К задаче описания обобщенных инвариантных многообразий нелинейных уравнений

Авторы

  • А. Р. Хакимова
    Башкирский государственный университет, ул. Заки Валиди, 32, 450077, г. Уфа, Россия
    Институт математики c ВЦ УФИЦ РАН, ул. Чернышевского, 112, 450008, г. Уфа, Россия

Ключевые слова:

пара Лакса, высшая симметрия, инвариантное многообразие, рекурсионный оператор.

Аннотация

Обсуждается задача построения обобщенных инвариантных многообразий для нелинейных уравнений в частных производных. Обобщенным инвариантным многообразием для заданного нелинейного уравнения называется дифференциальная связь, совместная с линеаризацией этого уравнения. Фактически это понятие обобщает симметрию. Приведены примеры обобщенных инвариантных многообразий, полученных из симметрий. Однако существуют такие обобщенные инвариантные многообразия, которые не сводятся к симметриям, именно они представляют наибольший интерес. Такие обобщенные инвариантные многообразия позволяют эффективно строить пары Лакса, операторы рекурсии и частные решения интегрируемых уравнений. Изложен алгоритм построения обобщенного инвариантного многообразия для заданного уравнения. Дано полное описание обобщенных инвариантных многообразий порядка $(2,2)$ для уравнения Кортевега–де Фриза. Кратко изложен способ построения пары Лакса и оператора рекурсии с помощью обобщенного инвариантного многообразия. В качестве примера рассмотрено уравнение Кортевега–де Фриза.

Загрузки

Опубликован

20.09.2018