О решениях эллиптических уравнений второго порядка в цилиндрических областях

Авторы

  • А. В. Неклюдов
    Московский государственный технический университет им. Н. Э. Баумана, Рубцовская наб., д. 2/18, г. Москва, 105005, Россия

Ключевые слова:

эллиптическое уравнение, условие Неймана, неограниченная область, младший коэффициент, асимптотическое поведение решений, трихотомия решений.

Аннотация

В полубесконечном цилиндре расматривается эллиптическое уравнение второго порядка, содержащее младший член. На боковой поверхности цилиндра задано однородное условие Неймана. Показано, что любое ограниченное решение стремится на бесконечности к постоянной, причем при выполнении условия типа не слишком быстрого убывания младшего коэффициента уравнения эта постоянная равна нулю. Установлено, что при достаточно быстром убывании младшего коэффициента имеет место трихотомия решений, как и для уравнения без младшего члена – решение стремится к постоянной (вообще говоря, не равной нулю), либо растет с линейной скоростью, либо растет экспоненциально. Условия убывания младшего коэффициента сформулированы в интегральной форме.

Загрузки

Опубликован

20.12.2016