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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO

OUTER ZAREMBA PROBLEM FOR ELLIPTIC EQUATIONS

WITH MEASURE–VALUED POTENTIAL

F.Kh. MUKMINOV, O.S. STEKHUN

Abstract. In the exterior of a ball in the space R𝑛 we consider the Zaremba and Neumann
problems for quasilinear second order elliptic problems with a measure–valued potential.
We proved the existence and uniqueness of entropy solution to the Zaremba and Neumann
problems.
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1. Introduction

Let Ω = {𝑥 ∈ R𝑛 : |𝑥| > 𝑟0} be the exterior of a ball, 𝑛 ⩾ 2, Γ ⊂ 𝜕Ω be a closed subspace
of the boundary, which can also be empty. In the present paper we study the existence of the
entropy solution to the outer Zaremba problem for the equation

− div(𝑎(𝑥, 𝑢,∇𝑢)) + 𝑏0(𝑥, 𝑢,∇𝑢) + 𝑏1(𝑥, 𝑢)𝜇 = 𝑓, 𝑓 ∈ 𝐿1(Ω),

where 𝜇 is a non–negative Radon measure. On Γ we impose the Dirichlet condition: 𝑢(𝑥) = 0
for 𝑥 ∈ Γ. On the remaining part of the boundary 𝜕Ω ∖ Γ we impose the Neumann condition:
𝑎(𝑥, 𝑢,∇𝑢) ·𝑥 = 0 for 𝑥 ∈ 𝜕Ω∖Γ. For empty Γ we have the Neumann problem. The uniqueness
of the entropy solution is proved under additional assumptions.
The notion of the entropy solution of Dirichlet problem was proposed in [1]. In this work, in

a domain Ω ⊂ R𝑛, 𝑛 ⩾ 2 (not necessarily bounded), the elliptic equation with 𝐿1–date

− div(𝑎(𝑥,∇𝑢)) = 𝑓(𝑥, 𝑢), sup
|𝑢|<𝑐

|𝑓(𝑥, 𝑢)| ∈ 𝐿1,loc(Ω), 𝑐 > 0,

is considered. On the function 𝑎 certain conditions of boundedness, monotonicity and coercivity
are imposed. There were proved the existence and uniqueness of the entropy solution to the
Dirichlet problem.
After this work, the study of entropic solutions became the research aim of many foreign and

Russian mathematicians since the end of the last century.
Our study was motivated by the recent work [2]. In this work, the problem in the bounded

domain
−∆𝑢+ 𝜇𝑔(𝑢) = 𝜎, 𝑢|𝜕Ω = 0

was considered. Under certain restrictions for the function 𝑔, the Radon measure 𝜎 and a non–
negative measure 𝜇 in the Morrey class, the existence and uniqueness of a very weak solution
to the problem were established.
Note that few works were devoted to entropy solutions to the Dirichlet problem in an un-

bounded domain. Entropy solutions to the Zaremba or Neumann problem in an unbounded
domain have not been considered yet.
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In [3] for the equation

− div(𝑎(𝑥,∇𝑢)) + 𝑎0(𝑥, 𝑢) = 𝜎

with the Radon measure 𝜎 the existence and uniqueness of the renormalized solution to the
Dirichlet problem for an arbitrary domain Ω. From our point of view, one of the conditions of
this work

𝑎0(𝑥, 𝑠)𝑠 ⩾ 𝑐|𝑠|𝑝, 𝑠 ∈ R, (1.1)

can be weakened.
In [4] there was established the equivalence of entropy and renormalized solutions to nonlinear

elliptic problem in Musielak — Orlicz spaces. In [5] the Dirichlet problem

− div 𝑎(𝑥, 𝑢,∇𝑢) +𝑀(𝑥, 𝑢)/𝑢+ 𝑏(𝑥, 𝑢,∇𝑢) = 𝜎, 𝑢
⃒⃒⃒
𝜕Ω

= 0,

was considered in an unbounded domain, where the functions 𝑎, 𝑏 had a growth determined
by the generalized 𝑁–function 𝑀(𝑥, 𝑢), while the bounded Radon measure 𝜎 has a special
form. The inequality 𝑏(𝑥, 𝑢,∇𝑢)𝑢 ⩾ 0 was supposed. The existence of the entropy problem
was problem. It is important that the result was established without ∆2–conditions on 𝑀 , 𝑀 .
In the work [6], the problem with the Fourier boundary condition

𝑏(𝑢)− div(𝑎(𝑥, 𝑢,∇𝑢)) = 𝑓, 𝑥 ∈ 𝑄; (𝑎(𝑥, 𝑢,∇𝑢),n) + 𝜆𝑢 = 𝑔, 𝑥 ∈ 𝜕𝑄,

was considered in an unbounded domain 𝑄. The function 𝑎(𝑥, 𝑢, 𝑦) was supposed to be Lipshitz
in 𝑢. The operator div(𝑎(𝑥, 𝑢,∇𝑢)), in particular, can be 𝑝(𝑢)–Laplcian. The existence and
uniqueness of the entropy solution to the problem were proved. The uniqueness was proved
under the apriori assumption that the entropy solution obeys the Lipshitz condition.
In the work [7], in the hyperbolic space, the Dirichlet problem for a nonlinear second order

elliptic equation with a singular measure–valued potential was considered. The restrictions for
the structure of equation were formulated in terms of a generalized 𝑁–function. The existence
of the entropy solution to the problem was proved. A more detailed survey of works on entropy
and renormalized solutions can be found in [5].
As it is known, the space 𝐶∞

0 (R𝑛) can be completed both by the norm(︂∫︁
|∇𝑢|𝑝𝑑𝑥

)︂ 1
𝑝

and by the norm
(︀∫︀

(|𝑢|𝑝 + |∇𝑢|𝑝)𝑑𝑥
)︀ 1

𝑝 , and in the second case a narrower space 𝑊 1
𝑝 (R

𝑛) ⊂
ℋ1

𝑝(R
𝑛) arises. Usually, for instance, in the works [3], [5], one goes in the second way. While

considering the problems in an unbounded domain, this produces too strict requirements of
form (1.1) or similar. In this paper, the space ℋ1

𝑝(Ω) of the first type is used.
The results of the present work are also true for some regions, which are not exterior to a

ball. But then we would have to formulate requirements on the set Γ depending on the shape
of the domain. And this is a separate problem that we do not consider here.

2. Formulation of problem and main results

It is well–known that the space 𝐿𝑝(Ω) with 𝑝 > 1 is separable and reflexive. In what follows
the number 𝑝 ∈ (1, 𝑛) is supposed to be fixed.
Let 𝒟Γ(Ω) be the set of restrictions on Ω of the functions from 𝒟(R𝑛) vanishing in the vicinity

of Γ.
We define the space ℋ1

𝑝(Ω) as the completion of space 𝒟Γ(Ω) by the norm

‖𝑢‖𝑝,1 = ‖|∇𝑢|‖𝐿𝑝(Ω) = ‖𝑢‖𝑉 .
For the brevity, we denote this space by 𝑉. The dual space for 𝑉 with the induced norm is
denoted by 𝑉 *. The actions of functionals 𝑙 on elements in 𝑉 is denoted by angle brackets ⟨𝑙, 𝑣⟩.
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We consider the operator

ℬ𝑢 = 𝑏0(𝑥, 𝑢,∇𝑢) + 𝑏1(𝑥, 𝑢)𝜇,

where 𝜇 is a non–negative Radon measure. For 𝑢, 𝑣 ∈ 𝒟Γ(Ω) the operator ℬ𝑢 acts by the rule

⟨ℬ𝑢, 𝑣⟩ =
∫︁
Ω

𝑏0(𝑥, 𝑢,∇𝑢)𝑣𝑑𝑥+
∫︁
Ω

𝑏1(𝑥, 𝑢)𝑣𝑑𝜇.

The well–definiteness of this formula under some conditions for the functions 𝑏0, 𝑏1 is established
in what follows.
The results are established for the equation

− div(𝑎(𝑥, 𝑢,∇𝑢)) + ℬ𝑢 = 𝑓, 𝑓 ∈ 𝐿1(Ω). (2.1)

We prove the existence of an entropy solution to the Zaremba and Neumann problem for this
equation. Under additional restrictions we establish the uniqueness of solution.
Let 𝜇 be a Radon measure with a finite total variation and a support located in a bounded

domain 𝑄 ⊂ R𝑛. We suppose that the measure is continued by zero outside 𝑄. We recall that
𝜇 belongs to the Morrey class M𝑠(𝑄), 𝑠 ⩾ 1 if for each ball centered at 𝑥 the inequality

|𝐵𝑟(𝑥)|𝜇 :=

∫︁
𝐵𝑟(𝑥)

𝑑|𝜇| ⩽ 𝑐𝑟𝑛(1−1/𝑠), 𝑟 > 0, 𝑥 ∈ 𝑄,

holds. In other notation, 𝜇 ∈ M 𝑛
𝑛−𝜃

(𝑄) for 𝜃 ∈ [0, 𝑛], 𝜃 = 𝑛(1− 1/𝑠) if∫︁
𝐵𝑟(𝑥)

𝑑|𝜇| ⩽ 𝑐𝑟𝜃.

It is easy to see that the Dirac delta function 𝛿 belongs to the class M1(𝑄). Due to the Hölder
inequality, the functions in 𝐿𝑠(𝑄) define a measure from the class M𝑠(𝑄). If

𝑓 ∈ 𝐿𝑞(Ω ∩ {𝑥1 = . . . = 𝑥𝑘 = 0}), 𝑥′ = (0, . . . , 0, 𝑥𝑘+1, . . . , 𝑥𝑛),

then for 𝑑𝜇 = 𝑓(𝑥)𝑑𝑥′ we have

∫︁
𝐵𝑟(𝑥0)

|𝑓(𝑥)|𝑑𝑥′ ⩽ ‖𝑓‖𝑞

⎛⎜⎝ ∫︁
𝐵𝑟(𝑥0)∩{𝑥1=...=𝑥𝑘=0}

𝑑𝑥′

⎞⎟⎠
1−1/𝑞

⩽ 𝑐𝑟(𝑛−𝑘)(1−1/𝑞),

and this function also defines some measure from the Morrey class with the support on the
plane of dimension 𝑛− 𝑘.
We introduce the notation B𝑟 = {𝑥 ∈ Ω : |𝑥| < 𝑟}, 𝑟 > 𝑟0.
We suppose that there exists a number ̂︀𝑠 > 𝑛𝑝

𝑛𝑝+𝑝−𝑛
such that

𝜇 ∈ M̂︀𝑠(B𝑟) for all 𝑟 > 𝑟0. (2.2)

Let 𝑄 ⊂ R𝑛 be a bounded domain ̂︀𝜃 = 𝑛(1 − 1/̂︀𝑠). Given 𝑞 <
̂︀𝜃𝑝

𝑛−𝑝
, for a non–negative

measure 𝜇 ∈ M̂︀𝑠(𝑄) the compact embedding

𝑊 1
𝑝 (𝑄) →˓ 𝐿𝑞,𝜇(𝑄) (2.3)

is known. In particular, the elements in the space 𝑊 1
𝑝 (𝑄) are 𝜇–measurable functions. This

is a particular case of a more general statement [2, Prop. 2.5]. In the case of the Lebesgue
measure, the embedding

𝑊 1
𝑝 (𝑄) →˓ 𝐿𝑞0(𝑄)

is compact for 𝑞0 <
𝑛𝑝
𝑛−𝑝

.
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The vector field 𝑎(𝑥, 𝑢,∇𝑢) in (2.1) satisfies the boundedness condition

|𝑎(𝑥, 𝑟, 𝑦)|𝑝′ ⩽ 𝑔(|𝑟|)(𝐺(𝑥) + |𝑦|𝑝), 𝑟 ∈ R, 𝑦 ∈ R𝑛, 𝑥 ∈ Ω,
1

𝑝
+

1

𝑝′
= 1, (2.4)

for 𝑥 ∈ Ω with an increasing function 𝑔(𝑠), 𝑠 ⩾ 0, and a function 𝐺 ∈ 𝐿1(Ω), the coercivity
condition

𝑎(𝑥, 𝑟, 𝑦) · 𝑦 ⩾ 𝑐0|𝑦|𝑝 −𝐺(𝑥), 𝑟 ∈ R, 𝑐0 > 0, (2.5)

and the monotonicity condition

(𝑎(𝑥, 𝑟, 𝑦)− 𝑎(𝑥, 𝑟, 𝑧))(𝑦 − 𝑧) > 0, 𝑦 ̸= 𝑧, 𝑦, 𝑧 ∈ R𝑛, 𝑟 ∈ R, 𝑥 ∈ Ω. (2.6)

Moreover, let a Caratheodory function 𝑏0 and a 𝜇–Caratheodory function 𝑏1 satisfy the inequal-
ities

|𝑏0(𝑥, 𝑠, 𝑦)| ⩽ 𝑔(𝑟)( ̃︀𝐺0(𝑥) + |𝑦|𝑝), |𝑠| ⩽ 𝑟, |𝑥| ⩽ 𝑟; for all 𝑟 ⩾ 0, (2.7)

|𝑏1(𝑥, 𝑠)| ⩽ 𝑔(𝑟) ̃︀𝐺1(𝑥), |𝑠| ⩽ 𝑟, |𝑥| ⩽ 𝑟, for all 𝑟 ⩾ 0, (2.8)

where ̃︀𝐺0 ∈ 𝐿1,loc(R
𝑛), ̃︀𝐺1 ∈ 𝐿1,𝜇,loc(R

𝑛);

𝑏0(𝑥, 𝑟, 𝑦)𝑟 ⩾ 0, 𝑏1(𝑥, 𝑟)𝑟 ⩾ 0, for all 𝑟 ∈ R. (2.9)

We define the function

𝑇𝑘(𝑟) =

⎧⎪⎨⎪⎩
𝑘 for 𝑟 > 𝑘,

𝑟 for |𝑟| ⩽ 𝑘,

−𝑘 for 𝑟 < −𝑘.
By 𝒯 1

𝑝 (Ω) we denote the set of measurable functions 𝑢 : Ω → R such that 𝑇𝑘(𝑢) ∈ 𝑉 for each
𝑘 > 0.

Definition 2.1. The entropy solution to the Zaremba problem for Equation (2.1) is a func-
tion 𝑢 ∈ 𝒯 1

𝑝 (Ω) such that for all 𝑘 > 0, 𝜉 ∈ 𝒟Γ(Ω) the inequality∫︁
Ω

(𝑎(𝑥, 𝑢,∇𝑢)∇𝑇𝑘(𝑢− 𝜉)− 𝑓𝑇𝑘(𝑢− 𝜉))𝑑𝑥+ ⟨ℬ𝑢, 𝑇𝑘(𝑢− 𝜉)⟩ ⩽ 0, (2.10)

is well–defined and true, that is, all its terms are finite.

One of the main results of work is the following theorem.

Theorem 2.1. Let the conditions (2.2)–(2.9) be satisfied, then there exists an entropy solu-
tion to the Zaremba problem for Equation (2.1).

The uniqueness of the entropy solution is established under additional restrictions. Let the
Caratheodory function 𝑏0 and 𝜇–Caratheodory function 𝑏1 satisfies the inequalities

|𝑏0(𝑥, 𝑠)| ⩽ ̂︀𝐺0(𝑥), |𝑠| ⩽ 1, 𝑥 ∈ Ω; (2.11)

|𝑏1(𝑥, 𝑠)| ⩽ ̂︀𝐺1(𝑥), |𝑠| ⩽ 1, 𝑥 ∈ Ω; (2.12)

where ̂︀𝐺0 ∈ 𝐿1(R
𝑛), ̂︀𝐺1 ∈ 𝐿1,𝜇(R

𝑛). In the next theorem the condition (2.4) is employed with
𝑔(𝑟) = 𝐶 > 0.

Theorem 2.2. Let 𝑎 = 𝑎(𝑥, 𝑦) and the functions 𝑏𝑖(𝑥, 𝑠), 𝑖 = 0, 1, increase in 𝑠 and the
inequalities (2.11), (2.12) hold. Let 𝑢1, 𝑢2 be entropy solutions to the Zaremba problem for
Equation (2.1). If the conditions (2.2)–(2.6), (2.9) are satisfied, then 𝑢1 = 𝑢2.

We note that we do not know works, in which the uniqueness of the entropy solution is
proved for the Dirichlet or Neumann problem for an elliptic equation in an unbounded domain,
in which the flow 𝑎 explicitly depends on the sought function 𝑢.
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3. Technical lemmas

Lemma 3.1. Let 𝑣𝑗 ⩾ 0, 𝑗 ∈ N, be measurable non–negative functions in the domain 𝑄 (not
necessarily bounded) such that

𝑣𝑗 → 𝑣 a.e. in 𝑄, 𝑗 → ∞,

and the integrals ∫︁
𝑄

𝑣𝑗(𝑥)𝑑𝑥→
∫︁
𝑄

𝑣(𝑥)𝑑𝑥, 𝑗 → ∞,

converge. Then
𝑣𝑗 → 𝑣 strongly in 𝐿1(𝑄), 𝑗 → ∞.

Proof. The identity∫︁
𝑄

|𝑣𝑗(𝑥)− 𝑣(𝑥)|𝑑𝑥 =

∫︁
𝑄

(𝑣𝑗(𝑥)− 𝑣(𝑥))𝑑𝑥+ 2

∫︁
𝑥∈𝑄:𝑣(𝑥)>𝑣𝑗(𝑥)

(𝑣(𝑥)− 𝑣𝑗(𝑥))𝑑𝑥

is obvious. The latter integral tends to the zero by the Lebesgue theorem. The proof is
complete.

Lemma 3.2. There exists a non–negative increasing function ℎ(𝑟) such that the inequality

‖𝑢‖𝑊 1
𝑝 (B𝑟) ⩽ ℎ(𝑟)‖𝑢‖𝑉 , 𝑟 > 𝑟0, for all 𝑢 ∈ 𝑉, (3.1)

holds.

Proof. It is sufficient to establish the inequality for 𝑢 ∈ 𝒟Γ(Ω). The inequality

‖∇𝑢‖𝑝,B𝑟 ⩽ ‖𝑢‖𝑉 (3.2)

is obvious. This is why the embedding

𝑉 →˓ 𝑊 1
𝑝 (B𝑟)

is continuous and the inequality (3.1) holds. Indeed, if the operator of this embedding is not
bounded on 𝒟Γ(Ω), then there existsa sequence of smooth functions 𝑣𝑘 such that

‖𝑣𝑘‖𝑊 1
𝑝 (B𝑅) ⩾ 𝑘‖𝑣𝑘‖𝑉 .

Multiplying this inequality by an appropriate factor, we reduce it to the form

1 ⩾ 𝑘‖𝑣𝑘‖𝑉 , (3.3)

where ‖𝑣𝑘‖𝑊 1
𝑝 (B𝑟) = 1. By (3.3) we have

‖𝑣𝑘‖𝑉 → 0.

By the Kondrashov theorem, 𝑣𝑘 converges strongly in 𝐿𝑝(B𝑟). In view of (3.2), we establish the
convergence 𝑣𝑘 → 𝐶 ̸= 0 in the space𝑊 1

𝑝 (B𝑟).We can also suppose that 𝑣𝑘 → 𝐶 = 𝐶(𝑟) almost

everywhere in B𝑟. In order to obtain a contradiction, we consider a sequence ̂︀𝑣𝑘 = 𝑣𝑘𝜁(|𝑥|−𝑟0),
where 𝜁(𝑡) = min(1,max(0, 𝑡)). Since supp ̂︀𝑣𝑘 ⊂ Ω, by Nirenberg — Gagliardo — Sobolev
inequalities

‖̂︀𝑣𝑘‖𝐿𝑝* (Ω) ⩽ 𝛼(𝑝, 𝑛)‖∇̂︀𝑣𝑘‖𝐿𝑝(Ω); 𝑝* =
𝑛𝑝

𝑛− 𝑝
. (3.4)

We have the inequality

‖̂︀𝑣𝑘‖𝐿𝑝* (Ω) ⩾ ‖𝑣𝑘‖𝐿𝑝* (B𝑟∖B𝑟0+1) → |𝐶|mes1/𝑝
*
(B𝑟 ∖B𝑟0+1).

On the other hand, the convergence ‖𝑣𝑘‖𝐿𝑝(B𝑟) → 1 implies the convergence |𝑣𝑘|𝑝 → |𝐶|𝑝 in
𝐿1(B𝑟), see Lemma 3.1, and hence

‖∇̂︀𝑣𝑘‖𝐿𝑝(Ω) ⩽ ‖𝑣𝑘∇𝜁(|𝑥| − 𝑟0)‖𝐿𝑝(B𝑟0+1) + ‖∇𝑣𝑘‖𝐿𝑝(Ω) → |𝐶|𝛼1(𝑝, 𝑛).
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Two latter inequalities contradicts (3.4) for large 𝑘 and 𝑟. The proof is complete.

We note that the functions 𝑢 ∈ 𝐶∞
0 (Ω) satisfy the Nirenberg — Gagliardo — Sobolev inequal-

ity
‖𝑢‖𝐿𝑝* (Ω) ⩽ 𝛼2(𝑝, 𝑛)‖∇𝑢‖𝐿𝑝(Ω). (3.5)

Indeed, the inequality (3.1) allows to construct the continuation to a function ̂︀𝑢 ∈ 𝑊 1
𝑝,loc(R

𝑛),
which coincides with 𝑢 in Ω, and to apply the usual Nirenberg — Gagliardo — Sobolev inequality
in R𝑛.
The authors thank V.E. Bobkov, who pointed out the work [8], the results of which imply

the statement of Lemma 3.2. But we preferred to give a simple proof for this lemma.

Lemma 3.3. Let a measurable function 𝑢(𝑥) be defined in Ω. The set {𝑘 : mes{𝑥 ∈ Ω :
|𝑢(𝑥)| = 𝑘} > 0} is finite or countable.

Proof. Let 𝑁 be an arbitrary natural number. We choose numbers 𝑘𝑖 such that

mes{𝑥 ∈ B𝑟 : |𝑢(𝑥)| = 𝑘𝑖} >
1

𝑁
.

These sets are disjoint and this is why

mes{𝑥 ∈ B𝑟 : |𝑢(𝑥)| = 𝑘1}+mes{𝑥 ∈ B𝑟 : |𝑢(𝑥)| = 𝑘2}+ . . . ⩽ mesB𝑟.

Therefore, there are at most 𝑁 mesB𝑟 such sets. Then the set

{𝑘 : mes{𝑥 ∈ B𝑟 : |𝑢(𝑥)| = 𝑘} > 0}
is finite or countable. This easily implies the statement of the lemma. The proof is complete.

We shall the values of 𝑘, for which

mes{𝑥 ∈ Ω : |𝑢(𝑥)| = 𝑘} = 0

regular. Let 𝑘 be a regular value and 𝑢𝑗(𝑥) → 𝑢(𝑥) almost everywhere in Ω. Then

𝜒(|𝑢𝑗(𝑥)| < 𝑘) → 𝜒(|𝑢(𝑥)| < 𝑘) a.e. in Ω. (3.6)

Indeed, if |𝑢(𝑥)| < 𝑘, then |𝑢𝑗(𝑥)| < 𝑘 for large 𝑗. This implies the convergence for a chosen 𝑥.
If |𝑢(𝑥)| > 𝑘, then |𝑢𝑗(𝑥)| > 𝑘 for large 𝑗. This implies the convergence also for such 𝑥.

Lemma 3.4. Let a function 𝑣 be such that 𝑇𝑘(𝑣) ∈ 𝑉 for all 𝑘 > 𝑘0 and the inequality

‖𝑇𝑘(𝑣)‖𝑝𝑉 ⩽ 𝐶𝑘

holds. Then

mes {𝑥 ∈ Ω : |𝑣| ⩾ 𝑘} ⩽
𝐶1

𝑘𝑝*(1−𝑝−1)
, 𝑘 > 𝑘0. (3.7)

Proof. Using the inequality (3.5), we establish

‖𝑇𝑘(𝑣)‖𝑝*,Ω ⩽ 𝐶(𝑝, 𝑛)‖𝑇𝑘(𝑣)‖𝑉 .
For 𝑘1 ∈ (0, 𝑘] the inequalities

mes {𝑥 ∈ Ω : |𝑣| ⩾ 𝑘1} ⩽

∫︀
{𝑥∈Ω:|𝑣|⩾𝑘1}

|𝑇𝑘(𝑣)|𝑝
*
𝑑𝑥

𝑘𝑝
*

1

⩽
𝐶(𝑝, 𝑛)𝑝

*‖𝑇𝑘(𝑣)‖𝑝
*

𝑉

𝑘𝑝
*

1

⩽ 𝐶1
𝑘𝑝

*/𝑝

𝑘𝑝
*

1

are obvious. Letting 𝑘1 = 𝑘, we get (3.7). The proof is complete.

Lemma 3.5. Let 𝑄 ⊂ Ω, the sequence {𝑣𝑚}𝑚∈N be bounded in 𝐿𝑝(𝑄), 𝑣 ∈ 𝐿𝑝(𝑄), and

𝑣𝑚 → 𝑣 a.e. in 𝑄, 𝑚→ ∞.

Then
𝑣𝑚 ⇀ 𝑣 weakly in 𝐿𝑝(𝑄), 𝑚→ ∞.
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For a bounded domain 𝑄 ⊂ R𝑛 the proof was given [10], for an arbitrary domain 𝑄 ⊂ Ω the
proof is similar.
In what follows, to avoid bulky notations, instead of statements like “it is possible to select

a subsequence from the sequence 𝑢𝑚, which converges almost everywhere in Ω as 𝑚→ ∞” we
shall simply write “the sequence 𝑢𝑚 contains a subsequence converging almost everywhere in
Ω as 𝑚 → ∞”. We shall also employ the phrase “weakly converges over some subsequence”
omitting the index of the subsequence.

Lemma 3.6. Let 𝑣𝑗, 𝑗 ∈ N, 𝑣 by functions in 𝐿𝑝(𝑄) such that

𝑣𝑗 → 𝑣 a.e. in 𝑄, 𝑗 → ∞;

|𝑣𝑗|𝑝 ⩽ 𝐻 ∈ 𝐿1(𝑄), 𝑗 ∈ N,
then

𝑣𝑗 → 𝑣 strongly in 𝐿𝑝(𝑄), 𝑗 → ∞.

This lemma is implied by the Lebesgue theorem.

Lemma 3.7. Let a sequence {𝑣𝑗}𝑗∈N be bounded in 𝐿𝑝′(𝑄). Then there exists a subsequence
such that

𝑣𝑗 ⇀ 𝑣 weakly in 𝐿𝑝′(𝑄), 𝑗 → ∞.

If ℎ𝑗, 𝑗 ∈ N, ℎ are functions in 𝐿𝑝(𝑄) such that

ℎ𝑗 → ℎ strongly in 𝐿𝑝(𝑄), 𝑗 → ∞,

then ∫︁
𝑄

𝑣𝑗ℎ𝑗𝑑𝑥→
∫︁
𝑄

𝑣ℎ𝑑𝑥, 𝑗 → ∞.

The proof of this lemma is simple and we omit it. In what follows we shall employ the Vitali
lemma, see [11, Ch. III, Sect. 6, Thm. 15].

Lemma 3.8. Let 𝑣𝑗, 𝑗 ∈ N, 𝑣 be measurable functions in a bounded domain 𝑄 such that

𝑣𝑗 → 𝑣 a.e. in 𝑄, 𝑗 → ∞,

and the integrals ∫︁
𝑄

|𝑣𝑗(𝑥)|𝑑𝑥, 𝑗 ∈ N,

be uniformly absolutely continuous. Then

𝑣𝑗 → 𝑣 strongly in 𝐿1(𝑄), 𝑗 → ∞.

Lemma 3.9. Let 𝐻𝑗 → 𝐻 in 𝐿1(𝑄) as 𝑗 → ∞. Let 𝑣𝑗, 𝑗 ∈ N, be measurable functions in a
bounded domain 𝑄 such that

𝑣𝑗 → 𝑣 a.e. in 𝑄, 𝑗 → ∞;

|𝑣𝑗| ⩽ 𝐻𝑗, 𝑗 ∈ N,
then

𝑣𝑗 → 𝑣 strongly in 𝐿1(𝑄), 𝑗 → ∞.

This lemma can be easily derived from the Vitali lemma.
The next statement is usually called Levi theorem.

Lemma 3.10. Let (𝑆,
∑︀
, 𝜇) be a space with a positive measure, {𝑓𝑛} be a non–decreasing

sequence of non–negative measurable not necessarily integrable functions. Then

lim
𝑛→∞

∫︁
𝑆

𝑓𝑛(𝑥)𝑑𝜇 =

∫︁
𝑆

sup
𝑛
𝑓𝑛(𝑥)𝑑𝜇.
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The proof was given in [11, Ch. III, Sect. 6, Cor. 17].

Lemma 3.11. Let in Ω the conditions (2.4)–(2.6) hold and for 𝑘 > 0 and some sequence
𝑤𝑗 ∈ 𝑉 the conditions

∇𝑤𝑗 ⇀ ∇𝑤 in 𝐿𝑝(Ω), 𝑗 → ∞,

𝑤𝑗 → 𝑤 a.e. in Ω, 𝑗 → ∞,

lim
𝑗→∞

∫︁
B𝑅

(𝑎(𝑥, 𝑇𝑘(𝑤
𝑗),∇𝑤𝑗)− 𝑎(𝑥, 𝑇𝑘(𝑤

𝑗),∇𝑤)) · ∇(𝑤𝑗 − 𝑤))𝑑𝑥 = 0, for all 𝑅 > 𝑅0.

be satisfied. Then on some subsequence

∇𝑤𝑗 → ∇𝑤 a.e. in Ω, 𝑗 → ∞, (3.8)

∇𝑤𝑗 → ∇𝑤 strongly in 𝐿𝑝,loc(Ω), 𝑗 → ∞,

𝑎(𝑥, 𝑇𝑘(𝑤
𝑗),∇𝑤𝑗) · ∇𝑤𝑗 → 𝑎(𝑥, 𝑇𝑘(𝑤),∇𝑤) · ∇𝑤 in 𝐿1,loc(Ω), 𝑗 → ∞.

A similar statement in a more general formulation was proved in [9, Lm. 4.10].

4. Weak solution to approximation problem

By (2.4) the vector field 𝑎𝑚(𝑥, 𝑟, 𝑦) = 𝑎(𝑥, 𝑇𝑚(𝑟), 𝑦) defines the operator̃︀𝐴 : 𝑉 × 𝑉 → 𝑉 *.

It acts by the formula

⟨ ̃︀𝐴(𝑢, 𝑣), 𝑤⟩ = ∫︁
Ω

𝑎𝑚(𝑥, 𝑢,∇𝑣) · ∇𝑤𝑑𝑥, 𝑢, 𝑣, 𝑤 ∈ 𝑉.

We let

𝑓𝑚(𝑥) = 𝑇𝑚(𝑓(𝑥))𝜒𝑚(𝑥),

𝜒𝑚(𝑥) =

{︃
1, if 𝑥 ∈ B𝑚,

0, if 𝑥 /∈ B𝑚,

𝑏𝑚0 (𝑥, 𝑟, 𝑦) = 𝑇𝑚(𝑏0(𝑥, 𝑟, 𝑦))𝜒𝑚(𝑥), 𝑏𝑚1 (𝑥, 𝑟) = 𝑇𝑚(𝑏1(𝑥, 𝑟))𝜒𝑚(𝑥).

It is obvious that as 𝑟 ∈ R, 𝑦 ∈ R𝑛,

|𝑏𝑚0 (𝑥, 𝑟, 𝑦)| ⩽ 𝑚𝜒𝑚(𝑥), |𝑏𝑚1 (𝑥, 𝑟)| ⩽ 𝑚𝜒𝑚(𝑥), 𝑥 ∈ Ω.

Moreover, applying (2.9), we find

𝑏𝑚0 (𝑥, 𝑟, 𝑦)𝑟 ⩾ 0, 𝑏𝑚1 (𝑥, 𝑟)𝑟 ⩾ 0, 𝑥 ∈ Ω, 𝑟 ∈ R. (4.1)

Using the inequality (3.1), it is easy to show that 𝑓𝑚 ∈ 𝑉 *,

𝑓𝑚 → 𝑓 in 𝐿1(Ω), 𝑚→ ∞,

and at the same time

|𝑓𝑚(𝑥)| ⩽ |𝑓(𝑥)|, |𝑓𝑚(𝑥)| ⩽ 𝑚𝜒𝑚(𝑥), 𝑥 ∈ Ω, 𝑚 ∈ N. (4.2)

The operator ℬ𝑚 : 𝑉 → 𝑉 * acts by the formula

⟨ℬ𝑚𝑢, 𝑣⟩ =
∫︁
Ω

𝑏𝑚0 (𝑥, 𝑢,∇𝑢)𝑣𝑑𝑥+
∫︁
Ω

𝑏𝑚1 (𝑥, 𝑢)𝑣𝑑𝜇 = ⟨𝐾0(𝑢), 𝑣⟩+ ⟨𝐾1(𝑢), 𝑣⟩.

The convergence of the second integrals is ensured by the embedding (2.3) and the inequality
(3.1). Using (4.1), it is easy to establish the non–negativity of the operator ℬ𝑚:

⟨ℬ𝑚𝑢, 𝑢⟩ ⩾ 0, 𝑢 ∈ 𝒟(Ω).
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We consider the equation

− div 𝑎𝑚(𝑥, 𝑢,∇𝑢) + ℬ𝑚𝑢 = 𝑓𝑚(𝑥), 𝑥 ∈ Ω, 𝑚 ∈ N, (4.3)

with the function 𝑎𝑚(𝑥, 𝑟, 𝑦) = 𝑎(𝑥, 𝑇𝑚(𝑟), 𝑦).
The weak solution to the Zaremba problem for Equation (4.3) is a function 𝑢𝑚 ∈ 𝑉 obeying

the integral identity ∫︁
Ω

𝑎(𝑥, 𝑇𝑚(𝑢
𝑚),∇𝑢𝑚) · ∇𝑣𝑑𝑥+ ⟨ℬ𝑚𝑢

𝑚, 𝑣⟩ = ⟨𝑓𝑚, 𝑣⟩ (4.4)

for each function 𝑣 ∈ 𝒟Γ(Ω). It is easy to prove that the relation (4.4) holds also for all 𝑣 ∈ 𝑉.
While proving the existence of a weak solution 𝑢𝑚 to the Zaremba problem, we shall omit the
superscript 𝑚.
We shall seek a weak solution 𝑢𝑚 ∈ 𝑉 to the Zaremba problem for Equation (4.3) by the

Galerkin method.
Let a sequence of functions 𝜔𝑗 ∈ 𝒟Γ(Ω) be orthonormalized and has a dense linear span in

𝐿2(Ω). We seek approximations for a solution to the problem as 𝑢𝑁 =
𝑁∑︀
𝑗=1

ℎ𝑁𝑗 𝜔𝑗. We fix 𝑁 . We

let h = (ℎ1, ℎ2, . . . , ℎ𝑁) ∈ R𝑁 and define the functions 𝑃𝑘(h), 𝑘 = 1, 2, . . . , 𝑁, by the formulas

𝑃𝑘(h) =

∫︁
Ω

𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁) · ∇𝜔𝑘𝑑𝑥+ ⟨ℬ𝑚𝑢
𝑁 , 𝜔𝑘⟩ − ⟨𝑓𝑚, 𝜔𝑘⟩.

The vector h𝑁 is determined by the system of equations 𝑃𝑘(h
𝑁) = 0, 𝑘 = 1, 2, . . . , 𝑁.

Let us prove the solvability of equations for the vector h𝑁 . We introduce the notation

𝑃 (h𝑁) = (𝑃1(h
𝑁), 𝑃2(h

𝑁), . . . , 𝑃𝑁(h
𝑁)).

Using the condition (2.5), the non–negativity of the operator ℬ𝑚 and the inequalities (3.1),

|⟨𝑓𝑚, 𝑢𝑁⟩| ⩽ 𝐶(𝑚)‖𝑢𝑁‖𝑝,B𝑚 ,

we have

(𝑃 (h𝑁),h𝑁) =

∫︁
Ω

𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁) · ∇𝑢𝑁𝑑𝑥+ ⟨ℬ𝑚𝑢
𝑁 , 𝑢𝑁⟩ − ⟨𝑓𝑚, 𝑢𝑁⟩

⩾
∫︁
Ω

(𝑐0|∇𝑢𝑁 |𝑝 −𝐺(𝑥))𝑑𝑥+ ⟨ℬ𝑚𝑢
𝑁 , 𝑢𝑁⟩ − ⟨𝑓𝑚, 𝑢𝑁⟩

⩾
∫︁
Ω

𝑐0|∇𝑢𝑁 |𝑝𝑑𝑥− 𝐶(𝑚)‖𝑢𝑁‖𝑝,B𝑚 − 𝐶1.

(4.5)

Thus, for 𝑝 > 1 by (4.5) we get the inequality

(𝑃 (h),h) > 0

for large |h|. By [12, Ch. 1, Lm. 4.3]), there exists a vector h𝑁 such that 𝑃𝑘(h
𝑁) = 0,

𝑘 = 1, 2, . . . 𝑁. Using (4.5) and the identity (𝑃 (h𝑁),h𝑁) = 0, we obtain the inequality∫︁
Ω

|∇𝑢𝑁 |𝑝𝑑𝑥 ⩽ 𝐶1 + 𝐶2‖𝑢𝑁‖𝑝,B𝑚 .

In view of (3.1) this implies the uniform estimate

‖𝑢𝑁‖𝑉 = ‖∇𝑢𝑁‖𝑝,Ω ⩽ 𝐶3, ∀𝑁 = 1, 2, . . . .

Similarly, using (4.5) and the non–negativity of ℬ𝑚 we establish that

⟨ℬ𝑚𝑢
𝑁 , 𝑢𝑁⟩ ⩽ 𝐶3, for all 𝑁 = 1, 2, . . . .
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Then we can choose a subsequence 𝑁𝑘 so that

𝑢𝑁𝑘 ⇀ 𝑢 weakly in 𝑉 and weakly in 𝑊 1
𝑝 (B𝑟), 𝑟 ⩾ 𝑟0.

Using inequalities of form (3.1) and the Rellich — Kondrashov theorem, we obtain

𝑢𝑁𝑘 → 𝑢 strongly in 𝐿𝑝,loc(Ω).

This is why, choosing an appropriate subsequence, we can suppose that

𝑢𝑁𝑘 → 𝑢 a.e. in Ω.

By (2.4) the sequence 𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁) is bounded in the space (𝐿𝑝′(Ω))
𝑛 and

|𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢)|𝑝′ ⩽ 𝑔(𝑚)(𝐺(𝑥) + |∇𝑢|𝑝) ∈ 𝐿1(Ω).

Hence, by Lemma 3.6 we have a strong convergence in 𝐿𝑝′(Ω)

𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢) → 𝑎𝑚(𝑥, 𝑢,∇𝑢), 𝑁 → ∞. (4.6)

Moreover, by Lemma 3.7, in the sequence 𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁) we can choose a weakly converging
subsequence. We shall omit the indices of the subsequence

𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁)⇀ 𝜅 weakly in (𝐿𝑝′(Ω))
𝑛. (4.7)

Since |𝐾0(𝑢
𝑁)| = |𝑏𝑚0 (𝑥, 𝑢𝑁 ,∇𝑢𝑁)| ⩽ 𝑚, the sequence𝐾0(𝑢

𝑁) is bounded in the space 𝐿𝑝′(B𝑚).
Omitting the indices of subsequence, we can suppose that the sequence𝐾0(𝑢

𝑁) weakly converges
to 𝑘0 in the space 𝐿𝑝′(B𝑚) ⊂ 𝑉 *. Similarly, the sequence 𝐾1(𝑢

𝑁) weakly converges to 𝑘1 in the
space 𝐿𝑞′,𝜇(B𝑚) ⊂ 𝑉 *.
Passing to the limit as 𝑁 → ∞ in the identities 𝑃𝑘(ℎ

𝑁) = 0, we arrive at the relation∫︁
Ω

𝜅 · ∇𝜔𝑘𝑑𝑥+ ⟨𝑘0 + 𝑘1, 𝜔𝑘⟩ = ⟨𝑓𝑚, 𝜔𝑘⟩. (4.8)

Multiplying by ℎ𝑁𝑘 , we easily get the identity∫︁
Ω

𝜅 · ∇𝑢𝑁𝑑𝑥+ ⟨𝑘0 + 𝑘1, 𝑢
𝑁⟩ = ⟨𝑓𝑚, 𝑢𝑁⟩.

Passing to the limit as 𝑁 → ∞, we find∫︁
Ω

𝜅 · ∇𝑢𝑑𝑥+ ⟨𝑘0 + 𝑘1, 𝑢⟩ = ⟨𝑓𝑚, 𝑢⟩. (4.9)

Passing to the limit in the identity (𝑃 (h𝑁),h𝑁) = 0 (4.5) and using Lemma 3.7, we get the
relation

lim
𝑁→∞

∫︁
Ω

𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁) · ∇𝑢𝑁𝑑𝑥+ ⟨𝑘0 + 𝑘1, 𝑢⟩ = ⟨𝑓𝑚, 𝑢⟩. (4.10)

It follows from (4.9) and (4.10) that

lim
𝑁→∞

∫︁
Ω

𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁) · ∇𝑢𝑁𝑑𝑥 =

∫︁
Ω

𝜅 · ∇𝑢𝑑𝑥. (4.11)

Now we are going to prove that ∇𝑢𝑁 → ∇𝑢 a.e. The weak convergence of the sequence 𝑢𝑁

in the space 𝑉 and the strong convergence (4.6) imply

lim
𝑁→∞

∫︁
Ω

𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢) · (∇𝑢𝑁 −∇𝑢)𝑑𝑥 = 0. (4.12)
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Let

𝐻𝑁 =(𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁)− 𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢))(∇𝑢𝑁 −∇𝑢)
=𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁)∇𝑢𝑁 − 𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁)∇𝑢− 𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢)(∇𝑢𝑁 −∇𝑢).

(4.13)

It follows from (2.6) that 𝐻𝑁 ⩾ 0. By (4.7) we ge the identity

lim
𝑁→∞

∫︁
Ω

𝑎𝑚(𝑥, 𝑢𝑁 ,∇𝑢𝑁)∇𝑢𝑑𝑥 =

∫︁
Ω

𝜅∇𝑢𝑑𝑥. (4.14)

Passing to the limit and using (4.11)–(4.14), we arrive at the relation

lim
𝑁→∞

∫︁
Ω

𝐻𝑁𝑑𝑥 = 0,

which in other notation

Λ(𝑥, 𝑟, 𝑦, 𝑧) = (𝑎(𝑥, 𝑟, 𝑦)− 𝑎(𝑥, 𝑟, 𝑧)) · (𝑦 − 𝑧), 𝑦, 𝑧 ∈ R𝑛, 𝑟 ∈ R,
is written as

lim
𝑁→∞

∫︁
Ω

Λ(𝑥, 𝑇𝑚(𝑢
𝑁),∇𝑢𝑁 ,∇𝑢)𝑑𝑥 = 0.

Applying Lemma 3.11, we obtain the convergence ∇𝑢𝑁 → ∇𝑢 almost everywhere in Ω. Then

𝜅 = 𝑎𝑚(𝑥, 𝑢,∇𝑢), 𝑘0 = 𝑏𝑚0 (𝑥, 𝑢,∇𝑢), 𝑘1 = 𝑏1(𝑥, 𝑢),

by (4.8) we easily find that the function 𝑢 is a weak solution to the approximated Zaremba
problem.

5. Existence of solution

In (4.4) we let 𝑣 = 𝑇𝑘,ℎ(𝑢
𝑚) = 𝑇𝑘(𝑢

𝑚 − 𝑇ℎ(𝑢
𝑚)). Taking into consideration (4.1), we have∫︁

{Ω:ℎ⩽|𝑢𝑚|<𝑘+ℎ}

𝑎𝑚(𝑥, 𝑢𝑚,∇𝑢𝑚)∇𝑢𝑚𝑑𝑥+ 𝑘

∫︁
{Ω:|𝑢𝑚|⩾𝑘+ℎ}

|𝑏𝑚0 (𝑥, 𝑢𝑚,∇𝑢𝑚)|𝑑𝑥

+ 𝑘

∫︁
{Ω:|𝑢𝑚|⩾𝑘+ℎ}

|𝑏𝑚1 (𝑥, 𝑢𝑚)|𝑑𝜇+

∫︁
{Ω:ℎ⩽|𝑢𝑚|<𝑘+ℎ}

𝑏𝑚0 (𝑥, 𝑢
𝑚,∇𝑢𝑚)𝑢𝑚(1− ℎ/|𝑢𝑚|)𝑑𝑥

+

∫︁
{Ω:ℎ⩽|𝑢𝑚|<𝑘+ℎ}

𝑏𝑚1 (𝑥, 𝑢
𝑚)𝑢𝑚(1− ℎ/|𝑢𝑚|)𝑑𝜇 ⩽ 𝑘

∫︁
{Ω:|𝑢𝑚|⩾ℎ}

|𝑓𝑚|𝑑𝑥.

(5.1)

Applying (4.2), (2.5), by (5.1) we get∫︁
{Ω:ℎ⩽|𝑢𝑚|<𝑘+ℎ}

(𝑎𝑚(𝑥, 𝑢𝑚,∇𝑢𝑚) · ∇𝑢𝑚 +𝐺(𝑥))𝑑𝑥+ 𝑘

∫︁
{Ω:|𝑢𝑚|⩾𝑘+ℎ}

|𝑏𝑚0 (𝑥, 𝑢𝑚,∇𝑢𝑚)|𝑑𝑥

+ 𝑘

∫︁
{Ω:|𝑢𝑚|⩾𝑘+ℎ}

|𝑏𝑚1 (𝑥, 𝑢𝑚)|𝑑𝜇 ⩽ 𝑟

∫︁
{Ω:|𝑢𝑚|⩾ℎ}

(𝑘|𝑓 |+ |𝐺|)𝑑𝑥, 𝑚 ∈ N.
(5.2)

Letting ℎ = 0 in (5.2) and using the inequality (2.5), we obtain∫︁
{Ω:|𝑢𝑚|<𝑘}

𝑐0|∇𝑢𝑚|𝑝𝑑𝑥+ 𝑘

∫︁
{Ω:|𝑢𝑚|⩾𝑘}

|𝑏𝑚0 (𝑥, 𝑢𝑚,∇𝑢𝑚)|𝑑𝑥

+ 𝑘

∫︁
{Ω:|𝑢𝑚|⩾𝑘}

|𝑏𝑚1 (𝑥, 𝑢𝑚)|𝑑𝜇 ⩽ (𝑘 + 1)𝐶1, 𝑚 ∈ N.
(5.3)
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By (5.3) we get the estimate∫︁
{Ω:|𝑢𝑚|<𝑘}

|∇𝑢𝑚|𝑝𝑑𝑥 =

∫︁
Ω

|∇𝑇𝑘(𝑢𝑚)|𝑝𝑑𝑥 ⩽ 𝑐−1
0 𝐶1(𝑘 + 1), 𝑚 ∈ N.

Then 𝑇𝑘(𝑢
𝑚) ∈ 𝑉 and for each 𝑘 > 1

‖𝑇𝑘(𝑢𝑚)‖𝑝𝑉 ⩽ 𝐶2𝑘, 𝑚 ∈ N. (5.4)

The reflexivity of the space 𝑉 allows us to select a weakly converging in 𝑉 subsequence

𝑇𝑘(𝑢
𝑚)⇀ 𝑣𝑘 ∈ 𝑉, 𝑚→ ∞. (5.5)

The inequality (5.4) allows us to apply Lemma 3.4, which yields the estimate

mes{𝑥 ∈ Ω : |𝑢𝑚(𝑥)| ⩾ 𝑘} ⩽
𝐶

𝑘𝑝*(1−𝑝−1)
, 𝑚 > 𝑘 > 1. (5.6)

Then, choosing sufficiently large 𝑘, we obtain∫︁
{Ω:|𝑢𝑚|⩾𝑘}

(|𝑓 |+ |𝐺|)𝑑𝑥 ⩽ 𝜀(𝑘), 𝑚 > 𝑘, (5.7)

where 𝜀(𝑘) → 0 as 𝑘 → ∞. We are going to to establish the convergence over a subsequence

𝑢𝑚 → 𝑢 a.e. and 𝜇− a.e. in Ω, 𝑚→ ∞. (5.8)

The sequence 𝑇𝑠(𝑢
𝑚) is bounded in the space 𝑉 and by (3.1) is bounded in the space𝑊 1

𝑝 (B𝑅).
By the Kondrashov theorem, we can select a converging subsequence 𝑇𝑠(𝑢

𝑚) → ̃︀𝑣𝑠 in 𝐿𝑝(B𝑅)
as 𝑚 → ∞. This implies the convergence 𝑇𝑠(𝑢

𝑚) → ̃︀𝑣𝑠 almost everywhere in B𝑅. By (5.5) we
have the identity 𝑣𝑠 = ̃︀𝑣𝑠 almost everywhere in B𝑅. Then by diagonal process in 𝑅 ∈ N we
establish a convergence over some subsequence 𝑇𝑠(𝑢

𝑚) → 𝑣𝑠 almost everywhere in Ω. By 𝑄 we
denote the set of points in Ω, at which the sequence 𝑢𝑚(𝑥) has a finite limit. We denote this
limit by 𝑢(𝑥). For 𝑥 ∈ 𝑄 the identities

𝑣𝑠(𝑥) = lim𝑇𝑠(𝑢
𝑚(𝑥)) = 𝑇𝑠 lim𝑢𝑚(𝑥) = 𝑇𝑠(𝑢)

hold. If for some 𝑥 we have lim |𝑇𝑠(𝑢𝑚(𝑥))| < 𝑠, then

lim𝑇𝑠(𝑢
𝑚(𝑥)) = 𝑣𝑠(𝑥) = lim𝑢𝑚(𝑥),

that is, 𝑥 ∈ 𝑄. Then for almost each 𝑥 /∈ 𝑄 we have lim |𝑇𝑠(𝑢𝑚(𝑥))| = 𝑠 for all 𝑠 > 0. In
particular, lim |𝑇𝑠+ℎ(𝑢

𝑚(𝑥))| = 𝑠+ℎ. Then |𝑢𝑚(𝑥)| > 𝑠 for large 𝑚, therefore, lim |𝑢𝑚(𝑥)| = ∞.
By (5.6), the measure of the set of such points in the ball B𝑅 is equal to zero. We then conclude
that the difference Ω∖𝑄 has a zero measure and the convergence (5.8) for the Lebesgue measure
is established. Then 𝑣𝑠(𝑥) = 𝑇𝑠(𝑢) for almost each 𝑥 ∈ Ω.
We also note the convergence 𝑇𝑠(𝑢

𝑚) → 𝑣𝑠 in 𝐿𝑞,𝜇(B𝑅) implied by (2.3) and (3.1). Then
𝑇𝑠(𝑢

𝑚) → 𝑣𝑠 𝜇–almost everywhere in B𝑅 (over some subsequence). By the diagonal process in
𝑅 ∈ N we establish the convergence over some subsequence

𝑇𝑠(𝑢
𝑚) → 𝑇𝑠(𝑢), 𝑚→ ∞, (5.9)

𝜇–almost everywhere in Ω, and also (5.8).
The relation (5.5) can be rewritten as

∇𝑇𝑘(𝑢𝑚)⇀ ∇𝑇𝑘(𝑢) in 𝐿𝑝(Ω), 𝑚→ ∞. (5.10)

In what follows we shall establish the strong convergence

∇𝑇𝑘(𝑢𝑚) → ∇𝑇𝑘(𝑢) in 𝐿𝑝,loc(Ω), 𝑚→ ∞. (5.11)

By (5.4), (2.4) for each 𝑘 > 1 we have the estimate

‖𝑎(𝑥, 𝑇𝑘(𝑢𝑚),∇𝑇𝑘(𝑢𝑚))‖𝑝′,Ω ⩽ 𝐶5(𝑘), 𝑚 ∈ N. (5.12)
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Then we can select a weakly converging subsequence

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚))⇀ 𝑎𝑘 weakly in 𝐿𝑝′(Ω), 𝑚→ ∞. (5.13)

Let 𝑘 > 0, ℎ > 𝑘 + 1,
𝑧𝑚 = 𝑇𝑘(𝑢

𝑚)− 𝑇𝑘(𝑢), 𝑚 ∈ N.
We let 𝜙𝑘(𝑟) = 𝑟 exp(𝛾2𝑟2), where 𝛾 = 𝑔(𝑘)

𝑐0
. It is obvious that

𝜓𝑘(𝑟) = 𝜙′
𝑘(𝑟)− 𝛾|𝜙𝑘(𝑟)| ⩾ 7/8, 𝑟 ∈ R.

This implies the inequalities

7/8 ⩽ 𝜓𝑘(𝑧
𝑚) ⩽ max

[−2𝑘,2𝑘]
𝜓𝑘(𝑟) = 𝐶(𝑘), 𝑚 ∈ N.

In view of (5.8), 𝑧𝑚 → 0 almost everywhere in Ω and 𝜇–a.e. This is why

𝜙𝑘(𝑧
𝑚) → 0, 𝜙′

𝑘(𝑧
𝑚) → 𝜙′

𝑘(0) = 1, 𝜓𝑘(𝑧
𝑚) → 𝜓𝑘(0) = 1, 𝑚→ ∞, (5.14)

almost everywhere in Ω and 𝜇–a.e. The inequalities

|𝜙𝑘(𝑧
𝑚)| ⩽ 𝜙𝑘(2𝑘), 1 ⩽ 𝜙′

𝑘(𝑧
𝑚) ⩽ 𝜙′

𝑘(2𝑘), 𝑚 ∈ N, (5.15)

are obvious.
We let 𝜂ℎ(𝑟) = 𝜁(ℎ− 𝑟 + 1).
For the brevity of writing we shall employ the notation

𝑑𝜈 = 𝜂𝑅−1(|𝑥|)𝑑𝑥, 𝜂𝑚ℎ−1(𝑥) = 𝜂ℎ−1(|𝑢𝑚|), ̃︀𝜂ℎ−1(𝑥) = 𝜂ℎ−1(|𝑢|).
The convergences (5.8) imply the convergence

𝜂𝑚ℎ−1 → ̃︀𝜂ℎ−1 a.e. in Ω, 𝑚→ ∞.

Choosing 𝜙𝑘(𝑧
𝑚)𝜂𝑅−1(|𝑥|)𝜂𝑚ℎ−1 as the test function in (4.4), we obtain∫︁
B𝑅

𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚))∇(𝜙𝑘(𝑧

𝑚)𝜂𝑅−1𝜂
𝑚
ℎ−1)𝑑𝑥

+

∫︁
B𝑅

𝑏𝑚0 (𝑥, 𝑢
𝑚,∇𝑢𝑚)𝜂𝑅−1𝜙𝑘(𝑧

𝑚)𝜂𝑚ℎ−1𝑑𝑥

+

∫︁
B𝑅

𝑏𝑚1 (𝑥, 𝑢
𝑚)𝜙𝑘(𝑧

𝑚)𝜂𝑅−1𝜂
𝑚
ℎ−1𝑑𝜇

−
∫︁
B𝑅

𝑓𝑚𝜙𝑘(𝑧
𝑚)𝜂𝑚ℎ−1𝑑𝑥 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 = 0, 𝑚 ⩾ ℎ.

(5.16)

5.1. Estimates for integrals 𝐼2 − 𝐼4. In view of the inequalities

𝜂ℎ−1(|𝑢𝑚|)|𝑏𝑚1 (𝑥, 𝑢𝑚)| ⩽ 𝑔(ℎ) ̃︀𝐺1(𝑥), 𝑥 ∈ B𝑅,

implied by (2.8), by the Lebesgue theorem and (5.14), we have

|𝐼3| ⩽
∫︁
B𝑅

|𝜙𝑘(𝑧
𝑚)|𝑔(ℎ) ̃︀𝐺1(𝑥)𝑑𝜇 = 𝜀1(𝑚). (5.17)

Hereinafter
lim

𝑚→∞
𝜀𝑖(𝑚) = 0.

Similarly, since 𝑓 ∈ 𝐿1(Ω), we obtain

|𝐼4| ⩽
∫︁
B𝑅

|𝑓𝜙𝑘(𝑧
𝑚)|𝑑𝑥 = 𝜀2(𝑚). (5.18)
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It is obvious that 𝑧𝑚𝑢𝑚 ⩾ 0 as |𝑢𝑚| ⩾ 𝑘, 𝜙𝑘(𝑧
𝑚)𝑢𝑚 ⩾ 0, and this is why, in view of (4.1), we

have

𝑏𝑚0 (𝑥, 𝑢
𝑚,∇𝑢𝑚)𝜙𝑘(𝑧

𝑚) ⩾ 0 as |𝑢𝑚| ⩾ 𝑘.

Using this fact and applying (2.8), we estimate the integrals

−𝐼2 ⩽
∫︁

{B𝑅:|𝑢𝑚|<𝑘}

|𝑏𝑚0 (𝑥, 𝑢𝑚,∇𝑢𝑚)||𝜙𝑘(𝑧
𝑚)|𝑑𝜈

⩽ 𝑔(𝑘)

∫︁
B𝑅

(︁
|∇𝑇𝑘(𝑢𝑚)|𝑝 + ̃︀𝐺0(𝑥)

)︁
|𝜙𝑘(𝑧

𝑚)|𝑑𝜈, 𝑚 ∈ N.

Using (2.5), we find

−𝐼2 ⩽
𝑔(𝑘)

𝑐0

∫︁
B𝑅

(︁
𝑐0 ̃︀𝐺0(𝑥) +𝐺(𝑥)

)︁
|𝜙𝑘(𝑧

𝑚)|𝑑𝜈

+
𝑔(𝑘)

𝑐0

∫︁
B𝑅

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚)∇𝑇𝑘(𝑢𝑚)|𝜙𝑘(𝑧

𝑚)|𝑑𝜈 = 𝐼21 + 𝐼22.

(5.19)

In view of (5.14) we get

𝐼21 =
𝑔(𝑘)

𝑐0

∫︁
B𝑅

(︁
𝑐0 ̃︀𝐺0(𝑥) +𝐺(𝑥)

)︁
|𝜙𝑘(𝑧

𝑚)|𝑑𝜈 = 𝜀3(𝑚). (5.20)

Since 𝜙𝑘(𝑧
𝑚)𝑢𝑚 ⩾ 0 as |𝑢𝑚| > ℎ − 1 ⩾ 𝑘, we have 𝜙𝑘(𝑧

𝑚)|𝑢𝑚| = |𝜙𝑘(𝑧
𝑚)|𝑢𝑚. Using this

identity, we estimate the integrals

𝐼12 =−
∫︁

{B𝑅:ℎ−1⩽|𝑢𝑚|<ℎ}

(𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚)) · ∇|𝑢𝑚|)𝜙𝑘(𝑧

𝑚)𝑑𝜈

=−
∫︁

{B𝑅:ℎ−1⩽|𝑢𝑚|<ℎ}

(𝑎(𝑥, 𝑢𝑚,∇𝑢𝑚) · ∇𝑢𝑚 +𝐺(𝑥))|𝜙𝑘(𝑧
𝑚)|𝑑𝜈

+

∫︁
{B𝑅:ℎ−1⩽|𝑢𝑚|<ℎ}

𝐺(𝑥)|𝜙𝑘(𝑧
𝑚)|𝑑𝜈.

Using (5.2), (5.7), (5.15), we find

|𝐼12| ⩽ 𝜀(ℎ), 𝑚 ⩾ ℎ, (5.21)

where 𝜀(ℎ) → 0 as ℎ→ ∞.
Then, using (5.12) and the inequality |∇𝜂𝑅−1(|𝑥|)| ⩽ 1, we obtain the estimate for the

integrals

𝐼13 =

∫︁
{B𝑅:|𝑢𝑚|<ℎ}

(𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚))∇𝜂𝑅−1(|𝑥|))𝜂ℎ−1(|𝑢𝑚|)𝜙𝑘(𝑧

𝑚)𝑑𝑥;

|𝐼13| ⩽ 𝐶7(ℎ)‖𝜙𝑘(𝑧
𝑚)‖𝑝,B𝑅

= 𝜀5(𝑚).

(5.22)

It is easy to establish the identity 𝐼1 = 𝐼11 + 𝐼12 + 𝐼13, where

𝐼11 =

∫︁
B𝑅

𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚)) · (∇𝑧𝑚)𝜂ℎ−1(|𝑢𝑚|)𝜙′

𝑘(𝑧
𝑚)𝑑𝜈.
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Now, using the estimates for integrals (5.17)–(5.22), by (5.16) we get the inequalities

𝐼5 =𝐼11 − 𝐼22 = (𝐼1 + 𝐼2)− 𝐼12 − 𝐼13 − 𝐼22 − 𝐼2

⩽− (𝐼3 + 𝐼4) + 𝜀4(𝑚) + 𝜀(ℎ) = 𝜀5(𝑚) + 𝜀(ℎ), 𝑚 ⩾ ℎ.
(5.23)

5.2. Representation for 𝐼5. After elementary transformations, we write the identities

𝐼5 =

∫︁
B𝑅

𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚)) · ∇𝑇𝑘(𝑢𝑚)𝜙′

𝑘(𝑧
𝑚)𝑑𝜈

−
∫︁
B𝑅

𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚)) · ∇𝑇𝑘(𝑢)𝜙′

𝑘(𝑧
𝑚)𝜂𝑚ℎ−1𝑑𝜈

− 𝑔(𝑘)

𝑐0

∫︁
B𝑅

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚)) · ∇𝑇𝑘(𝑢𝑚)|𝜙𝑘(𝑧

𝑚)|𝑑𝜈

=

∫︁
B𝑅

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚)) · ∇𝑇𝑘(𝑢𝑚)𝜓𝑘(𝑧

𝑚)𝑑𝜈

−
∫︁
B𝑅

𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚)) · ∇𝑇𝑘(𝑢)𝜙′

𝑘(𝑧
𝑚)𝜂𝑚ℎ−1𝑑𝜈

=

∫︁
B𝑅

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚)) · (∇𝑧𝑚)𝜓𝑘(𝑧

𝑚)𝑑𝜈

+

∫︁
B𝑅

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚)) · ∇𝑇𝑘(𝑢)𝜓𝑘(𝑧

𝑚)𝑑𝜈

−
∫︁
B𝑅

𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚)) · ∇𝑇𝑘(𝑢)𝜙′

𝑘(𝑧
𝑚)𝜂𝑚ℎ−1𝑑𝜈

=𝐼51 + 𝐼52 + 𝐼53.

The identity

𝐼5 =𝐼51 −
𝑔(𝑘)

𝑐0

∫︁
B𝑅

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚))∇𝑇𝑘(𝑢)|𝜙𝑘(𝑧

𝑚)|𝑑𝜈

+

∫︁
B𝑅

(︀
𝑎(𝑥, 𝑇𝑘(𝑢

𝑚),∇𝑇𝑘(𝑢𝑚))− 𝜂𝑚ℎ−1𝑎(𝑥, 𝑇ℎ(𝑢
𝑚),∇𝑇ℎ(𝑢𝑚))

)︀
∇𝑇𝑘(𝑢)𝜙′

𝑘(𝑧
𝑚)𝑑𝜈

=𝐼51 + 𝐼54 + 𝐼55, 𝑚 ⩾ ℎ

is obvious.

5.3. Estimates for integrals 𝐼54, 𝐼55. Applying (5.14), (5.15), Lemma 3.6 with

𝐻 = |∇𝑇𝑘(𝑢)𝜙𝑘(2𝑘)|𝑝,

we obtain

∇𝑇𝑘(𝑢)|𝜙𝑘(𝑧
𝑚)| → 0 strongly in 𝐿𝑝(Ω), 𝑚→ ∞.

Hence, in view of the convergence (5.13), we establish

𝐼54 = 𝜀(𝑚).
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In the integral 𝐼55 the integrand 𝐹 vanishes for |𝑢𝑚| ⩽ 𝑘, and this is why 𝐹 = 𝐹𝜒{|𝑢𝑚| > 𝑘}.
Applying (5.14), (5.15), Lemma 3.6, we obtain

∇𝑇𝑘(𝑢)𝜒{|𝑢𝑚| > 𝑘}𝜙′
𝑘(𝑧

𝑚) → ∇𝑇𝑘(𝑢)𝜒{|𝑢| > 𝑘} = 0 strongly in 𝐿𝑝(B𝑅), 𝑚→ ∞.

Then in view of the convergence (5.13), we get

𝐼55 = 𝜀(𝑚).

By (5.23), since 𝐼51 is independent of ℎ, we find

𝐼51 ⩽ 𝜀6(𝑚). (5.24)

We are going to estimate the integral

𝐼6 =

∫︁
Ω

(𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚))− 𝑎(𝑥, 𝑇𝑘(𝑢

𝑚),∇𝑇𝑘(𝑢)))

· (∇𝑇𝑘(𝑢𝑚)−∇𝑇𝑘(𝑢))𝜓𝑘(𝑧
𝑚)𝑑𝜈

=

∫︁
Ω

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚))(∇𝑇𝑘(𝑢𝑚)−∇𝑇𝑘(𝑢))𝜓𝑘(𝑧

𝑚)𝑑𝜈

−
∫︁
Ω

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢))(∇𝑇𝑘(𝑢𝑚)−∇𝑇𝑘(𝑢))𝜓𝑘(𝑧

𝑚)𝑑𝜈 = 𝐼51 − 𝐼61.

(5.25)

By (2.4) we have the estimates

|𝑎(𝑥, 𝑇𝑘(𝑢𝑚),∇𝑇𝑘(𝑢))|𝑝
′
⩽ 𝑔(𝑘)(|∇𝑇𝑘(𝑢))|𝑝 +𝐺(𝑥)) ∈ 𝐿1(Ω), 𝑚 ∈ N.

Then, by the almost everywhere convergence (5.8) and Lemma 3.6 we get the convergence

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢))𝜓𝑘(𝑧

𝑚) → 𝑎(𝑥, 𝑇𝑘(𝑢),∇𝑇𝑘(𝑢)) strongly in 𝐿𝑝′(Ω), 𝑚→ ∞.

Applying (5.10) and Lemma 3.7, we find

𝐼61 = 𝜀(𝑚), 𝑚 ∈ N.
Using (5.24), (5.25), we find

𝐼6 ⩽ 𝜀7(𝑚).

This is why

𝐼7 =

∫︁
Ω

(𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚))− 𝑎(𝑥, 𝑇𝑘(𝑢

𝑚),∇𝑇𝑘(𝑢))) (∇𝑇𝑘(𝑢𝑚)−∇𝑇𝑘(𝑢))𝑑𝜈

⩽8/7𝐼6 ⩽ 𝜀(𝑚).

We denote

𝑞𝑗(𝑥) = Λ(𝑥, 𝑇𝑘(𝑢
𝑗),∇𝑇𝑘(𝑢𝑗),∇𝑇𝑘(𝑢)), 𝑥 ∈ Ω, 𝑗 ∈ N. (5.26)

Using the notation (5.26), we have

0 ⩽
∫︁
Ω

𝑞𝑚(𝑥)𝑑𝜈 = 𝐼7 ⩽ 𝜀(𝑚).

By Lemma 3.11 applied to 𝑤𝑗 = 𝑇𝑘(𝑢
𝑗), 𝑤 = 𝑇𝑘(𝑢), in view of (5.9), we have the convergences

(5.11) and

𝑎(𝑥, 𝑇𝑘(𝑢
𝑚),∇𝑇𝑘(𝑢𝑚))∇𝑇𝑘(𝑢𝑚) → 𝑎(𝑥, 𝑇𝑘(𝑢),∇𝑇𝑘(𝑢))∇𝑇𝑘(𝑢) in 𝐿1,loc(Ω). (5.27)

By (3.8),
∇𝑇𝑘(𝑢𝑚) → ∇𝑇𝑘(𝑢) a.e. in Ω, 𝑚→ ∞. (5.28)
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Let us prove that for all 𝑠 > 0, 𝑅 > 0,

𝑏𝑚0 (𝑥, 𝑇𝑠(𝑢
𝑚),∇𝑇𝑠(𝑢𝑚)) → 𝑏0(𝑥, 𝑇𝑠(𝑢),∇𝑇𝑠(𝑢)) in 𝐿1(B𝑅), 𝑚→ ∞. (5.29)

It follows from (5.8), (5.28) that the convergence

𝑏0(𝑥, 𝑇𝑠(𝑢
𝑚),∇𝑇𝑠(𝑢𝑚)) → 𝑏0(𝑥, 𝑇𝑠(𝑢),∇𝑇𝑠(𝑢)) a.e. in Ω, 𝑚→ ∞,

holds. By the condition (2.7)

|𝑏𝑚0 (𝑥, 𝑇𝑠(𝑢𝑚),∇𝑇𝑠(𝑢))| ⩽ 𝑔(𝑟)( ̃︀𝐺0(𝑥) + |∇𝑇𝑠(𝑢𝑚)|𝑝) ∈ 𝐿1(B𝑅),

where can take 𝑟 = 𝑠 + 𝑅. This is why (5.29) is a corollary of Lemma 3.9 and the conver-
gence (5.11). In the same way we prove the convergence

𝑏𝑚1 (𝑥, 𝑇𝑠(𝑢
𝑚)) → 𝑏1(𝑥, 𝑇𝑠(𝑢)) in 𝐿1,𝜇(B𝑅), 𝑚→ ∞. (5.30)

In order to prove (2.10), we take the test function 𝑣 = 𝑇𝑘(𝑢
𝑚− 𝜉), 𝜉 ∈ 𝐷Γ(Ω), in the identity

(4.4) and we obtain∫︁
Ω

𝑎(𝑥, 𝑇𝑚(𝑢
𝑚),∇𝑢𝑚) · ∇𝑇𝑘(𝑢𝑚 − 𝜉)𝑑𝑥

+

∫︁
Ω

(𝑏𝑚0 (𝑥, 𝑢
𝑚,∇𝑢𝑚)− 𝑓𝑚)𝑇𝑘(𝑢

𝑚 − 𝜉)𝑑𝑥+

∫︁
Ω

𝑏𝑚1 (𝑥, 𝑢
𝑚)𝑇𝑘(𝑢

𝑚 − 𝜉)𝑑𝜇 = 0.

(5.31)

We let M = 𝑘 + ‖𝜉‖∞. If |𝑢𝑚| ⩾ M, then

|𝑢𝑚 − 𝜉| ⩾ |𝑢𝑚| − ‖𝜉‖∞ ⩾ 𝑘,

this is why

{Ω : |𝑢𝑚 − 𝜉| < 𝑘} ⊆ {Ω : |𝑢𝑚| <M},
and therefore,

𝐼𝑚 =

∫︁
Ω

𝑎(𝑥, 𝑇𝑚(𝑢
𝑚),∇𝑢𝑚) · ∇𝑇𝑘(𝑢𝑚 − 𝜉)𝑑𝑥

=

∫︁
Ω

𝑎(𝑥, 𝑇M(𝑢𝑚),∇𝑇M(𝑢𝑚))∇𝑇𝑘(𝑢𝑚 − 𝜉)𝑑𝑥

=

∫︁
Ω

𝑎(𝑥, 𝑇M(𝑢𝑚),∇𝑇M(𝑢𝑚))(∇𝑇M(𝑢𝑚)−∇𝜉)𝜒{Ω:|𝑢𝑚−𝜉|<𝑘}𝑑𝑥, 𝑚 ⩾ M.

We let

𝐼𝑚1 :=

∫︁
{Ω:|𝑢𝑚−𝜉|<𝑘}

(𝑎(𝑥, 𝑇M(𝑢𝑚),∇𝑇M(𝑢𝑚))∇𝑇M(𝑢𝑚) +𝐺(𝑥))𝑑𝑥

⩾
∫︁

{Ω:|𝑢𝑚−𝜉|<𝑘,|𝑥|<𝑅}

(𝑎(𝑥, 𝑇M(𝑢𝑚),∇𝑇M(𝑢𝑚))∇𝑇M(𝑢𝑚) +𝐺(𝑥))𝑑𝑥.

For regular values 𝑘 the convergence (3.6) of characteristic functions

𝜒{Ω:|𝑢𝑚−𝜉|<𝑘} → 𝜒{Ω:|𝑢−𝜉|<𝑘} a.e. Ω, 𝑚→ ∞.

By the convergence (5.27), Lemma 3.9 and Fatou lemma we have

lim inf
𝑚→∞

𝐼𝑚1 ⩾
∫︁

{Ω:|𝑢−𝜉|<𝑘,|𝑥|<𝑅}

(𝑎(𝑥, 𝑇M(𝑢),∇𝑇M(𝑢))∇𝑇M(𝑢) +𝐺(𝑥))𝑑𝑥, for all 𝑅 > 0.
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Then, in view of the non–negativity integrals,

lim inf
𝑚→∞

𝐼𝑚1 ⩾
∫︁

{Ω:|𝑢−𝜉|<𝑘}

(𝑎(𝑥, 𝑇M(𝑢),∇𝑇M(𝑢))∇𝑇M(𝑢) +𝐺(𝑥))𝑑𝑥.

This is why the convergence (5.13) implies the inequality

lim inf
𝑚→∞

𝐼𝑚 ⩾
∫︁

{Ω:|𝑢−𝜉|<𝑘}

𝑎(𝑥, 𝑇M(𝑢),∇𝑇M(𝑢)) · (∇𝑇M(𝑢)−∇𝜉)𝑑𝑥

=

∫︁
Ω

𝑎(𝑥, 𝑢,∇𝑢) · ∇𝑇𝑘(𝑢− 𝜉)𝑑𝑥 = 𝐶𝐼 .

Using Lemma 3.9 and passing to the limit as 𝑚→ ∞, we get

𝐽𝑚
1 :=

∫︁
Ω

𝑓𝑚𝑇𝑘(𝑢
𝑚 − 𝜉)𝑑𝑥→

∫︁
Ω

𝑓𝑇𝑘(𝑢− 𝜉)𝑑𝑥 = 𝐶𝐽1 . (5.32)

We introduce the notation

𝐽𝑚
2 :=

∫︁
Ω

𝑏𝑚0 (𝑥, 𝑢
𝑚,∇𝑢𝑚)𝑇𝑘(𝑢𝑚 − 𝜉)𝑑𝑥+

∫︁
Ω

𝑏𝑚1 (𝑥, 𝑢
𝑚)𝑇𝑘(𝑢

𝑚 − 𝜉)𝑑𝜇,

and by (5.31) we obtain

𝐶𝐼 + lim inf
𝑚→∞

𝐽𝑚
2 ⩽ 𝐶𝐽1 .

Let

𝑤𝑚 = 𝑢𝑚 − 𝜉, 𝑤 = 𝑢− 𝜉, supp 𝜉 ⊂ B𝑙0 , 𝑙 ⩾ 𝑙0,

B𝑚
𝑙,𝑠 = {𝑥 ∈ B𝑙 : |𝑢𝑚(𝑥)| < 𝑠}, 𝑠 ⩾ M, B𝑙,𝑠 = {𝑥 ∈ B𝑙 : |𝑢(𝑥)| < 𝑠}.

We choose the numbers 𝑠 so that mes{𝑥 ∈ B𝑙 : |𝑢(𝑥)| = 𝑠} = 0. Then, in view of (4.1) and
the inequality 𝑢𝑚(𝑥)𝑇𝑘(𝑢

𝑚 − 𝜉) ⩾ 0 for |𝑢𝑚(𝑥)| >M (or for |𝑥| > 𝑙0), we have

𝐽𝑚
2 =

∫︁
Ω∖B𝑚

𝑙,𝑠

𝑏𝑚0 (𝑥, 𝑢
𝑚,∇𝑢𝑚)𝑇𝑘(𝑤𝑚)𝑑𝑥+

∫︁
Ω∖B𝑚

𝑙,𝑠

𝑏𝑚1 (𝑥, 𝑢
𝑚)𝑇𝑘(𝑤

𝑚)𝑑𝜇

+

∫︁
B𝑚

𝑙,𝑠

𝑏𝑚0 (𝑥, 𝑢
𝑚,∇𝑢𝑚)𝑇𝑘(𝑤𝑚)𝑑𝑥+

∫︁
B𝑚

𝑙,𝑠

𝑏𝑚1 (𝑥, 𝑢
𝑚)𝑇𝑘(𝑤

𝑚)𝑑𝜇

⩾
∫︁

B𝑚
𝑙,𝑠

𝑏𝑚0 (𝑥, 𝑇𝑠(𝑢
𝑚),∇𝑢𝑚)𝑇𝑘(𝑤𝑚)𝑑𝑥+

∫︁
B𝑚

𝑙,𝑠

𝑏𝑚1 (𝑥, 𝑇𝑠(𝑢
𝑚))𝑇𝑘(𝑤

𝑚)𝑑𝜇 = 𝐽𝑚
𝑙,𝑠.

Applying (5.29), (5.30), we pass to the limit as 𝑚→ ∞ and we obtain∫︁
B𝑙,𝑠

𝑏1(𝑥, 𝑇𝑠(𝑢))𝑇𝑘(𝑢− 𝜉))𝑑𝜇+

∫︁
B𝑙,𝑠

𝑏0(𝑥, 𝑇𝑠(𝑢),∇𝑢)𝑇𝑘(𝑢− 𝜉)𝑑𝑥 = lim
𝑚→∞

𝐽𝑚
𝑙,𝑠 ⩽ lim inf

𝑚→∞
𝐽𝑚
2 .

Since by (2.9)∫︁
B𝑙,𝑠∖B𝑙0,𝑠

𝑏0(𝑥, 𝑇𝑠(𝑢),∇𝑢)𝑇𝑘(𝑢− 𝜉)𝑑𝑥 =

∫︁
B𝑙,𝑠∖B𝑙0,𝑠

|𝑏0(𝑥, 𝑇𝑠(𝑢),∇𝑢)𝑇𝑘(𝑢)|𝑑𝑥,
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by Levi theorem we can pass to the limit as 𝑙 → ∞. Letting Ω𝑠 = {𝑥 ∈ Ω : |𝑢(𝑥)| < 𝑠} and
passing to the limit as 𝑙 → ∞, we have∫︁

Ω𝑠

𝑏1(𝑥, 𝑢)𝑇𝑘(𝑢− 𝜉)𝑑𝜇+

∫︁
Ω𝑠

𝑏0(𝑥, 𝑢,∇𝑢)𝑇𝑘(𝑢− 𝜉)𝑑𝑥 ⩽ lim inf
𝑚→∞

𝐽𝑚
2 .

Since by (2.9), ∫︁
Ω𝑠∖Ω𝑀

𝑏1(𝑥, 𝑢)𝑇𝑘(𝑢− 𝜉)𝑑𝜇 =

∫︁
Ω𝑠∖Ω𝑀

|𝑏1(𝑥, 𝑢)𝑇𝑘(𝑢− 𝜉)|𝑑𝜇,

we can pass to the limit as 𝑠→ ∞. As a result we obtain∫︁
Ω

𝑏1(𝑥, 𝑢)𝑇𝑘(𝑢− 𝜉)𝑑𝜇+

∫︁
Ω

𝑏0(𝑥, 𝑢,∇𝑢)𝑇𝑘(𝑢− 𝜉)𝑑𝑥 ⩽ lim inf
𝑚→∞

𝐽𝑚
2 .

Combining (5.31)–(5.32), we obtain (2.10).

6. Uniqueness

Lemma 6.1. Let 𝑢 be an entropy solution to the Zaremba problem for Equation (2.1) and
the assumptions of Theorem 2.2 are satisfied. Then 𝑏0(𝑥, 𝑢) ∈ 𝐿1(Ω), 𝑏1(𝑥, 𝑢) ∈ 𝐿1,𝜇(Ω), and
for 𝑘 > 1 the inequalities ∫︁

Ω

|∇𝑇𝑘(𝑢)|𝑝𝑑𝑥 ⩽ 𝐶𝑘 (6.1)

hold.

Proof. We write the inequality (2.10) for 𝜉 = 0∫︁
Ω

(𝑎(𝑥,∇𝑢) · ∇𝑇𝑘(𝑢)− 𝑓𝑇𝑘(𝑢))𝑑𝑥+ ⟨ℬ𝑢, 𝑇𝑘(𝑢)⟩ ⩽ 0.

The condition (2.5) implies the inequality∫︁
Ω

𝑎(𝑥,∇𝑢) · ∇𝑇𝑘(𝑢)𝑑𝑥 ⩾
∫︁
Ω

(𝑐0|∇𝑇𝑘(𝑢)|𝑝 −𝐺(𝑥))𝑑𝑥.

Thus, ∫︁
Ω

(𝑐0|∇𝑇𝑘(𝑢)|𝑝 + 𝑏0(𝑥, 𝑢)𝑇𝑘(𝑢))𝑑𝑥+

∫︁
Ω

𝑏1(𝑥, 𝑢)𝑇𝑘(𝑢)𝑑𝜇 ⩽
∫︁
Ω

(𝐺+ 𝑓𝑇𝑘(𝑢))𝑑𝑥 <∞.

In view of (2.9), this implies the inequalities (6.1) and∫︁
Ω

|𝑏0(𝑥, 𝑢)|𝜒(|𝑢| > 1)𝑑𝑥+

∫︁
Ω

|𝑏1(𝑥, 𝑢)|𝜒(|𝑢| > 1)𝑑𝜇 <∞. (6.2)

The conditions (2.11), (2.12) imply the inequality∫︁
Ω

|𝑏0(𝑥, 𝑢)|𝜒(|𝑢| ⩽ 1)𝑑𝑥+

∫︁
Ω

|𝑏1(𝑥, 𝑢)|𝜒(|𝑢| ⩽ 1)𝑑𝜇 ⩽
∫︁
Ω

( ̂︀𝐺0(𝑥) + ̂︀𝐺1(𝑥))𝑑𝑥 <∞,

combining which with (6.2), we obtain the first statement of the lemma. The proof is complete.

Lemma 6.2. Let 𝑢 be an entropy solution to the Zaremba problem for Equation (2.1) and
the assumptions of Theorem 2.2 be satisfied. Then (2.10) holds for 𝜉 ∈ 𝑉 ∩ 𝐿∞(Ω).
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Proof. Let 𝜉 ∈ 𝑉 , ‖𝜉‖∞ ⩽ 𝐶0. Then there exists a sequence 𝑣𝑖 ∈ 𝒟Γ(Ω) such that ‖𝑣𝑖‖∞ ⩽ 𝐶0,
∇𝑣𝑖 → ∇𝜉 in 𝐿𝑝(Ω). At the same time 𝑣𝑖 → 𝜉 in 𝐿𝑝,loc(Ω) and a.e. in Ω. By (2.3), we have the
convergences 𝑣𝑖 → 𝜉 in 𝐿𝑞,loc,𝜇(Ω) and 𝜇–a.e. in Ω. We have

𝑇𝑘(𝑢− 𝑣𝑖) → 𝑇𝑘(𝑢− 𝜉) a.e. and 𝜇–a.e.

Then,

|∇𝑇𝑘(𝑢− 𝑣𝑖)| ⩽ |∇𝑇𝐾(𝑢)|+ |∇𝑣𝑖|,

where 𝐾 = 𝑘 + 𝐶0. It is easy to establish that

∇𝑇𝑘(𝑢− 𝑣𝑖)⇀ ∇𝑇𝑘(𝑢− 𝜉) weakly in 𝐿𝑝(Ω).

Using the definition of the entropy solution, we write the inequality∫︁
Ω

𝑎(𝑥,∇𝑢)∇𝑇𝑘(𝑢− 𝑣𝑖)𝑑𝑥+

∫︁
Ω

𝑏0(𝑥, 𝑢)𝑇𝑘(𝑢− 𝑣𝑖)𝑑𝑥

+

∫︁
Ω

𝑏1(𝑥, 𝑢)𝑇𝑘(𝑢− 𝑣𝑖)𝑑𝜇 ⩽
∫︁
Ω

𝑓𝑇𝑘(𝑢− 𝑣𝑖)𝑑𝑥.

The first of the integrals reads as∫︁
Ω

𝑎(𝑥,∇𝑇𝐾(𝑢))∇𝑇𝑘(𝑢− 𝑣𝑖)𝑑𝑥,

and, in view of (2.4), 𝑎(𝑥,∇𝑇𝐾(𝑢)) ∈ 𝐿𝑝′(Ω). This is why the passage to the limit as 𝑖 → ∞
is possible in this integral. The passage to the limit in the remaining integrals can be made by
the Lebesgue theorem by using Lemma 6.1. The proof is complete.

The proof of Theorem 2.2 is based on an approach from the work [1].
Using the definition of entropy solution, we write the inequality (2.10) for 𝑢1 with 𝜉 = 𝑇ℎ(𝑢2)∫︁

Ω

𝑎(𝑥,∇𝑢1)∇𝑇𝑘(𝑢1 − 𝑇ℎ(𝑢2))𝑑𝑥+

∫︁
Ω

𝑏0(𝑥, 𝑢1)𝑇𝑘(𝑢1 − 𝑇ℎ(𝑢2))𝑑𝑥

+

∫︁
Ω

𝑏1(𝑥, 𝑢1)𝑇𝑘(𝑢1 − 𝑇ℎ(𝑢2))𝑑𝜇 ⩽
∫︁
Ω

𝑓𝑇𝑘(𝑢1 − 𝑇ℎ(𝑢2))𝑑𝑥.

(6.3)

Applying it in the case 𝑢1 = 𝑢2 = 𝑢, we find∫︁
Ω

𝑎(𝑥,∇𝑢)∇𝑇𝑘(𝑢− 𝑇ℎ(𝑢))𝑑𝑥+

∫︁
Ω

𝑏0(𝑥, 𝑢)𝑇𝑘(𝑢− 𝑇ℎ(𝑢))𝑑𝑥

+

∫︁
Ω

𝑏1(𝑥, 𝑢)𝑇𝑘(𝑢− 𝑇ℎ(𝑢))𝑑𝜇 ⩽
∫︁
Ω

𝑓𝑇𝑘(𝑢− 𝑇ℎ(𝑢))𝑑𝑥.

Using (2.5) and (2.9), it is easy to obtain the inequality∫︁
{Ω: ℎ⩽|𝑢|<ℎ+𝑘}

|∇𝑢|𝑝𝑑𝑥 ⩽
∫︁

{Ω: |𝑢|⩾ℎ}

(𝐺+ |𝑓 |𝑘)𝑑𝑥 = 𝜀(ℎ), (6.4)

where 𝜀(ℎ) → 0 as ℎ→ ∞ (by Lemma 3.4).
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Summing the inequality (6.3) with the similar one for 𝑢2, we obtain the relation∫︁
{|𝑢1−𝑇ℎ(𝑢2)|<𝑘}

𝑎(𝑥,∇𝑢1)∇𝑇𝑘(𝑢1 − 𝑇ℎ(𝑢2))𝑑𝑥

+

∫︁
{|𝑢2−𝑇ℎ(𝑢1)|<𝑘}

𝑎(𝑥,∇𝑢2)∇𝑇𝑘(𝑢2 − 𝑇ℎ(𝑢1))𝑑𝑥

+

∫︁
Ω

(𝑏0(𝑥, 𝑢1)𝑇𝑘(𝑢1 − 𝑇ℎ(𝑢2)) + 𝑏0(𝑥, 𝑢2)𝑇𝑘(𝑢2 − 𝑇ℎ(𝑢1)))𝑑𝑥

+

∫︁
Ω

(𝑏1(𝑥, 𝑢1)𝑇𝑘(𝑢1 − 𝑇ℎ(𝑢2)) + 𝑏1(𝑥, 𝑢2)𝑇𝑘(𝑢2 − 𝑇ℎ(𝑢1)))𝑑𝜇

⩽
∫︁
Ω

𝑓(𝑇𝑘(𝑢1 − 𝑇ℎ(𝑢2)) + 𝑇𝑘(𝑢2 − 𝑇ℎ(𝑢1)))𝑑𝑥.

(6.5)

We denote by 𝐼1 the sum of the two integrals in (6.5), and 𝐼2, 𝐼3, 𝐼4 are other integrals
respectively. We have 𝐼1 + 𝐼2 + 𝐼3 ⩽ 𝐼4. In order to pass to the limit as ℎ→ ∞, we split each
of the integrals into several parts. We let

𝐴0 = {𝑥 ∈ Ω : |𝑢1 − 𝑢2| < 𝑘, |𝑢1| < ℎ, |𝑢2| < ℎ}.

The sum of the two integrals from (6.5) over this set can be written as

𝐼0 =

∫︁
𝐴0

(𝑎(𝑥,∇𝑢1)− 𝑎(𝑥,∇𝑢2))∇(𝑢1 − 𝑢2)𝑑𝑥 ⩾ 0.

For the integral over the set

𝐴1 = {𝑥 ∈ Ω : |𝑢1 − 𝑢2| < 𝑘, |𝑢2| ⩾ ℎ}

we have∫︁
𝐴1

𝑎(𝑥,∇𝑢1) · ∇(𝑢1 − 𝑇ℎ(𝑢2))𝑑𝑥 =

∫︁
𝐴1

𝑎(𝑥,∇𝑢1) · ∇𝑢1𝑑𝑥 ⩾ −
∫︁

{|𝑢2|⩾ℎ}

𝐺(𝑥)𝑑𝑥 = −𝜀(ℎ).

For the remaining set

𝐴2 = {𝑥 ∈ Ω : |𝑢1 − 𝑢2| < 𝑘, |𝑢1| ⩾ ℎ, |𝑢2| < ℎ}

we have the inequality∫︁
𝐴2

𝑎(𝑥,∇𝑢1)∇(𝑢1 − 𝑇ℎ(𝑢2))𝑑𝑥 ⩾ −
∫︁
𝐴2

(𝐺(𝑥) + 𝑎(𝑥,∇𝑢1)∇𝑢2𝑑𝑥.

It is clear that

‖𝑎(𝑥,∇𝑢1)∇𝑢2‖𝐿1(𝐴2) ⩽ ‖𝑎(∇𝑢1)‖𝐿𝑝′ (ℎ⩽|𝑢1|<ℎ+𝑘)‖∇𝑢2‖𝐿𝑝(ℎ−𝑘⩽|𝑢2|<ℎ) = 𝜀1(ℎ).

The latter identity is implied by (6.4) and (2.4).
Making similar calculations for the second integral in (6.5) and summing the obtained results

we find that 𝐼1 ⩾ 𝐼0 − 𝜀2(ℎ).
We consider the integral 𝐼3 in the formula (6.5). This integral over the set

𝐵0(ℎ) = {𝑥 ∈ Ω : |𝑢1| < ℎ, |𝑢2| < ℎ}
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gives the quantity

𝐽0 =

∫︁
𝐵0(ℎ)

(𝑏1(𝑥, 𝑢1)− 𝑏1(𝑥, 𝑢2))𝑇𝑘(𝑢1 − 𝑢2)𝑑𝜇 ⩾ 0.

The integral 𝐼3 over the set

𝐵1 = {𝑥 ∈ Ω : |𝑢1| ⩾ ℎ},
with the vanishing measure, as ℎ→ ∞ gives the quantity, which can be estimated as

|𝐽1| ⩽ 𝑘

∫︁
𝐵1

(|𝑏1(𝑥, 𝑢1)|+ |𝑏1(𝑥, 𝑢2))|)𝑑𝜇 ⩽ 𝜀3(ℎ).

The integral 𝐽2 over the remaining set can be estimated in a similar way |𝐽2| ⩽ 𝜀4(ℎ). As a
result we have the inequality

𝐼3 ⩾
∫︁

𝐵0(ℎ)

(𝑏1(𝑥, 𝑢1)− 𝑏1(𝑥, 𝑢2))𝑇𝑘(𝑢1 − 𝑢2)𝑑𝜇− 𝜀5(ℎ).

Similarly,

𝐼2 ⩾
∫︁

𝐵0(ℎ)

(𝑏0(𝑥, 𝑢1)− 𝑏0(𝑥, 𝑢2))𝑇𝑘(𝑢1 − 𝑢2)𝑑𝑥− 𝜀6(ℎ), 𝐼4 ⩽ 𝜀7(ℎ).

Summing the above obtained inequalities and omitting some negative terms, we find∫︁
𝐵0(ℎ)

(𝑏0(𝑥, 𝑢1)− 𝑏0(𝑥, 𝑢2))𝑇𝑘(𝑢1 − 𝑢2)𝑑𝑥 ⩽ 𝜀8(ℎ).

Using the increasing of the function 𝑏0 in the second variable, Lemma 3.10, and passing to the
limit at ℎ→ ∞ in this inequality, we obtain∫︁

Ω

(𝑏0(𝑥, 𝑢1)− 𝑏0(𝑥, 𝑢2))𝑇𝑘(𝑢1 − 𝑢2)𝑑𝑥 ⩽ 0.

We then conclude that 𝑢1 = 𝑢2 almost everywhere in Ω.

7. Some examples

We provide examples of the functions 𝑏0, 𝑏1, obeying the needed conditions. Let 𝑛 = 4, 𝑝 = 3.
The measure 𝜇 coincides the Lebesgue measure concentrated on the part of the plane

{𝑥 ∈ Ω : 𝑥1 = 0, 𝑥2 = 0}.

It is easy to see that this measure belongs to the Morrey class M2(Ω). Let 𝑔(𝑟), 𝑟 ⩾ 0, be an
arbitrary increasing function. We let

𝑏0(𝑥, 𝑟) = 𝐺0(𝑥)𝑔(|𝑟|)𝑟/|𝑟|, 𝑏1(𝑥, 𝑟) = 𝐺1(𝑥)𝑔(|𝑟|)𝑟/|𝑟|,

where 𝐺0 ∈ 𝐿1(Ω), 𝐺1 ∈ 𝐿1,𝜇(Ω), and the function 𝐺1 is equal to zero outside the support of
the function 𝜇. It is easy to see that the conditions (2.7)–(2.12), except for (2.10), are satisfied.
For the existence theorem the function

𝑏0(𝑥, 𝑟, 𝑦) = 𝐺0(𝑥)𝑔(|𝑟|)
𝑟|𝑦|

|𝑟|(1 + |𝑦|)
is also appropriate.
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