие обрыва, открытая цепочка, система, интегрируемая по Дарбу, характеристическая алгебра Ли.Аннотация
Обсуждается метод классификации нелинейных интегрируемых уравнений с тремя независимыми переменными, основанный на понятии интегрируемой редукции. Авторы называют уравнение интегрируемым, если оно допускает широкий класс редукций, представляющих собой интегрируемые по Дарбу системы гиперболических уравнений с двумя независимыми переменными. Наиболее естественным и удобным объектом для применения такого подхода являются двумеризованные цепочки, обобщающие известную цепочку Тоды. В настоящей работе исследуются квазилинейные двумеризованные цепочки вида $u_{n,xy}=\alpha(u_{n+1} ,u_n,u_{n-1} )u_{n,x}u_{n,y} + \beta(u_{n+1},u_n,u_{n-1})u_{n,x}+\gamma(u_{n+1} ,u_n,u_{n-1} )u_{n,y}+\delta(u_{n+1} ,u_n,u_{n-1})$. Уточнен вид цепочки исходя из предположения, что существуют условия обрыва, сводящие цепочку к интегрируемой по Дарбу гиперболической системе, сколь угодно высокого порядка. При некотором дополнительном предположении о невырожденности мы провели описание цепочек, являющихся интегрируемыми в предложенном выше смысле. В полученном списке цепочек имеются новые примеры.Загрузки
Опубликован
20.09.2018
Выпуск
Раздел
Статьи