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SPECIFICATION OF ASYMPTOTIC PÓLYA TYPE ESTIMATE

FOR DIRICHLET SERIES CONVERGING IN HALF–PLANE

T.I. BELOUS, A.M. GAISIN, R.A. GAISIN

Abstract. We study the asymptotic behavior of a Dirichlet series with positive exponents,
converging in the left half–plane, on an arc of bounded slope ending on the convergence line.
In the paper we obtain conditions under which the sum of the Dirichlet series satisfies an
asymptotic equality of Pólya type on a set, the upper density of which is equal to one. In
2023 we obtained results related to dual cases. We showed that a Pólya type identity holds
on an asymptotic set of positive upper density depending on the slope coefficient (Lipschitz
constant) of the arc. In this paper, we prove a common theorem covering both of these
cases, and we show that the asymptotic set has an upper density, which is equal to one.
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1. Introduction

The paper is devoted to problem on regular growth of the sum of the Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠, 𝑠 = 𝜎 + 𝑖𝑡, 0 < 𝜆𝑛 ↑ ∞, (1.1)

which converges only in the left half–plane

Π0 = {𝑠 = 𝜎 + 𝑖𝑡 : 𝜎 < 0},

on an arc 𝛾 of a bounded slope, 𝛾 ⊂ Π0, which ends at the imaginary axis. The growth
regularity of sum of series (1.1) is characterized by the Pólya type identity

ln𝑀𝐹 (𝜎) ∼ ln |𝐹 (𝑠)|, 𝑠 ∈ 𝛾, 𝜎 → 0−, 𝜎 /∈ e, (1.2)

where e ⊂ [−1, 0) is some exceptional set, for instance, of zero lower density

𝑀𝐹 (𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)|.

To obtain estimates for the relative linear measure

mes(e ∩ [𝜎, 0))

|𝜎|
as 𝜎 → 0−, one usually assumes one of following lower growth estimate for the maximal term

𝜇(𝜎) = max
𝑛⩾1

{|𝑎𝑛|𝑒𝜆𝑛𝜎}
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SPECIFICATION OF ASYMPTOTIC PÓLYA TYPE ESTIMATE FOR DIRICHLET SERIES 13

of the series (1.1)

lim
𝜎→0−

ln𝜇(𝜎)

Φ

(︂
1

|𝜎|

)︂ > 0 or lim
𝜎→0−

ln𝜇(𝜎)

Φ

(︂
1

|𝜎|

)︂ > 0,

where Φ, Φ : R+ → R+, — is some fixed continuous majorant, Φ(𝑥) ↑ ∞ as 𝑥 → ∞. The
estimates a) and b) are rather natural and appeared quite often in similar problems before, see,
for instance, [1]–[4].
In contrast to the case of arbitrary curve, for arcs of bounded slope (Lipshitz arcs) one can

obtain stronger estimates, namely, asymptotic identities of Pólya type (1.2), which are valid
everywhere on the half–interval [−1, 0) outside an exceptional set of a small relative measure.
These problems were considered recently in [3], [4], but it turned out that the results of these
works can be strengthened. We discuss this issue in the present note.
We briefly dwell on the history of the issue, introduce needed definitions and formulate

previous results. Let Λ = {𝜆𝑛}, 0 < 𝜆𝑛 ↑ ∞, be a sequence having a bounded upper density

𝐷 = lim
𝑛→∞

𝑛

𝜆𝑛

< ∞.

We shall employ the following notation for the distribution function of the points 𝜆 ∈ Λ:

𝑛(𝑡) =
∑︁
𝜆𝑛⩽𝑡

1, 𝑁(𝑡) =

𝑡∫︁
0

𝑛(𝑥)

𝑥
𝑑𝑥.

By 𝐿 we denote the class of all positive continuous unboundedly growing on R+ functions,
while 𝑊 stands for the convergence class, that is, the set of the functions 𝑤 ∈ 𝐿 such that
𝑤(𝑥)(1 + 𝑥2)−1 belongs to 𝐿1(R+). Then for each function Φ ∈ 𝐿 by 𝜙 we denote the inverse
function and consider the following classes of functions:

𝑊𝜙 =
{︁
𝑤 ∈ 𝑊 : lim

𝑡→∞
𝜙(𝑡)𝐽(𝑡;𝑤) = 0

}︁
,

𝑊 𝜙 =

{︂
𝑤 ∈ 𝑊 : lim

𝑡→∞
𝜙(𝑡)𝐽(𝑡;𝑤) = 0

}︂
,

where

𝐽(𝑡;𝑤) =

∞∫︁
𝑡

𝑤(𝑥)

𝑥2
𝑑𝑥

is the remainder of the converging integral 𝐽(1;𝑤).
Let the arc

𝛾 = {𝑧 = 𝑥+ 𝑖𝑦 : 𝑦 = 𝑔(𝑥), 𝑎 ⩽ 𝑥 ⩽ 𝑏}
have a bounded slope, that is,

sup
𝑥1 ̸=𝑥2

⃒⃒⃒⃒
𝑔(𝑥1)− 𝑔(𝑥2)

𝑥2 − 𝑥1

⃒⃒⃒⃒
= 𝐾 < ∞. (1.3)

This condition means that the function 𝑔(𝑥) satisfies the Lipshitz condition

|𝑔(𝑥2)− 𝑔(𝑥1)| ⩽ 𝐾|𝑥2 − 𝑥1|.

This is why we call an arc of bounded slope the Lipshitz arc. Geometrical meaning of the
condition (1.3) is that the absolute values of the tangents of all angles of chords of arc do not
exceed 𝐾. This is why 𝛾 is called the arc of 𝐾–bounded slope.
We provide the results obtained in [3], [4].
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Theorem 1.1 ([3]). Let Φ ∈ 𝐿, 𝑤 ∈ 𝑊𝜙, where 𝑤(𝑥) = 𝑁(𝑒𝑥). Suppose that the maximal
term of the series (1.1) satisfies the condition

lim
𝜎→0−

ln𝜇(𝜎)

Φ

(︂
1

|𝜎|

)︂ > 0 (1.4)

and for some function 𝑤0 ∈ 𝑊𝜙 the estimates

𝑞(𝜆𝑛) ⩽ 𝑤0(𝜆𝑛), 𝑛 ⩾ 1, (1.5)

hold, where

𝑞(𝜆𝑛) = − ln |𝑄′(𝜆𝑛)|, 𝑄(𝜆) =
∞∏︁
𝑛=1

(︂
1− 𝜆2

𝜆𝑛
2

)︂
.

Then for each arc 𝛾 of 𝐾–bounded slope defined by the equation 𝑦 = 𝑔(𝑥), −1 ⩽ 𝑥 ⩽ 0, for
𝑠 ∈ 𝛾, Re 𝑠 = 𝜎 → 0− over an asymptotic set 𝐴 ⊂ [−1, 0), the upper density 𝐷𝐴 of which
satisfies the inequality

𝐷𝐴 = lim
𝜎→0−

mes(A ∩ [𝜎, 0))

|𝜎|
⩾

1√
1 +𝐾2

,

the relation holds

ln𝑀𝐹 (𝜎) = (1 + 𝑜(1)) ln |𝐹 (𝑠)|, 𝑠 ∈ 𝛾, 𝑠 = 𝜎 + 𝑖𝑡. (1.6)

We note that under the assumptions of Theorem 1.1 the functions 𝜙 and 𝑤 are consistent:

𝜙(𝑥)𝑤(𝑥) = 𝑜(𝑥) as 𝑥 → ∞.

This is implied by the belonging 𝑤 ∈ 𝑊𝜙.
In [4], the following result was proved, which dual to Theorem 1.1.

Theorem 1.2 ([4]). Let Φ ∈ 𝐿, 𝑤 ∈ 𝑊 𝜙, where 𝑤(𝑥) = 𝑁(𝑒𝑥). If 𝜙 and 𝑤 are consistent,
the maximal term of the series (1.1) obeys the condition

lim
𝜎→0−

ln𝜇(𝜎)

Φ

(︂
1

|𝜎|

)︂ > 0, (1.7)

and for some function 𝑤0 ∈ 𝑊𝜙 the estimates (1.5) hold, then for each arc 𝛾 of 𝐾–bounded slope
defined on the segment [−1, 0], as 𝑠 ∈ 𝛾, Re 𝑠 = 𝜎 → 0− over an asymptotic set 𝐴 ⊂ [−1, 0),

𝐷𝐴 ⩾
1√

1 +𝐾2
,

Pólya type identity (1.6) holds.

The aim of the present paper is to show that in both theorems the relation (1.6) holds on a
set 𝐴, the upper density 𝐷𝐴 of which is equal to one.

2. Lemmas. Main result

The proof of the main theorem is based on the following lemmas, which allows us to use a
common approach to the mentioned dual problems.

Lemma 2.1. Let a function 𝑔(𝑧) be analytic in the circle

𝐷(0, 𝑅) = {𝑧 : |𝑧| < 𝑅},
and |𝑔(0)| ⩾ 1. If

0 < 𝑟 < 1−𝑁−1
0 , 𝑁0 > 1,
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then there exists at most countably many circles

𝑉𝑛 = {𝑧 : |𝑧 − 𝑧𝑛| ⩽ 𝜌𝑛},
∑︁
𝑛

𝜌𝑛 ⩽ 𝑅𝑟𝑁0(1− 𝑟),

such that in the circle {𝑧 : |𝑧| ⩽ 𝑟𝑅}, but outside the set
⋃︁
𝑛

𝑉𝑛, the estimate

ln |𝑔(𝑧)| ⩾ 𝑅− |𝑧|
𝑅 + |𝑧|

ln |𝑔(0)| − 5𝑁0𝐿0 (2.1)

holds, where

𝐿0 =
1

2𝜋

2𝜋∫︁
0

ln+ |𝑔(𝑅𝑒𝑖𝜃)|𝑑𝜃 − ln |𝑔(0)|. (2.2)

This lemma was proved in [5].
We shall also need the following Borel — Nevanlinna type lemma, which was proved in [1,

Lms. 4, 5]. We formulate it here in an appropriate form.

Lemma 2.2. Let 𝑢(𝑡) be a continuous non–decreasing on [−1, 0) function, 𝑢(𝑡) → ∞ as
𝑡 → 0−. By 𝑣 = 𝑣(𝑡) we denote the solution to the equation

𝑤(𝑣) = 𝑒𝑢(𝜎), (2.3)

where 𝑤 is some function from the class 𝑊 .
If as 𝑡 → 0− outside some set e0 ⊂ [−1, 0), mes (e0 ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|) for some sequence

{𝜏𝑗}, 𝜏𝑗 ↑ 0,

𝑤(𝑣(𝑡))

|𝑡|𝑣(𝑡)
= 𝑜(1),

and the condition

lim
𝜏𝑗→0−

1

|𝜏𝑗|
𝐽(𝑣𝑗;𝑤) = 0, 𝑣𝑗 = 𝑣(𝜏𝑗),

holds, then as 𝜎 → 0− outside the exceptional set e ⊂ [−1, 0), for which

mes (e ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|), 𝜏𝑗 → 0−,

the asymptotic identity

𝑢

(︂
𝑡+

𝑤(𝑣(𝑡))

𝑣(𝑡)

)︂
= 𝑢(𝑡) + 𝑜(1)

holds.

This lemma is more general than the corresponding lemma from [6, Lm. 3.2]1, where e0 = ∅.
Our main result is as follows.

Theorem 2.1. Let the assumptions of Theorem 1.1 or Theorem 1.2 hold. Then for each
arc 𝛾 of a bounded slope defined on the segment [−1, 0], as 𝑠 ∈ 𝛾, Re 𝑠 = 𝜎 → 0− over the
asymptotic set 𝐴 ⊂ [−1, 0), 𝐷𝐴 = 1, Pólya type identity (1.6) holds.

1The proof of Theorem 1.1 in [3] involves a wrong reference: instead of Lemma 2.2, Lemma 3.2 from [6] was
mentioned.
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3. Proof of Theorem 2.1

Let the assumptions of Theorem 1.1 be satisfied. We let 𝑤1(𝑥) = 𝑤(𝑥) + 𝑤0(𝑥), where
𝑤(𝑥) = 𝑁(𝑒𝑥), 𝑤0(𝑥) is the majorant from the condition (1.5). Since 𝑤 ∈ 𝑊𝜙, we have
𝑤1 ∈ 𝑊𝜙. Therefore, the functions 𝜙 and 𝑤1 are consistent, that is,

lim
𝑥→∞

𝜙(𝑥)𝑤1(𝑥)

𝑥
= 0.

Then there exists a function 𝑤*(𝑥) = 𝛽(𝑥)𝑤1(𝑥), 𝛽 ∈ 𝐿, 1 ⩽ 𝛽(𝑥), which also belongs to 𝑊𝜙.
This is why 𝜙(𝑥)𝑤*(𝑥) = 𝑜(𝑥) as 𝑥 → ∞.
Let 𝑣 = 𝑣(𝜎) be a solution to the equation

𝑤*(𝑣) = 3 ln𝜇(𝜎). (3.1)

It is obvious that 𝑣(𝜎) ↑ ∞ as 𝜎 ↑ 0−. Equation (3.1) can be written as

𝑤*(𝑣) = 𝑒𝑢(𝜎), 𝑢(𝜎) = ln 3 + ln ln𝜇(𝜎). (3.2)

Since 𝑤* ∈ 𝑊𝜙, we have

lim
𝑣→∞

𝜙(𝑣)𝐽(𝑣;𝑤*) = 0, (3.3)

where 𝑣 = 𝑣(𝜎) → ∞ as 𝜎 → 0−. The lower bound (1.4) for ln𝜇(𝜎), in view of the identity
(3.1), implies that for some sequence {𝜏𝑗}, 𝜏𝑗 ↑ 0,

𝑤*(𝑣(𝜏𝑗)) = 3 ln𝜇(𝜏𝑗) > 𝜈0Φ

(︂
1

|𝜏𝑗|

)︂
, 𝜈0 > 0.

Since 𝑤*(𝑥) = 𝑜(𝑥) as 𝑥 → ∞, this implies

1

|𝜏𝑗|
⩽ 𝜙(𝑣𝑗), 𝑣𝑗 = 𝑣(𝜏𝑗), 𝑗 ⩾ 𝑗0.

1

Therefore, by (3.3) and the consistency condition of the functions 𝜙 and 𝑤* we have

a) The condition

lim
𝜏𝑗→0−

1

|𝜏𝑗|
𝐽(𝑣𝑗;𝑤

*) = 0, 𝑣𝑗 = 𝑣(𝜏𝑗),

holds.

b) For all 𝜎 in [−1, 0) but outside some set e0,

mes(e0 ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|)

the relation
𝑤*(𝑣(𝜎))

|𝜎|𝑣(𝜎)
= 𝑜(1)

holds, see [1, Lm. 4].

If the assumptions of Theorem 1.2 are satisfied, then 𝑤* ∈ 𝑊 𝜙 (formally, the function 𝑤*

is the same as in Theorem 1.1), and 𝜙(𝑥)𝑤*(𝑥) = 𝑜(𝑥) as 𝑥 → ∞ (by the assumptions of
Theorem 1.2, the functions 𝜙 and 𝑤 are consistent). Since 𝑤* ∈ 𝑊 𝜙, there exists a sequence
{𝜏𝑗}, 𝜏𝑗 ↑ 0, (we keep the same notation for this sequence although it is chosen a bit different)
such that

lim
𝑣𝑗→∞

𝜙(𝑣𝑗)𝐽(𝑣𝑗;𝑤
*) = 0, 𝑣𝑗 = 𝑣(𝜏𝑗). (3.4)

1In [1] this estimate was obtained under the assumption that there exists a constant 𝐶 ∈ (0,∞) such that
𝜙(2𝑡) ⩽ 𝐶𝜙(𝑡), 𝑡 > 0. This restriction is unnecessary.



SPECIFICATION OF ASYMPTOTIC PÓLYA TYPE ESTIMATE FOR DIRICHLET SERIES 17

By the condition (1.7) in view of (3.1) we obtain that for 𝜎′ ⩽ 𝜎 < 0 the inequality

𝑤*(𝑣(𝜎)) > 𝜇0Φ

(︂
1

|𝜎|

)︂
, 𝜇0 > 0,

holds. This implies that for 𝜎′ < 𝜎′′ < 𝜎 < 0

1

|𝜎|
⩽ 𝜙(𝑣), 𝑣 = 𝑣(𝜎).

Therefore, in view of (3.4) and the consistency condition of the functions 𝜙 and 𝑤*, we again
arrive at the conditions a) and b).
Thus, in both Theorems 1.1 and 1.2, the matter is reduced to Relations a) and b). At the

same time, generally speaking, in each theorem the sequences {𝜏𝑗}, 𝜏𝑗 ↑ 0, are different; in
Theorem 1.1 it is chosen by the condition (1.4), while in Theorem 1.2 by the condition (3.4).
Further arguing are same for both theorems and are based on the common Borel — Nevanlinna
type Lemma 2.2 and Govorov type Lemma 2.1.
By applying Lemma 2.2, it was shown in [3], [4] that as 𝜎 → 0− outside some set e1,

e0 ⊂ e1 ⊂ [−1, 0), mes e1 ∩ [𝜏𝑗, 0) = 𝑜(|𝜏𝑗|), 𝜏𝑗 → 0−,

the following key estimates hold:

𝜇(𝜎) ⩽ 𝑀𝐹 (𝜎) ⩽ 𝑀𝐹 (𝜎 + 2ℎ*) < 𝜇(𝜎)1+𝑜(1), (3.5)

where

ℎ* = ℎ*(𝜎) =
𝑤*(𝑣(𝜎))

𝑣(𝜎)
,

and

𝜇(𝜎)1+𝑜(1) ⩽ max
|𝜉−𝛼|⩽ℎ(1)

|𝐹 (𝜉)| = |𝐹 (𝜉*)|, (3.6)

where

|𝜉* − 𝛼| ⩽ ℎ(1), 𝛼 = 𝜎 + 𝑖𝑡 ∈ 𝛾, ℎ(1) = ℎ(1)(𝜎) =
ℎ*(𝜎)√︀
𝛽(𝑣)

, 𝑣 = 𝑣(𝜎).

Our specifications concern the following estimates obtained in [3], [4]. We provide the corre-
sponding arguing with all details.
We denote

𝐵 = [−1, 0)∖e1, ℎ =
𝑤1(𝑣)

𝑣
, 𝑣 = 𝑣(𝜎),

where 𝑤1(𝑥) = 𝑤(𝑥)+𝑤0(𝑥) is a function from the class 𝑊𝜙 (in Theorem 1.1) or the class 𝑊 𝜙

(in Theorem 1.2). The notation for the functions 𝑤 and 𝑤0 are the same as in Theorem 1.1.
There exists a sequence

{𝜎𝑗}, 𝜎𝑗 ∈ 𝐵, 𝜎𝑗 ↑ 0, 𝜎𝑗 + ℎ𝑗 ⩽ 𝜎𝑗+1, 𝑗 ⩾ 1,

such that [1]

𝐵 ⊂
∞⋃︁
𝑗=1

[𝜎𝑗 − ℎ𝑗, 𝜎𝑗 + ℎ𝑗], ℎ𝑗 =
𝑤1(𝑣𝑗)

𝑣𝑗
,

where 𝑣𝑗 = 𝑣(𝜎𝑗), 𝑗 = 1, 2, . . . .
Let 𝑔(𝑧) = 𝐹 (𝑧 + 𝜉*). As the estimate (3.6) shows,

|𝑔(0)| > 1 for 𝜎′ < 𝜎′′ ⩽ 𝜎0 < 𝜎 < 0 outside e1.

According to Lemma 2.1, under an appropriate choice of 𝑅, 𝑟, 0 < 𝑟 < 1, in the circle
{𝑧 : |𝑧| ⩽ 𝑟𝑅}, but outside a set of exceptional circles of small measure, the estimate (2.1)
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holds. Then this estimate is also true on an appropriate subarc 𝛾′ ⊂ 𝛾 except for some portion,
which also has a small total length. Our aim is to find the size of this portion.
In order to apply Lemma 2.1 to the function 𝑔(𝑧), we let

𝛼 = 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗, 𝜉* = 𝜉*𝑗 , ℎ(1) = ℎ(1)(𝜎𝑗) =
𝑤1(𝑣𝑗)

𝑣𝑗

√︁
𝛽(𝑣𝑗),

while in the lemma we take

𝑁0 = 4, 𝑟 = 𝑟(𝑗) =
1√︀
𝛽(𝑣𝑗)

, 𝑅 = 𝑅𝑗 = 2ℎ*
𝑗 , ℎ*

𝑗 =
𝑤*(𝑣𝑗)

𝑣𝑗
, 𝑗 ⩾ 𝑗1.

Here the index 𝑗1 is chosen so that for 𝑗 ⩾ 𝑗1 the condition

𝑟 = 𝑟(𝑗) < 1−𝑁−1
0 =

3

4

holds. Then, since 𝑟𝑅 = 2ℎ
(1)
𝑗 , by Lemma 2.1, in the circle {𝑧 : |𝑧| ⩽ 2ℎ

(1)
𝑗 } but outside

exceptional circles 𝑉𝑛𝑗 with the total sum of radii obeying the estimate∑︁
𝑛

𝜌𝑛𝑗 ⩽ 𝑅𝑗𝑟
𝑁0
𝑗 (1− 𝑟𝑗) <

2ℎ𝑗

𝛽𝑗

, 𝑗 ⩾ 𝑗1,

ℎ𝑗 =
𝑤1(𝑣𝑗)

𝑣𝑗
, 𝛽𝑗 = 𝛽(𝑣𝑗), 𝑣𝑗 = 𝑣(𝜎𝑗),

(3.7)

the function 𝑔(𝑧) = 𝐹 (𝑧 + 𝜉*𝑗 ) satisfies the lower bound (2.1).
Let 𝛾𝑗 be a part of the arc 𝛾 connecting the vertical lines passing through the end–points

of the segment ∆𝑗 = [𝜎𝑗 − ℎ𝑗, 𝜎𝑗 + ℎ𝑗], 𝑗 ⩾ 𝑗1. Since the arc 𝛾 has a 𝐾–slope, the arc 𝛾𝑗 is
contained in the rectangle

𝑃𝑗 = ∆𝑗 × [𝑐𝑗, 𝑑𝑗], 𝑑𝑗 − 𝑐𝑗 ⩽ 2𝐾ℎ𝑗,

with the center at the point 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗 and connects its vertical sides.
Let 𝑃 *

𝑗 be a translation of 𝑃𝑗 by the vector 𝑎𝑗 = −𝜉*𝑗 . Since 𝛽𝑗 = 𝛽(𝑣𝑗) ⩾ 1, the set 𝑃 *
𝑗 ,

is obviously contained in the circle {𝑧 : |𝑧| < 2ℎ
(1)
𝑗 }. This is why the estimate (2.1) holds

everywhere in the rectangle 𝑃 *
𝑗 except for the circles 𝑉𝑛𝑗 with the total sum of radii obeying

the estimate (3.7), that is, for all 𝑧 ∈ 𝑃 *
𝑗 ∖ ∪𝑛 𝑉𝑛𝑗 as 𝑗 → ∞

ln |𝑔(𝑧)| ⩾
[︂
1 + 𝑜(1)− 20𝐿0

ln |𝑔(0)|

]︂
ln |𝑔(0)|. (3.8)

Since

|𝑔(0)| = |𝐹 (𝜉*)| ⩽ 𝑀𝐹 (𝜎 + ℎ(1)) ⩽ 𝑀𝐹 (𝜎 + 2ℎ*),

and 𝜎𝑗 ∈ 𝐵, 𝐿0 > 0, the estimate (3.5) shows that as 𝑗 → ∞

1

2𝜋

2𝜋∫︁
0

ln+ |𝑔(𝑅𝑒𝑖𝜃)|𝑑𝜃 ∼ ln |𝑔(0)|.

Hence, by (3.8) we obtain that for all 𝑧 in the rectangle 𝑃 *
𝑗 = 𝑃𝑗 + 𝑎𝑗 (𝑃

*
𝑗 is the translation of

𝑃𝑗 by the vector 𝑎𝑗 = −𝜉*𝑗 ) but outside the exceptional circles 𝑉𝑛𝑗 with the total sum of radii

not exceeding 2
ℎ𝑗

𝛽𝑗
, as 𝑗 → ∞ the estimate

ln |𝑔(𝑧)| ⩾ (1 + 𝑜(1)) ln |𝑔(0)| (3.9)
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holds. Taking into consideration the identity 𝑔(𝑧) = 𝐹 (𝑧 + 𝜉*𝑗 ) and estimates (3.5)–(3.9), we
obtain that everywhere in the rectangle 𝑃𝑗 centered at the point 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗 except for the

circles 𝑉 ′
𝑛𝑗 = 𝑉𝑛𝑗 − 𝑎𝑗, 𝑛 = 1, 2, . . . , with the total sum of radii not exceeding 2

ℎ𝑗

𝛽𝑗
the estimate

ln |𝐹 (𝑠)| > (1 + 𝑜(1)) ln𝜇(𝜎𝑗), 𝑠 = 𝑧 + 𝜉*𝑗 , 𝑗 → ∞, (3.10)

holds.
Let e2 be the projection of all exceptional circles of the set

⋃︁
𝑗

𝑃𝑗 onto 𝐵. We are going to

confirm that 𝐷e2 = 0. Indeed, let 𝜎𝑗 ⩽ 𝜎 < 𝜎𝑗+1. Since 𝜎j /∈ e0, 𝑗 ⩾ 1, according to the above
conditions a) and b),

ℎ𝑗 ⩽ ℎ
(1)
𝑗 ⩽ ℎ*

𝑗 = 𝑜(𝜎𝑗) as 𝑗 → ∞.

Therefore, in view of the inequality
∑︀

𝑘⩾𝑗+1

ℎ𝑘 ⩽ |𝜎| we obtain

mes(e2 ∩ [𝜎, 0))

|𝜎|
⩽

mes(𝑒2 ∩∆𝑗)

|𝜎|
+

mes(𝑒2 ∩ [𝜎𝑗+1 − ℎ𝑗+1, 0))

|𝜎|

⩽
2ℎ𝑗

|𝜎𝑗 + ℎ𝑗|𝛽𝑗

+
2

|𝜎|
∑︁

𝑘⩾𝑗+1

ℎ𝑘

𝛽𝑘

⩽
2ℎ𝑗

|𝜎𝑗|𝛽𝑗(1 + 𝑜(1))
+

2

𝛽𝑗

= 𝑜(1), 𝑗 → ∞.

This means 𝐷e2 = 0. Therefore, letting e = e1 ∪ e2, we get 𝑑e = 0 since 𝐷e2 = 0, 𝑑e1 = 0.

The projection 𝑝𝑗 of the arc 𝛾𝑗 onto [−1, 0) is the segment∆𝑗. Let 𝐴 = 𝑃∖e, where 𝑃 =
∞⋃︀
𝑗=1

𝑝𝑗.

On this set the asymptotic estimates (3.6), (3.10) hold; the set 𝐴 is called the asymptotic set.
This implies that as 𝑠 ∈ 𝛾, Re 𝑠 = 𝜎 → 0− over the set 𝐴, the Pólya type relation

ln |𝐹 (𝑠)| = (1 + 𝑜(1)) ln𝜇(𝜎) = (1 + 𝑜(1)) ln𝑀𝐹 (𝜎)

holds. It remains to get the estimate for the upper density 𝐷𝐴. Since 𝐷𝑃 = 1, we have

𝐷𝐴 = lim
𝜎→0−

mes(𝐴 ∩ [𝜎, 0))

|𝜎|
⩾ lim

𝑗→∞

mes(𝑃 ∩ [𝜏𝑗, 0))

|𝜏𝑗|
− lim

𝑗→∞

mes(e ∩ [𝜏𝑗, 0))

|𝜏𝑗|
= 1.

Here {𝜏𝑗} is the above introduced sequence, for which

mes (e ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|) as 𝑗 → ∞.

Therefore, 𝐷𝐴 = 1. The proof of Theorem 2.1 is complete.
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