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INTERPOLATION SEQUENCES IN
AREA PRIVALOV CLASSES IN DISK

E.G. RODIKOVA

Abstract. In the work we obtain a necessary and sufficient condition for the zeros of
analytic functions in area Privalov classes II, (0 < ¢ < 1) in the unit circle D = {z € C :
|z| < 1} located in the Stolz angles. We solve the free interpolation problem in these classes
under the condition that the interpolation nodes are located in the Stolz angles. We also

solve the interpolation problem in the area Privalov classes in circle on Carleson sets.
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1. INTRODUCTION

Let C be the complex plane, D = {z € C : |z| < 1} be the unit disk on C, H(D) be the set
of all functions analytic on D, Z; be the set of all zeros on a non-trivial function f € H(D),
n(r) = card{zy : |zx| < r} be the number of points of sequence {z;}7° in the circle |z| < r < 1
counting their multiplicities,

M(r, f) = max|f(2)|, 0<r<l.

|z|=r

For each 0 < ¢ < +o00 we introduce the class
1
M,={ fe HD): // (In* \f(reie)])qdédr < 400
0 —m

We call it area Privalov class or Privalov class by area. For ¢ = 1 the area Privalov class coin-
cides with the well-known Nevanlinna class involved in the scale of Nevanlinna — Dzhrbashyan
classes, see [2]. We note that the area Privalov classes naturally appear in studying the differ-
entiation issues in Privalov spaces II,, ¢ > 0, introduced in the monograph [3], see [L7],

T

1 )
[I,=< fe€HD): sup — [ (In*|f(re?)])"dfd < +o0
0<r<1 &T

The area Privalov class has the same position with respect to the Privalov classes as the planar
Nevanlinna classes IT; do to the classes of functions of bounded type N = II;.

In order to show the position of the classes f[q in the structure of known classes, for a > —1,
0 < g < 400 we consider the spaces S

«

1
Si=< feH(D): /(1 — )T (r, f)dr < 400
0
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where T'(r, f) is the Nevanlinna characteristics of a function f € H(D),

™

T(.) = 5= [ W 17(re9)lde,

In" |a| = max(0,1n|a]), a € C.
The classes S? were first studied in [8] by Shamoyan, they generalize well-known

Nevannlinna — Dzhrbashyan classes S}, see [2].
Using the Holder inequality, it is easy to prove that

I,cS! for ¢>1,

and )
II,>5] for 0<g<1l.

The present work is devoted to studying the zero sets of functions in the classes f[q, 0<qg<l,
and to the interpolation in these classes.

The problem of characterizing the zero sets of analytic functions in a circle from different
classes was repeatedly raised by specialists in the complex analysis. A fundamental result in
this area is the coincidence of the root sets of classes of bounded analytic functions and the
classes of functions of bounded type N = II; that was established in the works by Blaschke
[12] and Nevanlinna [2]: the sequences of zeros {z;}7° of these classes are characterized by the

Blaschke condition .

S (=) < +oc.

k=1
As it follows from the results in works by Nevanlinna [?] and Shamoyan [7], the root sets of
area Privalov classes, that is, II;, are characterized by the condition

+o0

(=] < +oo.

k=1
In the general case (for all ¢ > 0) the problem on characterization of root sets for the Privalov
classes and their planar analogues is not solved, however, for the classes II, there are results
close to sharp ones, see [1], [9], [L0]. The first part of the present work is devoted to studying
the root sets of area Privalov class ﬁq in the disk for all 0 < ¢ < 1: we describe the roots of
the functions in this classes, which are located in Stolz angles.

Definition 1.1. The Stolz angle I'5(6) with the vertez at a poimf‘e“9 s the angle of opening
78, 0 < § < 1, the bisectriz of which coincides with the segment re®®, 0 < r < 1, that is, it is
the set of points z € D, for which the inequalities hold

, T
’arg (ew — z) — 9| < -

‘ew—z‘<cos%5, 0<o<1.

The second and third part of this work is devoted to solving the interpolation problems in
the area Privalov class in circle for all 0 < ¢ < 1. We formulate the interpolation problem on
the set of simple nodes in the class IT,. Let {2;}5° be a sequence of distinct points in D, {wy,}$°
be an arbitrary sequence complex numbers. What are the conditions for the nodes {z;}{° and
the sequence of points {wy}5°, under which we can construct a function in the class ﬁq such
that
In this case the sequence {z;}5° is called the interpolation sequence.
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In the second part of this work we solve the interpolation problem on so—called Carleson sets
in the class fIq (0 < ¢ < 1), while in the third part of the work we solve the free interpolation
problem in the mentioned classes under the condition that the interpolation nodes are located
in the Stolz angles.

We note that the fundamental result in the interpolation theory belongs to L. Carleson.
In the work [13] he completely characterized interpolation sequences in the class of bounded
analytic functions. A constructive solution for the free interpolation problem in the class H* in
the form of a series was proposed by Jones in [15]. The free interpolation problem in classes of
functions of bounded form was addressed by Naftalevich [1|, Hartmann et al. [14]; Shapiro and
Shields [20] and Seip [19] studied this problem in the Hardy classes, while the case of Smirnov
classes was treated by Yanagihara [21].

The interpolation problem under the uniform separation of uniform nodes (on the Carleson
sets) in the Privalov classes I, for ¢ > 1 was resolved in the work [16], while for 0 < ¢ < 1 this
was done in the work by the author and Bednazh [(].

2. CHARACTERIZATION OF ZEROS LOCATED IN STOLZ ANGLES

In this part of the work we study the zero sets of the functions in the classes II, (0 < ¢ < 1).

To formulate the main result, we introduce additional notation and definitions. For each
> —1 by the symbol 74(z, z;) we denote the infinite Dzhrbashyan product with the zeros at
the points of sequence {z;.}7>° C D, 0 < |2 < |zep1]| <1, k= 1,2,..., see [11].

If 8 =m € Z., the Dzhrbashyan product reads

( ) Rl Ek(@c — Z) " 1 1-— |Z]€|2 i+l
T2, 2k) = | | —Zex E : — .
k P 1—7Ziz pj:0j+1 1—72.2

The product ms(z, z;) converges absolutely and uniformly in D if and only if
+00

ST - Jzl)? < oc,

k=1
The main result of this part of work is the following statement.
Theorem 2.1. Let
0<qg<l, {z}°CD, 0<|z| <|apnal <1, kE=1,2,....
If {2.}° = Z; for some f € 11, then

—+00

31— lal) < 4. (2.1)

k=0
And vice versa, if the points of sequence {z}5° are located in finitely many Stolz angles and

satisfy the condition
1

/(1 — r)n?(r)dr < 4o0, (2.2)
0
then there exists a function g € 1, such that Z, = {z}3°.

In the proof of this results we employ the following statements.
Theorem 2.2 ([3]). If f € II,, then
In* M(r, f) :0((1—7‘)_%), r—1-—0. (2.3)
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The estimate (2.3) is sharp, that is, for each positive function w(r) = o(1), r — 1 — 0, there
exists a function f € Il such that

Int M(r, f) # O(w(r)(1—7)"4), r—1—0.

For the set £ C C of functions f,g : E — R we write f(¢) < g({), ¢ € E, if there exists a
constant C' > 0 such that f({) < Cg(({) for all ¢ € E.

Lemma 2.1 (|11, Lm. 4.7]). For all0 < q < 1, v > 0 the inequality

1 q 1

/ (1= n(r)dr | < / (1 = )10+ D=1 ().

0 0
holds.

If else is not said, by Cy,, ¢(8,...) we denote various positive inessential constants, depending
ona,f,...

Proof of Theorem 2.1. We use the Jensen inequality

T

/@dt < i]hﬁ | f(re')|df

t 27
0

_ %/(ln+|f(rei9)|)q(ln+|f(rei9)|)1_qd9.

We then apply the estimate (2.3)

/ n(t 1 r ;
/T)dt§ m/(lnﬂf(reeﬂ)qd&,
0 (1 - T) R
and this yields
1 r
/(1 _ ) /@dtdr <C, (2.4)
0 0

Integrating twice by parts, we obtain
1

Ja-niamne <c,

which is equivalent to the convergence of series (2.1).

Now we prove the inverse statement. We note that the case, when the points of sequence
{2 }$° are inside certain Stolz angle does not differ essentially from the case, when they are
located on some radius. This is why without loss of generality we suppose that the points of
sequence {z;}5° are located on some radius [0, 1), that is, z;, = rg, k = 1,2,.... We are going
to show that the Dzhrbashyan product ms(z, 7)) with zeros at the points {r;}{° obeying the
condition (2.2) belongs to the class TI,,.

Since the integral (2.2) converges, the product ms(z, %) converges as well and it satisfies the

estimate
| N - +00 1— 7y B+2 )
nt ma(z,m) S T (2.5)
k=1

for all 5 > % — 2, see |11, Lm. 3.7|.
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This is why

1«
://(anr 7s(re, ri)|)* dodr

JHE ()
/ / / (|1—trel9|)ﬁ+2dn<t) dfdr.

Integrating by parts in the internal integral, we obtain

q

_ F\B+1
/ / / OOt dvar.
(1 —=rt)2+62) >

0 —m

For further estimate we split the internal integral into parts

q

0 246%) >

We continue estimating
Th41 q

ks +oo
// n(TkH) (5+2) / (1 o t),B—i—ldt dOdr
(1 —=7rrgg1)2+62%) 2

Tk

< / / f UG dtir
) L \S we o)

1 - 7"7’k+1)

1

[ n?(ryi1)
S Z Grag A0dr
o k=0 2K (1 — rrpy)? + 62) 2

1 +o00 q( )

n\r

B / / = G dodr,
o k=0 kaq(B+2) ((1 — TT’k+1) -+ 92)

and in view of the estimate from the proof of Lemma 2.1 in |1 1] we have

1 400 q( )
\Tk+1
<
I ~ / <Z 2kq(,6+2)(1 _ 7“7’k+1)(ﬁ+2)q1> dr

0 —

n9(regr ) (1 = rppg) P27 IX 2
h Z (1 — rpyq)Bt2)a—2 = gnq(rkﬂ)(l — i)

which is equivalent to
1

I; < /nq (1 —r)d

0

+oo Tk4+1 1 B t)ﬁ—i—l .
// Z / (ﬁ+2) dt d@d?“, Tk‘ == 1 - ?7 k:O’172"“'
Tk
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By the assumption, the integral in the right hand side of latter inequality converges and this is
why m3(2, ) € TI, for all 8 > % — 2.

In conclusion we note that (2.2) implies (2.1). Indeed, it is sufficient to integrate by parts
once in (2.4) and apply then Lemma 2.1. The proof is complete. ]

Remark 2.1. We note that a similar statement for the Privalov classes in circle was obtained
in work [9].

3. INTERPOLATION ON CARLESON SETS
Following L. Carleson, we introduce the following definition.

Definition 3.1. A sequence of complex numbers {z,}3° C D obeying the Blaschke condition

+oo

D (1= lzl) < oo, (3.1)

n=1

15 called uniformly separated if there exists a number 0 < o < 1 such that

[I

k#n

Rk — Zn

>5 Vkel. (3.2)

1 —»2kzn
The condition (3.2) is also called the Carleson condition.

For a given sequence of distinct points {z,}7° C D and s fixed 0 < ¢ < 400 we denote by
[(z,) the space of sequences {w,}°, for which

+o00
D (1= |za])*(In* wy])? < 400
n=1

For all 0 < p < +00 by H? we denote the well-known Hardy class

0<r<1

H? :={ f e H(D): sup / |[f(re)[Pdp < +o0 ¢,

H®> is the class of analytic in D functions.
The next theorem is true.

Theorem 3.1. Let 0 < ¢ < 1. If a sequence {z,}5° C D is uniformly separated, that is,
it satisfies the condition (3.2), then for each sequence {w,}° € 19(z,) there exists a function
f € 11,, which solves the interpolation problem f(z,) = w,, n=1,2,...

Proof. We split the sequence {w, }$° into two subsequences {w,,, }, {wn,, } such that |w, | <1,
|wy,,,, | > 1. Since the sequence {z,} satisfies the condition (3.2), then by the Carleson theorem,
see [13], we can construct a function G € H* such that G(z,,) = wy,,, G(z,,,) = 1. Let us
prove that there exists a function F' € H? such that F(z,,,) =0, F(z,,,) = Inw,,,, where the
principal branch of logarithm is chosen. We have

|Inw,,,| <In|w,,|+|argw,,,| <In"|w,,|+ 27

In view of the condition {w,}* C 19(z,) of theorem we obtain

+oo
D> (1= [zal)? nw,|? < oo,

n=1
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The well-known Shapiro — Shields theorem on interpolation in Hardy classes H?, 0 < ¢ < 1,
see [20], implies the existence of a function F' € HY with the mentioned properties.

We consider an analytic in D function f = G - exp (F). We are going to show that it solves
the interpolation problem in the area Privalov class.

Let us estimate the integral

I(q) = /1 ] (In™ | f(re®)|)" dodr.

0 —m

We have
1
I(g) < //(CG+\F])qd9dr <oy
0 —m

This is why f € f[q. Then

f(zn,) = G(zn,,) - exp (F(znk,)) = Wy, - exp0),
[(zn,) = G(zn,,) - exp (F(an,,)) =1-exp(lnwy,,) = wy,,.
This is why f(z,) = w, for all n = 1,2,... The proof is complete. ]
Theorem 3.2. Let 0 < q < 1. There exists a uniformly separated sequence of interpolation
nodes {z,}5° C D and sequence {w,}}°, which for each ¢ € (0,q) obey the condition

400

D (1= [za])* (It wa])*F < +o0, (3.3)

n=1

and for which in the class f[q there is no function solving the interpolation problem f(z,) = wp,
n=12 ...

Proof. As {z,}3° we take the sequence of real numbers z, =1 - ", 0< <1, n=12...
This sequence obviously satisfies the Blaschke condition and is uniformly separated, that is, it
satisfies the condition (3.2).

We also consider the sequence

Wy, = exXp Z/n , n=12...,
b

obeying the condition (3.3). It is obvious that

(1-— |,zn|)2(anr |w,|)? — +o0, n — +o0. (3.4)

But it follows from the estimate (2.3) that

(1= )" [f ()7 = 0(1),  Vf e, (35)
On the base of (3.4), (2.3) we conclude that in the class II, there is no function solving the
interpolation problem f(z,) = w,, n = 1,2,..., under the above choice of sequences {z,}7°,
{w, }7°. The proof is complete. O

Remark 3.1. In the proof of this theorem we have employed the idea by Yanagihara, see |21,
Thm. 4].
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4. FREE INTERPOLATION IN AREA PRIVALOV CLASSES

For a fixed sequence of distinct points {2,}5° € D and fixed 0 < ¢ < 400 we denote by [9(z,)
the space of sequences {w,, }7°, for which

In* w,| = o ((1 - yzny)—%) . n— +oo,

By Theorem 2.2, the operator R(f) = (f(z1), ..., f(za),...) naturally maps the space II, into

the space Zq(zn). We are interesting in conditions, under which the mentioned mapping is
surjective.
The next statement is true.

Theorem 4.1. Let 0 < g < 1, {z}1° be an arbitrary sequence of distinct complex numbers
i D located in finitely many Stolz angles, that is,

{z)5 < Jrs@,)

for some 0 < 9§ < q. .
If {z1,}3° is an interpolation sequence in I1,, then the series (2.1) converges and there exists
an infinitesimal sequence {£(n)}5° such that

—<(n)

—7 4.1
(1 —lznl)e -y

|7T£3(Zm Zk')| = exp

forallﬁ>§—2.
And vice versa, if the integral (2.2) converges and the condition (4.1) is satisfied, then the
sequence {z}7° is interpolation in the class I1,.

To prove the main result of this part of work, in the spaces ﬂq, 0<qg<1,and Zq(zn) we
introduce the metrics by the rules

i, (F.9) = [ [0 (U170 = glre)) dbar
0 —m

for all f,g € I1,, and

2
pin(a,6) = sup { (1 = [2al)7 In(1 + Ja = bu) }

n=1

for all a = {a,}5°, b= {b,}3° € 19(z,).

[t is easy to verify that the mentioned spaces with the introduced metrics are complete metric
spaces, and moreover, the space II, is F-space, see |J].

The next lemma holds.

Lemma 4.1. If the operator R(f) = (f(21), ..., f(2n),-..) maps the space 11, onto the space
19, then there exists a sequence of functions {g,(z)}5° € I, such that

sup pg(9.,0) <C,  C >0

n=>1

and
0, for k#n,
(n) (n)

gn(zk) = w -, where Wi = exp (5(—k>2 for k=n

for all k,n=1,2,..., 6(k) =o(1), k = 4o0.
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The proof of this lemma is similar to that of Lemma 2.1 in [18].
Forall 0 < a < % we consider the function

h(z) = = expz Z uy' — me)C; e z€D, (4.2)

s—1 m—1 1—206295

where {uy}7° is the infinitesimal sequence associated with the interpolation nodes {z;}3°, 0 <

up < 1, k=1,2,..., {1 — pu}{° is a positive infinitesimal sequence such that for each fixed k
the series
00 U™
Y —F— <40 (4.3)
m=1 (1 - pm> 1
converges.

Lemma 4.2. If the points of sequence {z}5° are located in finitely many Stolz angles, that
18,

{z}5° c (JTs(0
s=1
then the function h(z) defined by the identity (4.2) satisfies the estimate

|h(zk)| = exp ”“—(k) (4.4)

(1= |zxl)
where po(k) is some positive infinitesimal sequence.

Proof. Without loss of generality we can suppose that the interpolation nodes are contained in
the Stolz angle I's(#). It is clear that the series

+oo a
Ug )
1 (1= zppeif)*Ta

converges for each fixed k € N and all z € D in view of the condition (4.3) and hence h € H(D).
Let us show that h € II,. For the sake of brevity we denote o/ = av + %, then

2\«
— pm
h(z) = = exp Z uk s )19) zeD.

We fix k£ € IN and proceed to estimating the function hy(z)

q
// (In™ |hg(re™ qdapdr—// (ln a,) dedr
1 ™ q
(1 — Pm )
//< YT e | AT
0 —m

+oo 1 _ pm2>a
€Xp Z uk e py, e—"’)
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We continue estimating

// (In" |h(re)])2dpdr <

2)aq
_Z 1_7110 aq*Q)

o0 m a
p (1= )™

N Z (1 _Tpm>

m=1

q
QQQZqu—zaq % < oo,
—Uu
k

Thus, we conclude that hy € ﬁq foreach k =1,2,...
Now we estimate |h(zx)| from below in the angle I's(0)

<= (1—pm?) JRe (1 = Zgppe?)e
[n(z)| = exp > uj Re —expzuk 1= pm?)”
m=1

(1_ka e 10 |1_kame 19|2a
We have
Re (1 — Z_kpmeie)o‘, = Re (1 — rkpme_i(%_e))a
=Re (1 — pur + puri(l — e 770"
Re (1 — PmTk + pmrk(l - efi(apka)))a
/ 1 — m’f’ . o
= (pmrip)™ Re (¢ +e w) :

PmTEP
where zj, = re', (1 — e =0) = pe=, || < Z;. Using Lemma 1.3 from [7], we obtain the
estimate

Re (1 — Zepme®) = (pmrip)® ¢ > 0.
On the other hand,
. ! / / 0 -
|1 i e—z(cpk—ﬁ)|a — 99 gip® ( Spk) 7
2
and this yields
Re 1 > (PmrE)™ 2% sin® ( 2k ) _
(1 — agpme )" ((1 — pmTr)? + 4sin ( - ’“) pmrk)
Oé 9 Oél . a/ 97
> (PmTs)® 2% sin® ( == S 2% sin®™ (5
k

((1 = prri)? + 4sin® (552 ))a - (1 = pre) 2 (1 n 4sin2(9_5'”“>)a
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Since {zx}3° C I's(6), we have

sin (51|
We obtain /
Re 1 < c(a)

(0= 27~ (L= puri)”
Thus, for |h(z;)| in the angle I'5(f) the estimate

|h(z1)] = exp c(a Zuk a —/)m) k=1,2,...,

holds. We observe that the series in the right hand of obtained inequality converges.

1_m2a 1_m2a Qo
(1= p®) _ W= pnd) _

uy n < u T X E—
F (1 - Tkpm)a " (1 - pm>a g (1 — pm)g

It remains to employ the condition (4.3).
We continue estimating |h(zx)| from below. In order to do this, we split the sum

S — Z m(l_pm)

(1= 7pm)™

= > o+ > o+ ()

(1_pm):(1_7'k) (1_pm)>(1_7"k) (1_Pm)<(1_7"k)

= So(k) + S1(k) + Sa(k).

We are going to estimate separately each part of the sum. Let mg = inf m, then
Pm=Tk

(1 _ pm2)a 1 u;;no
N PR N Gl 10 SR SRS S
(1—pm)=(1—73) (1= 7kpm) pmmr, (L=1R)s (L—17)s
We estimate S(k)

m (1_pm2)a m 1
Siky = >, wlo—Ao > ) K oy

1- m
(tepiynony (L7 TEPm)

1\« 1 uyt
Z (_) Z uql;n 2 = b 2
2 Pm<Tk (1 - pm)g (1 - pm1)a

where m; is the index, for which p,, < rg.
Now we find the lower bound for Sy(k)

(1 _me)a (1—=pm
Sky= > W e= ) 7
(1—pm)<(1—ry) (1= 75pm) Pm>Th (1= 7%pm) s (1 = 7%ppm)™

Lo ! S up A—pn®)* o 1wy
S N I R (s C

WV

here ms = inf m.
Pm>TE

The estimates for Sy, S, So imply
m2 1— 2 \a
S(k) > 4t ”"fj+ L :
(1 —rp)e (1=pm)e (I—r7)s

69

Indeed,
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and hence,
S(k) > ——
(L—rp)e
forall k=1,2,....
We thus obtain
k
()| > exp L2 (15)
(1 — T‘k)q
where
u, "
0 < po(k) < £~ = o(1), k — 4o0.
The proof is complete. O

Proof of Theorem /J.1. We first prove the necessity. Suppose that {z;}3° C D is an 1nterpolat10n
sequence in the class Hq, that is, for each sequence {wy}$° € l there exists a function f € H
such that f(zx) = wg, k= 1,2,.

We consider the sequence {wk}f‘x’ defined as wy = 1, wy = w3 = ... = 0. It is clear that

{wr}7> € I,. Since {2} is the zero sequence of the function f € IT,, Theorem 2.1 implies
the estimate (2.1).

In order to establish (4.1), we fix an index n € IN and construct a sequence {w,g,n)}‘fo as
follows:

d(n) 2
(1= [zl

According to Lemma 4.1, there exists a function g, € ﬁq such that

=0, k # n, w'™ = exp

n

, where d(n) — 0, n — +oo.

pii,(9n,0) < C and  gn(2k) = w™ forall k=1,2,...,

where the constant C' > 0 is independent of the index n. In particular, g,(z,) = w,

We consider the function
G, =
n — Y
7“—67”
where 75, = m3,(2, 2) is the Dzhrbashyan product constructed by the zeros of the function
gn located in Stolz angles without the nth factor, 8 is an arbitrary number such that g > % —2.
It is obvious that under such choice of the parameter /3 the product mg,, converges and belongs
to the class II,,.
Now we are going to prove that G,, € II,. We multiply both sides of latter identity by ms.41 .
It is obvious that G, € II, if and only if % € II,. As it was established in the proof of

Theorem 3.8 in [11],
mp41(2, 21) — oxp i’i 1—|z)? B+2
71'5(2’, Zk) 1 —ZzZp2 ‘

k=1

This representation and the proof of sufficiency in Theorem 2.1 imply that % € ﬁq. Hence,
G =
By Theorem 2.2

Int M(r,G,) =o((1—7)"3), r—1-0, (4.6)
and therefore,
(n)
‘G (Zn)‘ |gn(zn)| — |wn | = exp 5(”) 1 < CeXp é(n)

o (Zn 20)| [T (20, 20)] (1 — |2a])7 [Ton (20, 2i)| (1—|za])7
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where ¢(n) = o(1), n — +00, e(n) >0, n=1,2,... and C is independent of n by Lemma 4.1.
Letting d(n) = (") , we obtain

—&(n)
—
2(1 — |zx|)
for all 5 > % — 2, and this implies the condition (4.1), see the proof of Theorem 2.1 in [4]. This
completes the proof of first part of Theorem 4.1.

We proceed to proving the inverse statement. Suppose that {z;,}; is an arbitrary sequence
of distinct points in D contained in finitely many Stolz angles, and the conditions (2.2), (4.1)

are satisfied. We are going to show that there exists a function f € f[q such that f(zy) = wy,
k=1,2,..., where {w;}{> € [,, that is,

s (2n, 2)| 2 exp

Wy = exp 6(—k>2 (4.7)
(1= z])s
(k) — 0, k = +oo.
We construct the function f(z) as
Zw m5(z, z;) 1 (1—|_Zk|)’8+2 h(z)j (18)
— (z — 2x) ma(2k, 25) \1—Zz h(zx)
where 75(2, 2;) is the Dzhrbashyan product with zeros at the interpolation nodes
2

{Zk}foo7 8= a -2,
h(z) is defined by the identity (4.2), the sequence {uy} is chosen so that
e(k) + 6(k) — po(k) <0,

where e(k), d(k), po(k) are the infinitesimal sequence from the estimates (4.1), (4.7), (4.5),
respectively.

It is obvious that f(z,) = w,, n =1,2,...

The function f(z) is analytic in the circle D due to the convergence of series (4.8). Indeed,
the convergence of (4.8) is equivalent to the convergence of the series

S (1= fa)*2 < e (4.9)

k=1
But this series converges for all 3+ 2 > % due to the condition (2.2).
We show that f € ﬁq

/l/ﬁ(ln+|f(7“eiw)|)qd§0dr <j](1n+ }M(Tew7zj)‘)ngpdr+/l/”<1n+ |n(re')|)" dedr

+00 2 q
; (k) = po(k) - (1= 2™
// (ln Zexp . 1= Zreie] e dedr

/) (1- \zk|>
:[1 —+ [2 -+ Ig.

The convergence of the integral I; is implied by the proof of sufficiency in Theorem 2.1, while
the convergence of Iy was proved in Lemma 4.2.
Let us prove the convergence I3 taking into consideration the above remark

e(k) + (k) — po(k) < 0.
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We have
q
1 — |2i])P 1

1
// +’“ 11—7“)5+3 ds@dré/(lf%) dr < +o0.
0

While estimating I3, we have taken into consideration the convergence of series (4.9).
Thus, f € 11, indeed solves the interpolation problem in the class II, for all 0 < ¢ < 1.
The proof is complete. O
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