
ISSN 2074-1863 Ufa Mathematical Journal. Vol. 11. No. 1 (2019). P. 3-17.

SIMPLEST GRAPHS WITH SMALL EDGES:

ASYMPTOTICS FOR RESOLVENTS AND

HOLOMORPHIC DEPENDENCE OF SPECTRUM

D.I. BORISOV, M.N. KONYRKULZHAEVA

Abstract. In the work we consider a simples graph formed by two finite edges and a
small edge coupled at a common vertex. The length of the small edge serves as a small
parameter characterizing the perturbation. On such graph, we consider the Schrödinger
operator with the Kirchoff condition at the internal vertex, the Dirichlet condition on the
boundary vertices of finite edges and the Dirichlet or Neumann condition on the boundary
vertice of the small edge. We show that such operators converge to a Schrödinger operator
on the graph without the small edge in the norm resolvent sense; at the internal vertex one
has to impose the Dirichlet condition if the same was on the boundary vertex of the small
edge. If the boundary vertex was subject to the Neumann condition, the internal vertex
keeps the Kirchoff condition but the coupling constant can change. The main obtained
result for the resolvents is the two-terms asymptotics for their resolvents and an estimate
for the error term.

The second part of the work is devoted to studying the dependence of the eigenvalues
on the small parameter. Despite the graph is perturbed singularly, the eigenvalues are
holomorphic in the small parameter and are represented by convergent series. It is found out
that under the perturbation, there can be stable eigenvalues independent of the parameter.
We provide a criterion determining the existence of such eigenvalues. For varying eigenvalues
we find the leading terms of their Taylor series.
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1. Introduction

During the last twenty years, the spectral of elliptic operators on graphs, or simply the theory
of quantum graphs, is being intensively developed and there is a huge number of works on this
subject. Not trying to mention all works, we just cite the monographs [5], [7] and the references
therein.

An important direction of studies is the developing of the perturbation theory for quantum
graphs. And one of the most interesting perturbations due to the specific geometry of graphs is
small edges. The study of such problems was initiated rather recently. It was shown in work [9]
that an arbitrary boundary condition at a vertex can be approximated in the norm resolvent
sense by means of a graph with small edges and a δ-interaction in internal vertices. The most
detailed study of the graphs with small edges was made in a recent work [8]. Here graphs
of arbitrary structure with arbitrary boundary conditions at the vertices were considered and
some of the edges were assumed to be of a small length. The issue on the norm resolvent

D.I. Borisov, M.N. Konyrkulzhaeva, Simplest graphs with small edges: asymptotics for

resolvents and holomorphic dependence of spectrum.

c© D.I. Borisov, Konyrkulzhaeva M.N. 2018.

The reported study by D.I. Borisov was funded by Russian Foundation for Basic Research according project

no. 18-01-00046.

Submitted January 5, 2019.

3



4 D.I. BORISOV, M.N. KONYRKULZHAEVA

convergence and the convergence of the spectra were studied in great details depending on the
structure of the graphs and of given boundary conditions.

The results of work [8] give rise to the following natural issues: how the asymptotics of the
resolvents of operators on graphs with small edges looks like? What is the dependence of the
spectrum on the lengths of small edges, for instance, how do the eigenvalues depend on them?
Of course, the answers for these questions are to be found first for simple graphs and a simplest
model seems to be a star-shaped graph with three edges, one of which is of a small length, see
Figure 1. Surprisingly, but even such simple model features rather unexpectable properties. In
our opinion, these properties deserve a separate study and exactly this is done in the present
paper.

The main obtained results are as follows. In the internal vertex of the considered graph
we impose a δ-interaction, the boundary vertices of finite edges are subject to the Dirichlet
condition, while on the boundary edge of the small the Neumann condition is imposed. The
length of the small edge serves as a small parameter. As an operator, we choose a Schrödinger
operator and at the small edge, a singular dependence of the potential on the small parameter
is admitted. The limiting operator is as follows. It is considered on a graph without the
small edge, see Figure 2. In the case of the Dirichlet condition on the boundary vertex of the
small edge, in the limit, the δ-interaction in the internal vertex is replaced by the Dirichlet
condition. In the case of the Neumann condition on the boundary vertex of the small edge,
the δ-interaction in the internal vertex is kept but in the coefficient there arises an additional
term equalling to the mean value of the singular potential on the small edge. In both cases we
obtain the leading terms in the asymptotics of the resolvents and we estimate an error term in
the sense of the operator norm of the resolvent. At that, it turns out that the error is estimated
only by L2-norm of a function, at which the resolvents of the original and limiting operators
act, see Theorems 2.1, 2.2.

Then in work we study the behavior of the eigenvalue with respect to the small parameter.
We find out that the eigenvalues of the considered graphs with small edge are holomorphic in
the small parameter. This is a rather unexpected result in view of the fact that a small edge is
a singular perturbation and as a rule, under such perturbations, one can write out asymptotic
series for the eigenvalues but usually, these series diverge. Moreover, our model turns out to
have stable eigenvalues independent of the small parameter. For moving eigenvalues we find
explicitly the leading terms of their Taylor series and in the case of the Dirichlet condition on
the boundary vertex of the small edge the first correctors turn out to be negative.

The paper is organized as follows. In the next section we introduce main notations and
formulate the main results. In the third and fourth sections we construct the leading terms in
the asymptotics for the resolvents. The behavior of the eigenvalues is studied in the fifth and
the sixth sections.

2. Formulation of problem and main results

Let Γε be an oriented graph formed by three finite edges, one internal vertex connecting
these edges and three boundary edges. Two edges are chosen to be of fixed lengths, while the
third edge is assumed to be small, see Figure 1. We denote the edges of the graph by e−, e+,
eε with lengths a−, a+ and ε, respectively, where ε is a small positive parameter. On the edges
we introduce respectively variables x± ∈ [0, a±] and xε ∈ [0, ε]. The internal vertex is denoted
by M0; we suppose that it corresponds to x± = 0, xε = 0. The boundary vertices correspond
to the values x± = a±, xε = ε and are denoted by M± and Mε.

In the space L2(Γε) := L2(e−)⊕ L2(e+)⊕ L2(eε) we introduce the Schrödinger operator

− d2

dx2
+ Vε(x) + αδ(x), (2.1)
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Figure 1. Graph Γε with a small edge: the lengths of e± are equal to fixed numbers
a±, the length of eε is equal to ε being a small parameter

where the derivatives are taken with respect to the variables on the edges and the potential Vε

is defined by the identity

Vε(x) :=















W−(x−) on e−,

W+(x+) on e+,

ε−1W−1

(xε

ε

)

+W0

(xε

ε

)

на eε.

Here W± are real bounded measurable functions on e±, W−1, W0 are real bounded measurable
functions on [0, 1]. The last term in (2.1) describes a δ-interaction with the coupling constant
α ∈ R and it corresponds to the following boundary condition in the internal vertex:

u−(0) = u+(0) = uε(0) =: u(M0), u′
−(0) + u′

+(0) + u′
ε(0) = αu(M0), (2.2)

where u = (u−, u+, uε) is a function defined on the graph Γε. On the boundary vertices M± we
impose the Dirichlet condition

u±(M±) = 0, (2.3)

while the vertex Mε is subject to the Dirichlet condition

uε(ε) = 0 (2.4)

or to the Neumann condition

u′
ε(ε) = 0. (2.5)

We denote the introduced operator by HD
ε in the case of boundary condition (2.4) and by HR

ε in
the case of boundary condition (2.5). As the domains of the operators HD

ε and HR
ε , we choose

the following dense in L2(Γε) subsets:

D(HD
ε ) :=

{

u = (u−, u+, uε) ∈ L2(Γε) : u± ∈ W 2
2 (e±), uε ∈ W 2

2 (eε),

conditions (2.2), (2.3), (2.4) hold
}

,

D(HR
ε ) :=

{

u = (u−, u+, uε) ∈ L2(Γε) : u± ∈ W 2
2 (e±), uε ∈ W 2

2 (eε),

conditions (2.2), (2.3), (2.5) hold
}

.

The operators HD
ε and HR

ε are self-adjoint.
The main aim of our work is to study the behavior of resolvents and spectra of the operators

HD
ε and HR

ε for small ε.
To formulate the main results, we shall need auxiliary notations. By Γ0 we denote the graph

obtained from Γε by removing the edge eε and vertex Mε, that is, the graph Γ0 consists of two
edges e− and e+ coupled by the vertex M0 and two boundary vertices M±, see Figure 2.
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Figure 2. Limiting graph Γ0

In the space L2(Γ0) := L2(e−)⊕L2(e+) we consider the operator with the differential expres-
sion

− d2

dx2
+ V0, V0 := W± on e±,

subject to the Dirichlet condition at the boundary vertices M±:

u±(M±) = 0. (2.6)

At the vertex M0 we impose either the Dirichlet condition

u±(0) = 0, (2.7)

or a delta-interaction:

u−(0) = u+(0) =: u(0), u′
+(0) + u′

−(0) = (α + β)u(0), β :=

1
∫

0

W−1(t) dt. (2.8)

In the case of condition (2.7), the operator is denoted by HD
0 , in the case of condition (2.8),

the notation is HR
0 . As the domains of these operators, the following dense in L2(Γ0) subsets

serve:

D(HD
0 ) :=

{

u = (u−, u+) ∈ L2(Γ0) : u± ∈ W 2
2 (e±), conditions (2.6), (2.7) hold},

D(HR
0 ) :=

{

u = (u−, u+) ∈ L2(Γ0) : u± ∈ W 2
2 (e±), conditions (2.6), (2.8) hold}.

The operators HD
0 , HR

0 are self-adjoint.
By U± = U±(x±, λ) we denote the solutions to the Cauchy problems:

−U ′′
± + (W± − λ)U± = 0 в (0, a±), U±(a±, λ) = 0, U ′

±(a±, λ) = 1. (2.9)

Such problems are uniquely solvable and their solutions are holomorphic in λ ∈ C in the norm
W 2

2 (0, a±). For Imλ 6= 0 we denote

Ψ(x) :=















U−(x−, λ)

U−(0, λ)
on e−,

U+(x+, λ)

U+(0, λ)
on e+.

This function is well-defined and U±(0, λ) 6= 0 as Imλ 6= 0 since otherwise the Schrödinger

operators − d2

dx2 +W± on the edges e± with Dirichlet conditions would have possessed complex
eigenvalues.

Our first result describes the uniform resolvent convergence of the operators HD
ε and HR

ε to
the operators HD

0 and HR
0 . A convergence theorem for the operator HD

ε is as follows.
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Theorem 2.1. As Imλ 6= 0, for each f ∈ L2(Γε), the estimates hold:

∥

∥(HD
ε − λ)−1f − (HD

0 − λ)−1f |Γ0
− ℓDe (fε)Ψ‖W 2

2
(e−)⊕W 2

2
(e+) 6 cε

5

2‖f‖L2(eε), (2.10)

‖(HD
ε − λ)−1f‖L2(eε) 6 Cε‖f‖L2(eε), (2.11)

where c is a constant independent of f and ε,

ℓDε (fε) :=

ε
∫

0

xεfε(xε) dxε, |ℓDε (fε)| 6
ε

3

2

√
3
‖fε‖L2(eε). (2.12)

The results on convergence of the resolvents of the operator HR
ε are provided in the next

theorem.

Theorem 2.2. As Imλ 6= 0, for each f ∈ L2(Γε), the estimates hold:

∥

∥(HR
ε − λ)−1f − (HR

0 − λ)−1f |Γ0
− εℓRε (f)Ψ‖W 2

2
(e−)⊕W 2

2
(e+) 6 cε

5

2‖f‖L2(eε), (2.13)

‖(HR
ε − λ)−1f‖L2(eε) 6 cε‖f‖L2(eε), (2.14)

where c is some constant independent of f and ε,

ℓRε (f) :=
U−(0, λ)U+(0, λ)

F (λ)− (α + β)U−(0, λ)U+(0, λ)

ε
∫

0

f(xε) dxε, |ℓRε (f)| 6 cε
1

2‖f‖L2(eε).

The expression F (λ)− (α + β)U−(0, λ)U+(0, λ) is non-zero as Imλ 6= 0.

The operators HD
ε , HR

ε , HD
0 , and HR

0 have compact resolvents and their spectra are pure
discrete. By λD

n (ε) and λR
n (ε) we denote the eigenvalues of the operators HD

ε and HR
ε taken

in the ascending order counting the multiplicities. Our second result describes the behavior of
these eigenvalues as ε → +0. Before we formulate this result, let us describe the spectra of the
operators HD

0 and HR
0 .

The eigenvalues of the operator HD
0 coincide with the roots of the equation

U−(0, λ)U+(0, λ) = 0. (2.15)

We denote these roots by ΛD
n , n ∈ N, and take them in ascending order counting the multi-

plicities as of eigenvalues. If some ΛD
n is a zero of only one of the functions U±(0, λ), then such

eigenvalue is simple. If it is a zero of both functions U±(0, λ), then such eigenvalues is double
and in this case ΛD

n = ΛD
n+1 according the chosen ordering.

Theorem 2.3. For sufficiently small ε, the eigenvalues λD
n (ε) are holomorphic in ε and

λD
n (0) = ΛD

n . If ΛD
n is a simple eigenvalue, then the eigenvalue λD

n (ε) is also simple and

dλD
n

dε
(0) = −

(

U ′
±(0,Λ

D
n )
)2

‖U±(·,ΛD
n )‖2L2(e±)

as U±(0,Λ
D
n ) = 0, U∓(0,Λ

D
n ) = 0. (2.16)

If ΛD
n = ΛD

n+1 is a double eigenvalue, then the operator HD
ε possesses two eigenvalues λD

n (ε)
and λD

n+1(ε) converging to ΛD
n as ε → +0. The eigenvalue λD

n (ε) is holomorphic in ε and the

identity holds:

dλD
n

dε
(0) = −

(

U ′
−(0,Λ

D
n )
)2

‖U−(·,Λ−
n )‖2L2(e−)

−
(

U ′
+(0,Λ

D
n )
)2

U+(·,Λ+
n )‖2L2(e+)

. (2.17)

The eigenvalue λD
n+1(ε) is independent of ε and coincides with ΛD

n .
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We denote
F (λ) := U ′

+(0, λ)U−(0, λ) + U ′
−(0, λ)U+(0, λ).

The eigenvalues of the operator HR
0 coincide with the roots of the equation

F (λ)− (α + β)U−(0, λ)U+(0, λ) = 0. (2.18)

We denote these eigenvalues by ΛR
n and take them in the ascending order counting the multi-

plicities.

Theorem 2.4. All eigenvalues ΛR
n are simple. For each ΛR

n , the numbers U−0(0,Λ
R
n ) are

U+0(0,Λ
R
n ) vanish simultaneously.

For sufficiently small ε, the eigenvalues λR
n (ε) are holomorphic in ε and the identities hold

λR
n (0) = ΛR

n . If U±(0,Λ
R
n ) = 0, then λR

n (ε) is independent of ε and coincides with ΛR
n . If

U±(0,Λ
R
n ) 6= 0, the identities hold:

dλR
n

dε
(0) =

U−(0,Λ
R
n )U+(0,Λ

R
n )

(

1
∫

0

W0(t) dt−
1
∫

0

(

1
∫

t

W−1(s) ds

)2

dt+ ΛR
n

)

(

U+(0,ΛR
n )
)2‖U−(·,Λ−

n )‖2L2(e−) +
(

U−(0,ΛR
n )
)2‖U+(·,Λ+

n )‖2L2(e+)

. (2.19)

Let us discuss the main results of the work. We stress from beginning that despite a simple
form of the graph Γε, the obtained results are quite rich by their content. According Theo-
rems 2.1, 2.2, as the the edge eε shrinks, the resolvents of the operators HD

ε and HR
ε converge to

the resolvents of the operators HD
0 and HR

0 . For the operator HD
ε , the convergence means that

if the boundary vertex of the small edge is subject to the Dirichlet condition, then in the limit
ε → +0, this boundary condition replaces the original Kirchoff condition in the internal vertex
M0. In view of work [8], this is a rather expectable result. At the same time, Theorem 2.1
provides more information on information about the convergence. Namely, estimate (2.10) is
established in a stronger norm of bounded operators acting from L2(Γε) into W 2

2 (e−)⊕W 2
2 (e+).

Moreover, in this estimate we also provide the first corrector in the expansion of the resolvent,
which is the term ℓDe (fε)Ψ. It is small by (2.12). Estimate (2.11) means that the resolvent of
the perturbed operator restricted on the small edge eε is small in L2(eε)-norm. Let us also pay
a special attention to the right hand sides of estimates (2.10) and (2.11). They involve only
the norm of the right hand side over the small edge. This means that if the right hand side
vanishes on the small edge, then the actions of the resolvents of the operators HD

ε and HD
0 on

such functions f coincides on Γ0 and the actions of the resolvent of the operator HD
ε on the

small edge vanishes. In other words, the difference depends only on values of the right hand
side on the small edge.

A similar situation holds for the operators HR
ε and HR

0 . Despite now on the boundary vertex
of the edge eε the Neumann condition is imposed, the limiting boundary value at the vertex M0

involves a special coefficientβ, see (2.8). This coefficient is due to the presence of the potential
W−1 on the edge eε in the perturbed operator. Such phenomenon agrees the well-known results
on approximation of one-dimensional delta-interactions by potentials of form ε−1V

(

x
ε

)

with
compactly supported functions V having non-zero mean, see, for instance, [6, Ch. 1.3].

The presence of uniform resolvent convergence for the operators with singular perturbation
is a rather expectable fact once we compare the operators on graphs with those in multi-
dimensional domains. As an example, we mention problems in the domains with small holes,
a classical model in the theory of singular perturbations. A uniform resolvent convergence
for such problems was proved in works [1], [2]. From this point of view, singularly perturbed
operators exhibit properties similar to regularly perturbed operators. At the same time, in
the case of regular perturbations, the resolvents and eigenvalues are holomorphic in a small
parameter describing the perturbation. As a rule, the same statement fails for singularly
perturbed operators. For instance, in the classical problem in domains with small holes, one
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can construct complete asymptotic expansions in the small parameter, [3, Ch. III], [4], but
no statements on convergence of these series and moreover, on their sums coinciding with the
perturbed resolvents and eigenvalues, were proved.

In view of the said above, the results of Theorems 2.3, 2.4 look quite unexpectable and
interesting. The main key statement of these theorems is on the holomorphic dependence of the
eigenvalues on the small parameter. In other words, the asymptotic series of the eigenvalues
of the considered operators converge and the sums coincide with the perturbed eigenvalues.
In addition, we find one more phenomenon, stable eigenvalues. For the operators HD

ε , such
eigenvalues arise in the vicinity of limiting double eigenvalue: each such limiting eigenvalue
splits into two perturbed eigenvalues, one of which is stable and independent of ε, while the
other moves to the left. For the operator HR

ε a similar picture holds as well if the eigenfunction
corresponding to the limiting eigenvalue vanishes at the vertex M0. Here the limiting eigenvalue
is simple but is stable under the perturbation.

For moving eigenvalues of the perturbed operators, we find their first correctors in Theo-
rems 2.3, 2.4, see formulae (2.17), (2.19). As it follows from formula (2.17), in the case of the
Dirichlet condition at the vertex Mε, the first correctors are negative and adding a small edge
acts as a non-positive perturbation. In the case of the Neumann condition at the vertex Mε,
the first corrector becomes more complicated and apriori its sign is unclear.

We expect that the described phenomena are not due to a simple structure of graphs the Γε

and Γ0 but a general feature of a wide class of graphs with small edges. This conjecture will
be justified in one of our future works.

3. Asymptotics for the resolvent of operator HD
ε

In the present section we prove Theorem 2.1. Given f ∈ L2(Γε), by f0 we denote the
restriction of f on the graph Γ0, while fε stands for the restriction of f on the edge eε. We let:
uε := (HD

ε −λ)−1f , u0 := (HD
0 −λ)−1f0. In view of boundary condition (2.2) and the definition

of functions U±, it is clear that

uε = u0 + CεΨ on Γ0, (3.1)

where Cε is some constant, which will be determined later.
To determine the function uε on the edge eε, we consider an auxiliary Cauchy problem

−U ′′
D + (εW−1(ξ) + ε2W0(ξ)− µ)UD = 0, ξ ∈ (0, 1), UD

∣

∣

ξ=1
= 0, U ′

D

∣

∣

ξ=1
= 1, (3.2)

where µ is a small complex parameter. This problem is uniquely solvable, possesses a solution
UD = UD(ξ, ε, µ) holomorphic with respect to ε and µ in W 2

2 (0, 1)-norm. By straightforward
calculations we confirm that

UD(ξ, ε, µ) = ξ − 1 +O(ε+ |µ|). (3.3)

By SD
ε we denote the Schrödinger operator in the space L2(0, 1) with the differential expres-

sion

− d2

dξ2
+ εW−1(ξ) + ε2W0(ξ) (3.4)

subject to the Dirichlet condition. The domain of the operator SD
ε is the set of the functions

in W 2
2 (0, 1) vanishing at the boundary. It is clear that the operator SD

0 is invertible and the
inverse is bounded as an operator from L2(0, 1) into W 2

2 (0, 1). This is why the same is true for
the operator SD

ε −ε2λ: for sufficiently small ε, the inverse operator (SD
ε −ε2λ)−1 is well-defined

as a bounded operator from L2(0, 1) into W 2
2 (0, 1) and it is also holomorphic in ε. In particular,

(SD
ε − ελ)−1 = (SD

0 )−1 +O(ε), ((SD
0 )−1g)(ξ) = −

1
∫

0

|ξ − t| − ξ − t+ 2ξt

2
g(t) dt, (3.5)
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where g ∈ L2(0, 1). In view of the first boundary condition in (2.2) and formula (3.1), it is easy
to see that on the edge eε, the function uε reads as

uε(xε) = ε2vε

(xε

ε

)

+ Cε

UD

(

xε

ε
, ε, ε2λ

)

UD(0, ε, ε2λ)
, vε := (SD

ε − ε2λ)−1fε(ε ·). (3.6)

We determine the constant Cε by the second condition in (2.2) and identities (3.1), (3.6):

Cε

(

U ′
−(0, λ)

U−(0, λ)
+

U ′
+(0, λ)

U+(0, λ)
− α + ε−1U

′
D(0, ε, ε

2λ)

UD(0, ε, ε2λ)

)

+ εv′ε(0) = 0. (3.7)

According identities (3.3), for small ε the relation holds:

U ′
D(0, ε, ε

2λ)

UD(0, ε, ε2λ)
= 1 +O(ε) 6= 0, (3.8)

and this is why by equation (3.7) we can determine the constant Cε as follows:

Cε := − ε2v′ε(0)
U ′
D
(0,ε,ε2λ)

UD(0,ε,ε2λ)
+ ε

(

U ′
−
(0,λ)

U−(0,λ)
+

U ′
+
(0,λ)

U+(0,λ)
− α

) . (3.9)

It follows from relations (3.5) that
∣

∣

∣

∣

∣

∣

v′ε(0)− ε−1

ε
∫

0

(

1− xε

ε

)

fε(xε) dxε

∣

∣

∣

∣

∣

∣

6 cε‖fε(ε ·)‖L2(0,1) = cε
1

2‖fε‖L2(eε). (3.10)

Hereinafter the symbol c stands for various inessential constants independent of ε and f . We
also observe that by the Cauchy-Schwarz inequality, the estimate

∣

∣

∣

∣

∣

∣

ε2
ε
∫

0

f(xε) dxε

∣

∣

∣

∣

∣

∣

6 ε
5

2‖fε‖L2(Γε),

∣

∣

∣

∣

∣

∣

ε
∫

0

xεf(xε) dxε

∣

∣

∣

∣

∣

∣

6
ε

3

2

√
3
‖fε‖L2(Γε) (3.11)

holds true. We substitute the obtained estimate, (3.8), (3.10) in (3.9) to obtain
∣

∣

∣

∣

∣

∣

Cε −
ε
∫

0

xεf(xε) dxε

∣

∣

∣

∣

∣

∣

6 cε
5

2‖fε‖L2(eε). (3.12)

Inequality (2.10) follows the above estimate and formula (3.1).
Let us prove estimate (2.11). First we observe that it follows from (3.12) and the second

inequality in (3.11) that

|Cε| 6 cε
3

2‖fε‖L2(eε). (3.13)

We can estimate the norm of the function| vε by the aforementioned properties of the operator
(SD

ε − ε2λ)−1:
∥

∥

∥
vε

( ·
ε

)∥

∥

∥

L2(eε)
= ε−

1

2‖vε‖L2(0,1) 6 cε−
1

2‖fε(ε ·)‖L2(0,1) = cε−1‖fε‖L2(eε).

This yields:
∥

∥

∥
ε2vε

( ·
ε

)∥

∥

∥

L2(eε)
6 cε‖fε‖L2(eε). (3.14)

Taking into consideration the obvious relations
∥

∥

∥
UD

( ·
ε
, ε, ε2λ

)∥

∥

∥

L2(eε)
= ε

1

2

∥

∥UD(·, ε, ε2λ)
∥

∥

L2(0,1)
6 cε

1

2 , (3.15)

by (3.13) and (3.6) we get estimate (2.11). The proof of Theorem 2.1 is complete.
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4. Asymptotics for resolvents of operator HR
ε

Here we prove Theorem 2.2. As in the previous section, by f0 we denote the restriction of
f on the graph Γ0, while fε is the restriction of f on the edge eε. We let uε := (HR

ε − λ)−1f ,
u0 := (HD

0 − λ)−1fε. The latter functions again obey identity (3.1) with some constant Cε.
Instead of Cauchy problem (3.2), here we consider the following one:

−U ′′
R + (εW−1(ξ) + ε2W0(ξ)− µ)UR = 0, ξ ∈ (0, 1), UR

∣

∣

ξ=1
= 1, U ′

R

∣

∣

ξ=1
= 0,

where µ is a small complex parameter. This problem is also uniquely solvable and its solution
UR = UR(ξ, ε, µ) is holomorphic in ε and µ in the norm of W 2

2 (0, 1). It is easy to confirm that
the leading terms of the expansion of the function UR is of the form:

UR(ξ, ε, µ) = 1 + εφ1(ξ) + ε2φ2(ξ) + µφ3(ξ) +O(ε3 + ε|µ|+ |µ|2), (4.1)

φ1(ξ) =

1
∫

ξ

(t− ξ)W−1(t) dt, φ3(ξ) =
(1− ξ)2

2
,

φ2(ξ) =

1
∫

ξ

(t− ξ)
(

W0(t) +W−1(t)φ1(t)
)

dt.

We also observe that the number β should satisfy the identity

β = −φ′
1(0). (4.2)

Instead of the operator SD
ε , we should take the Schrödinger operator in L2(0, 1) with differ-

ential expression (3.4), Dirichlet condition at the point ξ = 0 and Neumann condition at the
point ξ = 1. We denote such operator by SR

ε . It possesses the same properties as the operator
SD
ε , namely, for sufficiently small ε, the inverse operator (SR

ε − ε2λ)−1 is well-defined, bounded
as an operator from L2(0, 1) into W 2

2 (0, 1), holomorphic in ε and the relations hold:

(SR
ε − ελ)−1 = (SR

0 )
−1 +O(ε), ((SR)−1g)(ξ) = −

1
∫

0

|ξ − t| − ξ − t

2
g(t) dt, (4.3)

where g ∈ L2(0, 1). An analogue of identity (3.6) reads as follows:

uε(x) = ε2vε

(xε

ε

)

+ Cε

UR

(

xε

ε
, ε, ε2λ

)

UR(0, ε, ε2λ)
, vε := (SR

ε − ε2λ)−1fε(ε ·); (4.4)

this ensures the first condition in (2.2). Substituting (3.1), (4.4) into the second condition gives
the equation for Cε:

Cε

(

U ′
−(0, λ)

U−(0, λ)
+

U ′
+(0, λ)

U+(0, λ)
− α + ε−1U

′
R(0, ε, ε

2λ)

UR(0, ε, ε2λ)

)

+ εv′ε(0) = 0.

According (4.1), (4.2), for small ε the identities hold true:

ε−1U
′
R(0, ε, ε

2λ)

UR(0, ε, ε2λ)
= −β +O(ε). (4.5)

We also observe that

U ′
−(0, λ)

U−(0, λ)
+

U ′
+(0, λ)

U+(0, λ)
− α− β =

F (λ)− (α + β)U−(0, λ)U+(0, λ)

U−(0, λ)U+(0, λ)
6= 0, (4.6)
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since otherwise λ is a complex eigenvalue of the operator HR
0 with the corresponding eigenfunc-

tion equalling to U±(x±,λ)
U±(0,λ)

on e±. The constant Cε is found by the formula:

Cε = − εv′ε(0)
U ′
−
(0,λ)

U−(0,λ)
+

U ′
+
(0,λ)

U+(0,λ)
− α− β +

(

ε−1U
′
R
(0,ε,ε2λ)

UR(0,ε,ε2λ)
+ β

) , (4.7)

and the second term in the denominator is of order O(ε) by (4.5).
Let us find out the behavior of the numerator in (4.7). Employing (4.3), by straightforward

calculations we check that
∣

∣

∣

∣

v′ε(0)−
1
∫

0

fε(εt) dt

∣

∣

∣

∣

6 cε‖fε(ε ·)‖L2(0,1) = cε
1

2‖fε‖L2(eε),

1
∫

0

fε(εt) dt = ε−1

ε
∫

0

fε(xε) dxε.

Substituting the obtained relations into (4.7) and bearing in mind (4.5), (4.6), we obtain:
∣

∣

∣

∣

Cε +
U−(0, λ)U+(0, λ)

F (λ)− (α + β)U−(0, λ)U+(0, λ)

∣

∣

∣

∣

6 cε
5

2‖fε‖L2(eε). (4.8)

By (3.1) this implies estimate (2.13).
It also follows from (4.8) that

|Cε| 6 cε
3

2‖fε‖L2(eε). (4.9)

The first term in (4.4) obeys an estimate similar to (3.14), while the function UR satisfies an
estimate similar to (3.15). These estimates and (4.9) prove (2.14).

5. Spectrum of operator HD
ε

In the present section we find the spectrum of the operator HD
ε and we prove Theorem 2.3.

The eigenvalues of the operator HD
0 are determined by equation (2.15) that follows boundary

condition (2.7) written for the functions U±. The eigenfunctions are of the form:

ΨD
n (x) =

{

U−(x−,Λ
D
n ) on e−,

0 on e+
(5.1)

if ΛD
n is a zero of the function U−(0, λ) and

ΨD
n (x) =

{

0 on e−,

U+(x+,Λ
D
n ) on e+

(5.2)

if ΛD
n is a zero of the function U−(0, λ). If ΛD

n is a joint zero of the functions U±(0, λ), then
such eigenvalue is double with a pair of associated eigenfunctions determined by identities (5.1),
(5.2).

In what follows we make use of the following auxiliary lemma.

Lemma 5.1. The relations hold:

dU±

dλ
(0,ΛD

n ) = − 1

U ′
±(0,Λ

D
n )

∥

∥U±(·,ΛD
n )
∥

∥

2

L2(e±)
6= 0, U ′

±(0,Λ
D
n ) 6= 0.

Proof. Inequality U ′
±(0,Λn) 6= 0 is obvious since otherwise we are led to the identity U±(x,Λn) =

0, which is false.
Differentiating problem (2.9) in λ, it is easy to infer that the functions

v±(x±) :=
dU±

dλ
(x±,Λn)

solve the Cauchy problem

−v′′± + (V± − ΛD
n )v± = U±(·,Λn) в (0, a±), v±(a±) = 0, v′±(a±) = 0.
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Multiplying the equation in this problem by U±(x±,Λn) and integrating twice by parts over
the segment (0, a±), we obtain the required formula.

Let us find the spectrum of the operator HD
ε . We construct the eigenfunctions of the operator

HD
ε as

ΨD
ε (x) :=















C−U−(x−, λ) on e−,

C+U+(x+, λ) on e+,

CεεUD

(xε

ε
, ε, ε2λ

)

on eε,

where C±, Cε are some constants. It is clear that such function satisfies the required differential
equation and conditions (2.3). This is why it remains to check the condition at the vertex M0:











C−U−(0, λ)− C+U+(0, λ) = 0,

C−U−(0, λ)− CεεUD(0, ε, ε
2µ) = 0,

C−

(

U ′
−(0, λ) + αU−(0, λ)

)

+ C+U
′
+(0, λ) + CεU

′
D(0, ε, ε

2λ) = 0.

The eigenvalues of the operator HD
ε correspond to nontrivial solutions (C−, C+, Cε) of this

system of linear equations. Applying the Cramer’s rule to this system, we arrive at the equation
for the eigenvalues:

GD(λ, ε) = 0, (5.3)

where

GD(λ, ε) := εUD(0, ε, ε
2λ)F (λ) +

(

U ′
D(0, ε, ε

2λ)− εαUD(0, ε, ε
2λ)
)

U−(0, λ)U+(0, λ).

The function GD is holomorphic in λ and ε. As ε = 0, Λ = ΛD
n , equation (5.3) obviously holds.

By the holomorphic property of the functions GD in λ and ε, we obtain immediately that the
roots of equation (5.3) converge to ΛD

n as ε → +0.
To describe the behavior of roots of equation (5.3) for small ε, we need to study the structure

of the function GD as λ is close to ΛD
n .

First we suppose that ΛD
n is a simple eigenvalue. For the sake of definiteness, we suppose

that ΛD
n is a zero of the function U−(0, λ) and U+(0,Λ

D
n ) 6= 0. Then employing Lemma 5.1 and

identities (3.3), it is straightforward to infer that

dGD

dλ
(ΛD

n , 0) = U+(0,Λ
D
n )

dU−

dλ
(0,ΛD

n ) = −U+(0,Λ
D
n )

U ′
−(0,Λ

D
n )

∥

∥U−(·,ΛD
n )
∥

∥

2

L2(e−)
6= 0. (5.4)

Therefore, by the implicit function theorem, there exists the unique root λn(ε) of equation (5.3)
converging to ΛD

n and this root is holomorphic in ε. Since by identity (3.3) we have

dGD

dε
(ΛD

n , 0) = −U ′
−(0,Λ

D
n )U+(0,Λ

D
n ),

by (5.4) and the formula

dλD
n

dε
(0) = −

dGD

dε
(ΛD

n , 0)
dG
dλ
(ΛD

n , 0)
(5.5)

we obtain immediately identity (2.16).
Let ΛD

n be a double eigenvalue, that is, ΛD
n is a joint zero of the functions U−(0, λ) and

U+(0, λ). Then it follows from the definition of the function F and Lemma 5.1 that

F (λ) = (λ− ΛD
n )F∗(λ), U+(0, λ)U−(0, λ) = (λ− ΛD

n )
2Q(λ), (5.6)
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where F∗(λ), Q(λ) are holomorhpic functions and

F∗(Λ
D
n ) = −U ′

+(0,Λ
D
n )

U ′
−(0,Λ

D
n )

∥

∥U−(·,ΛD
n )
∥

∥

2

L2(e−)
− U ′

−(0,Λ
D
n )

U ′
+(0,Λ

D
n )

∥

∥U+(·,ΛD
n )
∥

∥

2

L2(e+)
,

Q(ΛD
n ) =

1

U ′
−(0,Λ

D
n )U

′
+(0,Λ

D
n )

∥

∥U−(·,ΛD
n )
∥

∥

2

L2(e−)

∥

∥U+(·,ΛD
n )
∥

∥

2

L2(e+)
6= 0.

(5.7)

Substituting relations (5.6), (5.7) into equation (5.3), we see that it has two roots converging to
ΛD

n . The first root is independent of ε and coincides with ΛD
n . The second root is determined

by the equation

εUD(0, ε, ε
2λ)F∗(λ) +

(

U ′
D(0, ε, ε

2λ)− εαUD(0, ε, ε
2λ)
)

(λ− ΛD
n )Q(λ) = 0.

We apply the implicit function theorem to this equation in the same way as above. This
immediately leads us to the conclusion that the latter equation possess exactly one solution
converging to ΛD

n as ε → +0, this solution is holomorphic in ε and identity (2.17) holds. Since
the left hands side of this identity is negative, it is cleat that for small positive ε the root
obeying (2.17) is less than ΛD

n . The proof of Theorem 2.1 is complete.

6. Spectrum of operator HR
ε

The present section is devoted to the proof of Theorem 2.4. First we clarify the origination
of equation (2.18). The eigenfunctions of the operator HR

0 are to be sough as

ΨR(x) :=

{

C−U−(x−, λ) on e−,

C+U+(x+, λ) on e+,
(6.1)

where C± are some constants. Condition (2.8) leads us to a system of linear equations for
these constants and the Cramer’s rule allows us to find the cases when the system possesses
a non-trivial solution. The vanishing of the corresponding determinant gives rise to equation
(2.18).

Each eigenvalue ΛR
n is simple since otherwise we are led to the existence of an eigenfunction

given by formula (6.1) with C1 = 0. By boundary condition (2.8) this yields C2 = 0 that
contradicts the definition of an eigenfunction.

Assume now that U−(0,Λ
R
n ) = 0. Then we necessarily have U ′

−(0,Λ
R
n ) 6= 0 and it follows from

equation (2.18) that U+(0,Λ
R
n ) = 0. In the same way we check that the identity U+(0,Λ

R
n ) = 0

implies U−(0,Λ
R
n ) = 0. This is why the numbers U−0(0,Λ

R
n ) and U+0(0,Λ

R
n ) vanish simultane-

ously.
In what follows, we shall need an analogue of auxiliary lemma 5.1.

Lemma 6.1. Let U±(0,Λ
R
n ) = 0. Then

dF

dλ
(ΛR

n ) = −U ′
+(0,Λ

R
n )

U ′
−(0,Λ

R
n )

∥

∥U−(·,ΛR
n )
∥

∥

2

L2(e−)
− U ′

−(0,Λ
R
n )

U ′
+(0,Λ

R
n )

∥

∥U+(·,ΛR
n )
∥

∥

2

L2(e+)
6= 0. (6.2)

Let U±(0,Λ
R
n ) 6= 0. Then

d(F − (α+ β)U−(0, ·)U+(0, ·))
dλ

(ΛR
n ) =

U+(0,Λ
R
n )

U−(0,ΛR
n )

∥

∥U−(·,ΛR
n )
∥

∥

2

L2(e−)

+
U−(0,Λ

R
n )

U+(0,ΛR
n )

∥

∥U+(·,ΛR
n )
∥

∥

2

L2(e+)
6= 0.

(6.3)

Proof. Similar to the proof of Lemma 5.1, it is easy to check the inequalities:

U±(0,Λ
R
n )

dU ′
±

dλ
(0,ΛR

n )− U ′
±(0,Λ

R
n )

dU±

dλ
(0,ΛR

n ) =
∥

∥U±(·,ΛR
n )
∥

∥

2

L2(e±)
> 0. (6.4)
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Assume first that U±(0,Λ
R
n ) = 0. Then it follows from (6.4) that U ′

±(0,Λ
R
n ) 6= 0. It is clear

that
dF

dλ
(ΛR

n ) = U ′
+(0,Λ

R
n )

dU−

dλ
(0,ΛR

n ) + U ′
−(0,Λ

R
n )

dU+

dλ
(0,ΛR

n ).

The obtained identities imply formula (6.2) for the derivative of the function F (λ). Moreover,

the quotients
U ′
+(0,ΛR

n )

U ′
−
(0,ΛR

n )
and

U ′
−
(0,ΛR

n )

U ′
+
(0,ΛR

n )
are of the same sign and this is why the derivative of the

function F at the point ΛR
n is non-zero.

We proceed to the case U±(0,Λ
R
n ) 6= 0. Then it follows from equation (2.18) that

U ′
±(0,Λ

R
n ) = (α + β)U±(0,Λ

R
n )− U ′

∓(0,Λ
R
n )

U±(0,Λ
R
n )

U∓(0,ΛR
n )

.

Employing these identities, by straightforward calculations we check that

d(F − (α + β)U−(0, ·)U+(0, ·))
dλ

(ΛR
n ) = U ′

+(0,Λ
R
n )

dU−

dλ
(0,ΛR

n ) + U ′
−(0,Λ

R
n )

dU+

dλ
(0,ΛR

n )

+ U−(0,Λ
R
n )

dU ′
+

dλ
(0,ΛR

n ) + U+(0,Λ
R
n )

dU ′
−

dλ
(0,ΛR

n )

− (α + β)U−(0,Λ
R
n )

dU+

dλ
(0,ΛR

n )− (α+ β)U+(0,Λ
R
n )

dU−

dλ
(0,ΛR

n )

=− U+(0,Λ
R
n )

U−(0,ΛR
n )

U ′
−(0,Λ

R
n )

dU−

dλ
(0,ΛR

n ) + U+(0,Λ
R
n )

dU ′
−

dλ
(0,ΛR

n )

− U−(0,Λ
R
n )

U+(0,ΛR
n )

U ′
+(0,Λ

R
n )

dU+

dλ
(0,ΛR

n ) + U−(0,Λ
R
n )

dU ′
+

dλ
(0,ΛR

n )

=
U+(0,Λ

R
n )

U−(0,ΛR
n )

(

U−(0,Λ
R
n )

dU ′
−

dλ
(0,ΛR

n )− U ′
−(0,Λ

R
n )

dU−

dλ
(0,ΛR

n )

)

+
U−(0,Λ

R
n )

U+(0,ΛR
n )

(

U+(0,Λ
R
n )

dU ′
+

dλ
(0,ΛR

n )− U ′
+(0,Λ

R
n )

dU+

dλ
(0,ΛR

n )

)

.

By formulae (6.4) this implies identity (6.3). Here the quotients U+(0,ΛR
n )

U−(0,ΛR
n )

and U−(0,ΛR
n )

U+(0,ΛR
n )

are of

the same sign and this is why the right hand side of identities (6.3) does not vanish. The proof
is complete.

Let us find the spectrum of the operator HR
ε . We seek the eigenfunctions of the operator HR

ε

as

ΨR
ε (x) :=















C−U−(x−, λ) on e−,

C+U+(x+, λ) on e+,

CεUR

(xε

ε
, ε, ε2λ

)

on eε,

where C±, Cε are some constants. Again, it is sufficient to check the condition at the point M0

for such functions; this leads us to the system of linear equations:










C−U−(0, λ)− C+U+(0, λ) = 0,

C−U−(0, λ)− CεUR(0, ε, ε
2µ) = 0,

C−

(

U ′
−(0, λ) + αU−(0, λ)

)

+ C+U
′
+(0, λ) + Cεε

−1U ′
R(0, ε, ε

2λ) = 0.

Equating the determinant of this system to zero, we arrive to the equation for the eigenvalues
of the operator HR

ε :

GR(λ, ε) = 0, (6.5)
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where

GR(λ, ε) :=UR(0, ε, ε
2λ)
(

F (λ)− αU−(0, λ)U+(0, λ)
)

+ ε−1U ′
R(0, ε, ε

2λ)U−(0, λ)U+(0, λ)

=
(

F (λ)− (α+ β)U−(0, λ)U+(0, λ)
)

+ A(λ, ε)U−(0, λ)U+(0, λ),

A(λ, ε) :=ε−1U ′
R(0, ε, ε

2λ) + βUR(0, ε, ε
2λ).

By relations (4.1), (4.2), the function A is holomorphic in λ and ε and the identities hold:

A(ΛR
n , 0) = 0,

dA

dε
(ΛR

n , 0) = βφ1(0) + φ′
2(0) + ΛR

nφ
′
3(0). (6.6)

This is why the function GR is holomorphic in λ and ε. It is clear that equation (6.5) holds
as Λ = ΛR

n , ε = 0. This implies immediately that the roots of equation (6.5) converge to ΛR
n as

ε → +0.
Let us find out the structure of the function GR in the vicinity of the points λ = ΛR

n . First
we consider the case U±(Λ

R
n ) = 0. Here by (6.2) and relations (4.1) we have

dGR

dλ
(ΛR

n , 0) =
dF

dλ
(ΛR

n ) 6= 0

and by the implicit function theorem, equation (6.5) possesses the unique solution. By straight-
forward substitution we infer easily that λ = ΛR

n is a solution of equation (6.5) for all considered
values ε. This proves the theorem in the case U±(Λ

R
n ) = 0.

Assume now that U±(Λ
R
n ) 6= 0. In this case by (6.3), (6.6) we have

dGR

dλ
(ΛR

n , 0) =
d(F − (α + β)U−(0, ·)U+(0, ·))

dλ
(ΛR

n ) 6= 0 (6.7)

and by the implicit function theorem there exists the unique solution λR
n (ε) of equation (6.5)

holomorphic in ε and converging to ΛR
n as ε → +0. The derivative of this solution is expressed

by the formula similar to (5.5):

dλR
n

dε
(0) = −

dGR

dε
(ΛR

n , 0)
dGR

dλ
(ΛR

n , 0)
= −

dA
dε
(ΛR

n , 0)
d(F−(α+β)U−(0,·)U+(0,·))

dλ
(ΛR

n )
, (6.8)

where we have also employed formula (6.7). Let us calculate the denominator in this formula.
We have

φ′
2(0) = −

∫ 1

0

W0(t) dt−
∫ 1

0

W−1(t)φ1(t) dt,

−
∫ 1

0

W−1(t)φ1(t) dt = −
∫ 1

0

φ′′
1(t)φ1(t) dt = φ1(0)φ

′
1(0) +

∫ 1

0

(

φ′
1(t)
)2

dt

= −βφ1(0) +

∫ 1

0





1
∫

t

W−1(s) ds





2

dt.

Substituting the obtained identities and (6.3), (6.6) into (6.8), we arrive at formula (2.19). The
proof of Theorem 2.4 is complete.
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