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CONSTRUCTION OF EXACT SOLUTIONS

OF NONLINEAR PDE VIA DRESSING CHAIN IN 3D

I.T. HABIBULLIN, A.R. KHAKIMOVA

Abstract. The duality between a class of the Davey — Stewartson type coupled systems
and a class of two–dimensional Toda type lattices is discussed. A new coupled system
related to the recently found lattice is presented. A method for eliminating nonlocalities
in coupled systems by virtue of special finite reductions of the lattices is suggested. An
original algorithm for constructing explicit solutions of the coupled systems based on the
finite reduction of the corresponding lattice is proposed. Some new solutions for coupled
systems related to the Volterra lattice are presented as illustrative examples.
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1. Introduction

In the papers [1], [2] a close connection between integrable two–dimensional lattices and
integrable partial differential equations in three independent variables was discovered. More
precisely, the class of generalized symmetries of two–dimensional lattices contains a large variety
of nonlinear integrable partial differential equations in 3D. In particular, this class contains such
an important model as the Davey — Stewartson equation, which is related to the symmetries
of the Toda lattice. After such a kind observation it was natural to expect that this duality
would lead to the creation of new algorithms for finding particular solutions to coupled systems.
However, this did not happen, since, as noted in the mentioned works, the presence of nonlocal
variables creates severe problems for efficient use of dressing chains for constructing explicit
solutions of coupled systems.
After the papers [3]–[7] it became clear that the integrability of a two–dimensional chain can

be fully revealed at the level of its finite–field reductions obtained by imposing a special type of
truncating boundary conditions on the chain. The integrability criterion for a three-dimensional
lattice is formulated as a requirement of Darboux integrability of the reduced systems. This
special type of boundary conditions for the chains has another remarkable property: it is
compatible with arbitrary higher symmetry of the lattice under consideration. It immediately
follows from this fact that special cut–off constraints preserve the duality between the lattices
and the associated coupled systems. In other words, when the lattice is reduced to a finite–field
system, its symmetry becomes a symmetry for this reduction. An important step in this scheme
consists of finding explicit expressions for the nonlocalities in terms of the local variables (see the
formulas (3.6)). Thus, at the reduction level, nonlocal variables can be completely eliminated.
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Let us illustrate some of the notions considered below with an example. It was shown in [2]
that the two–dimensional Volterra chain

𝑢𝑛,𝑦 = 𝑢𝑛(𝑣𝑛+1 − 𝑣𝑛), 𝑣𝑛,𝑥 = 𝑣𝑛(𝑢𝑛 − 𝑢𝑛−1) (1.1)

has a symmetry (coupled system) of the following form

𝑢𝑛,𝑡 = 𝑢𝑛,𝑥𝑥 +
(︀
𝑢2
𝑛 + 2𝑢𝑛𝑉𝑛

)︀
𝑥
,

𝑣𝑛,𝑡 = −𝑣𝑛,𝑥𝑥 +
(︀
𝑉 2
𝑛

)︀
𝑦
+ (2𝑢𝑛𝑣𝑛)𝑥, 𝑉𝑛,𝑦 = 𝑣𝑛,𝑥.

(1.2)

In other words, the relations

(𝑢𝑛,𝑦)𝑡 = (𝑢𝑛,𝑡)𝑦, (𝑣𝑛,𝑥)𝑡 = (𝑣𝑛,𝑡)𝑥

are satisfied identically if the derivatives with respect to 𝑥, 𝑦, and 𝑡 are replaced taking into
account (1.1) and (1.2). For an arbitrary value of 𝑛, the relations (1.2) define a system of partial
differential equations with independent variables 𝑥, 𝑦, and 𝑡, where 𝑛 is a hidden parameter.
When moving from 𝑛 to 𝑛+1, the desired functions are calculated using an invertible Bäcklund
transformation generated by the lattice (1.1) (see [2])

𝑣𝑛+1 = 𝑣𝑛 + (ln𝑢𝑛)𝑦, 𝑢𝑛+1 = 𝑢𝑛 + (ln 𝑣𝑛+1)𝑥, 𝑉𝑛+1 = 𝑉𝑛 + (ln𝑢𝑛)𝑥. (1.3)

In this paper, we consider coupled systems corresponding to integrable lattices as the main
object of study. The lattices rewritten as invertible Bäcklund transformations are interpreted
as symmetries with discrete time 𝑛 for coupled systems. The aim of the work is to develop
an algorithm for constructing particular solutions of partial differential equations with three
independent variables using dressing chains.

2. Examples of coupled systems

The Volterra chain admits a large class of symmetries (see [2]). For instance, one can easily
derive from (1.2) another coupled system of the second order

𝑢𝑛,𝜏 = 𝑢𝑛,𝑦𝑦 +
(︀
𝑈2
𝑛

)︀
𝑥
+ (2𝑢𝑛𝑣𝑛)𝑦,

𝑣𝑛,𝜏 = −𝑣𝑛,𝑦𝑦 +
(︀
𝑣2𝑛 + 2𝑣𝑛𝑈𝑛

)︀
𝑦
, 𝑈𝑛,𝑥 = 𝑢𝑛,𝑦,

(2.1)

by using the involutions

𝑥 ↔ −𝑦, 𝑡 ↔ 𝜏, 𝑢 ↔ 𝑣, 𝑈 ↔ 𝑉, 𝑛 ↔ −𝑛. (2.2)

Its Bäcklund transformation is given by

𝑢𝑛−1 = 𝑢𝑛 − (ln 𝑣𝑛)𝑥, 𝑣𝑛−1 = 𝑣𝑛 − (ln𝑢𝑛−1)𝑦, 𝑈𝑛−1 = 𝑈𝑛 − (ln 𝑣𝑛)𝑦.

By taking a linear combination of two symmetries given above we find a more complicated
symmetry

𝑢𝑛,𝑠 = 𝜆𝑢𝑛,𝑥𝑥 + 𝜇𝑢𝑛,𝑦𝑦 − 𝜆
(︀
𝑢2
𝑛 + 2𝑢𝑛𝑉𝑛

)︀
𝑥
− 𝜇

(︀
𝑈2
𝑛

)︀
𝑥
− 𝜇(2𝑢𝑛𝑣𝑛)𝑦,

𝑉𝑛,𝑦 = 𝑣𝑛,𝑥, 𝜆 ̸= 0,

𝑣𝑛,𝑠 = −𝜆𝑣𝑛,𝑥𝑥 − 𝜇𝑣𝑛,𝑦𝑦 − 𝜆
(︀
𝑉 2
𝑛

)︀
𝑦
− 𝜆(2𝑢𝑛𝑣𝑛)𝑥 − 𝜇

(︀
𝑣2𝑛 + 2𝑣𝑛𝑈𝑛

)︀
𝑦
,

𝑈𝑛,𝑥 = 𝑢𝑛,𝑦, 𝜇 ̸= 0.

(2.3)

A large class of the Toda type integrable lattices is presented in [2] where the related coupled
systems are given as well. One extra lattice of this type

𝑢𝑛,𝑥𝑦 = 𝛼𝑛(𝑢𝑛,𝑥 − 𝑢2
𝑛 − 1)(𝑢𝑛,𝑦 − 𝑢2

𝑛 − 1) + 2𝑢𝑛(𝑢𝑛,𝑥 + 𝑢𝑛,𝑦 − 𝑢2
𝑛 − 1),

𝛼𝑛 =
1

𝑢𝑛 − 𝑢𝑛−1

− 1

𝑢𝑛+1 − 𝑢𝑛

(2.4)
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was recently found in [5]. Symmetries of the lattice (2.4) in the directions of 𝑥 and 𝑦 are as
follows (see [8]):

𝑢𝑛,𝑡 = 𝑢𝑛,𝑥𝑥 − 2𝑢𝑛𝑢𝑛,𝑥 + 𝑢2
𝑛 + 1− 2(𝑢2

𝑛 − 𝑢𝑛,𝑥 + 1)𝐻𝑛,

𝐻𝑛 = (𝑇 − 1)−1𝐷𝑥 log
𝑢𝑛,𝑥 − 𝑢2

𝑛 − 1

𝑢𝑛+1 − 𝑢𝑛

,

𝐷𝑦𝐻𝑛 = −𝐷𝑥
𝑢𝑛,𝑦 − 𝑢𝑛𝑢𝑛−1 − 1

𝑢𝑛 − 𝑢𝑛−1

(2.5)

and respectively

𝑢𝑛,𝜏 = 𝑢𝑛,𝑦𝑦 − 2𝑢𝑛𝑢𝑛,𝑦 + 𝑢2
𝑛 + 1− 2(𝑢2

𝑛 − 𝑢𝑛,𝑦 + 1)𝑄𝑛,

𝑄𝑛 = (𝑇 − 1)−1𝐷𝑦 log
𝑢𝑛+1,𝑦 − 𝑢2

𝑛+1 − 1

𝑢𝑛+1 − 𝑢𝑛

,

𝐷𝑥𝑄𝑛−1 = 𝐷𝑦
𝑢𝑛−1,𝑥 − 𝑢𝑛𝑢𝑛−1 − 1

𝑢𝑛 − 𝑢𝑛−1

.

(2.6)

Note that symmetries (2.5) and (2.6) depend significantly on the discrete parameter 𝑛 since
they contain variables with shifted arguments.
The corresponding coupled systems of the lattice (2.4) obtained from the second–order

symmetries (2.5) and (2.6) have the form

𝑢𝑡 = 𝑢𝑥𝑥 − 2𝑢𝑢𝑥 + 𝑢2 + 1− 2(𝑢2 − 𝑢𝑥 + 1)𝐻,

𝑣𝑡 = −𝑣𝑥𝑥 + 2(𝑣𝑥 − 𝑣2 − 1)𝐻 − 2𝑣2𝑥
𝑢− 𝑣

+
2(𝑣𝑥 − 𝑣2 − 1)𝑢𝑥

𝑢− 𝑣
+

2(𝑢𝑣 + 1)𝑣𝑥
𝑢− 𝑣

+ 𝑣2 + 1,

𝐷𝑦𝐻 = −𝐷𝑥
𝑢𝑦 − 𝑢𝑣 − 1

𝑢− 𝑣

(2.7)

and

𝑢𝜏 = −𝑢𝑦𝑦 + 2(𝑢𝑦 − 𝑢2 − 1)𝑄+
2𝑢2

𝑦

𝑢− 𝑣

− 2(𝑢𝑦 − 𝑢2 − 1)𝑣𝑦
𝑢− 𝑣

− 2(𝑢𝑣 + 1)𝑢𝑦

𝑢− 𝑣
+ 𝑢2 + 1,

𝑣𝜏 = 𝑣𝑦𝑦 − 2𝑣𝑣𝑦 + 𝑣2 + 1 + 2(𝑣𝑦 − 𝑣2 − 1)𝑄,

𝐷𝑥𝑄 = 𝐷𝑦

(︂
𝑣𝑥 − 𝑢𝑣 − 1

𝑢− 𝑣

)︂
,

(2.8)

where 𝑢 := 𝑢𝑛 and 𝑣 := 𝑢𝑛−1. Obviously systems (2.7) and (2.8) do not contain any variables
𝑢 and 𝑣 with shifted values of 𝑛.
The lattice (2.4), supplemented by the equation for the nonlocality 𝐻𝑛, defines an invertible

Bäcklund transformation

𝑣𝑛−1 = 𝑣𝑛 −
(𝑢𝑛 − 𝑣𝑛)(𝑣

2
𝑛 − 𝑣𝑛,𝑥 + 1)(𝑣2𝑛 − 𝑣𝑛,𝑦 + 1)

(𝑢𝑛 − 𝑣𝑛) (𝑣𝑛,𝑥𝑦 − 2𝑣𝑛(𝑣𝑛,𝑥 + 𝑣𝑛,𝑦 − 𝑣2𝑛 − 1)) + (𝑣2𝑛 − 𝑣𝑛,𝑥 + 1)(𝑣2𝑛 − 𝑣𝑛,𝑦 + 1)
,

𝑢𝑛−1 = 𝑣𝑛,

𝐻𝑛−1 = 𝐻𝑛 −𝐷𝑥 log
𝑣𝑛,𝑥 − 𝑣2𝑛 − 1

𝑢𝑛 − 𝑣𝑛

for the coupled system (2.7). In a similar way one can derive the Bäcklund transformation for
coupled system (2.8).
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3. Finite reductions of 3D lattices compatible with symmetries

It is shown in our articles [3]–[6] that each known integrable Toda type lattice admits cut–
off boundary conditions allowing to reduce the lattice to a hierarchy of hyperbolic systems
integrable in sense of Darboux. Apparently, these boundary conditions are compatible with a
large class of higher symmetries of the lattice. We say that a truncation boundary condition
for a lattice is compatible with its symmetry if the truncation preserves the commutativity
property of the lattice and the symmetry [9]. Below in this section we discuss how to get rid of
the nonlocalities that arise within the symmetry approach. To do this, we pass from chains to
their finite–dimensional reductions, then use conservation laws to express the nonlocalities in
terms of dynamical variables.
Let us concentrate on finite–field reductions of the Volterra chain obtained by imposing the

following type truncation conditions 𝑢−𝑘 = 0 and 𝑣𝑚+𝑘 = 0, 𝑘 = 1, 2, 3, . . .:

𝑢0,𝑦 = 𝑢0(𝑣1 − 𝑣0), 𝑣0,𝑥 = 𝑣0𝑢0,

𝑢1,𝑦 = 𝑢1(𝑣2 − 𝑣1), 𝑣1,𝑥 = 𝑣1(𝑢1 − 𝑢0),

. . . . . .

𝑢𝑚,𝑦 = −𝑢𝑚𝑣𝑚, 𝑣𝑚,𝑥 = 𝑣𝑚(𝑢𝑚 − 𝑢𝑚−1).

(3.1)

By summing consecutively equations of the obtained system we arrive at the equation

𝑚∑︁
𝑖=0

(𝑢𝑖,𝑦 + 𝑣𝑖,𝑥) = 0

that can be represented as a conservation law

𝜕

𝜕𝑦

𝑚∑︁
𝑖=0

𝑢𝑖 +
𝜕

𝜕𝑥

𝑚∑︁
𝑖=0

𝑣𝑖 = 0.

Replacing 𝑣𝑖,𝑥 = 𝑉𝑛,𝑦 due to the definition of the nonlocal variables (see (1.2)) we find that the
expression

∑︀𝑚
𝑖=0 (𝑢𝑖 + 𝑉𝑖) is independent of 𝑦,

𝜕

𝜕𝑦

𝑚∑︁
𝑖=0

(𝑢𝑖 + 𝑉𝑖) = 0.

Therefore, if we require that the relation

𝑚∑︁
𝑖=0

𝑉𝑖 = −
𝑚∑︁
𝑖=0

𝑢𝑖 (3.2)

is satisfied for some fixed value 𝑦 = 𝑦0 then it would hold for all 𝑦. Due to the Bäcklund
transformation (1.3) we have the first order linear discrete equation

𝑉𝑛+1 = 𝑉𝑛 + ℎ𝑛, ℎ𝑛 = (ln𝑢𝑛)𝑥.

The equation is easily solved

𝑉𝑗 = 𝑉0 +

𝑗−1∑︁
𝑖=0

ℎ𝑖. (3.3)

By using the explicit solution (3.3) one can derive a useful formula

𝑚∑︁
𝑘=1

𝑉𝑘 = 𝑚𝑉0 +
𝑚∑︁
𝑗=1

𝑗−1∑︁
𝑖=0

ℎ𝑖. (3.4)
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Now we rewrite (3.2) in the following form

𝑚∑︁
𝑘=1

𝑉𝑘 = −𝑉0 −
𝑚∑︁
𝑖=0

𝑢𝑖. (3.5)

Comparison of (3.4) and (3.5) leads to an explicit expressions for all of the variables 𝑉𝑗, 𝑗 = 0,𝑚,
in terms of the dynamical variables 𝑢0, . . . , 𝑢𝑚 and their first order derivatives with respect
to 𝑥

𝑉0 = − 1

𝑚+ 1

(︃
𝑚∑︁
𝑗=1

𝑗−1∑︁
𝑖=0

ℎ𝑖 +
𝑚∑︁
𝑖=0

𝑢𝑖

)︃
,

𝑉𝑗 = − 1

𝑚+ 1

(︃
𝑚∑︁
𝑗=1

𝑗−1∑︁
𝑖=0

ℎ𝑖 +
𝑚∑︁
𝑖=0

𝑢𝑖

)︃
+

𝑗−1∑︁
𝑖=0

ℎ𝑖, 𝑗 = 0,𝑚.

(3.6)

As a result we determine a usual second order symmetry (without nonlocalities) of the
hyperbolic system (3.1)

𝑢𝑛,𝑡 = 𝑢𝑛,𝑥𝑥 +
(︀
𝑢2
𝑛 + 2𝑢𝑛𝑉𝑛

)︀
𝑥

for 𝑛 = 0,𝑚,

𝑣𝑛,𝑡 = −𝑣𝑛,𝑥𝑥 +
(︀
𝑉 2
𝑛

)︀
𝑦
+ (2𝑢𝑛𝑣𝑛)𝑥,

(3.7)

where the functions 𝑉𝑗 = 𝐹𝑗([𝑢]) are found due to (3.6). In a similar way one can study
the nonlocality 𝑈𝑛 of the coupled system (2.1) corresponding to the Volterra lattice. The
explicit expressions for the variables 𝑈0, 𝑈1, . . . , 𝑈𝑚 are easily derived from (3.6) due to the
involutions (2.2).

Example 1. For 𝑚 = 0 formula (3.6) takes the form 𝑉0 = −𝑢0 (see (4.4) below). It is
considered in Section 4, where explicit solution for the coupled system is constructed.

Example 2. If 𝑚 = 1 the nonlocalities are given by

𝑉0 = −1

2
(ℎ0 + 𝑢0 + 𝑢1) , ℎ0 = (ln𝑢0)𝑥,

𝑉1 = −1

2
(ℎ0 + 𝑢0 + 𝑢1) + ℎ0.

The corresponding symmetry takes the form

𝑢0,𝑡 = −𝑢0,𝑥𝑢1 − 𝑢0𝑢1,𝑥,

𝑣0,𝑡 = −𝑢0𝑣0𝑢1,

𝑢1,𝑡 = 𝑢1,𝑥𝑥 +
𝑢1

𝑢0

𝑢0,𝑥𝑥 +
(𝑢0,𝑥 − 𝑢2

0)𝑢1,𝑥

𝑢0

− (𝑢0,𝑥 + 𝑢2
0)𝑢1𝑢0,𝑥

𝑢2
0

,

𝑣1,𝑡 =
𝑢1𝑣1𝑢0,𝑥

𝑢0

+ 𝑢1,𝑥𝑣1.

(3.8)

It is easily verified that (3.8) is really a symmetry to the reduced system:

𝑢0,𝑦 = 𝑢0(𝑣1 − 𝑣0), 𝑣0,𝑥 = 𝑣0𝑢0,

𝑢1,𝑦 = −𝑢1𝑣1, 𝑣1,𝑥 = 𝑣1(𝑢1 − 𝑢0).

Recall that the system (3.1) is integrable in sense of Darboux, i.e. it admits a complete set of
characteristic integrals, see [11]. It is known that the symmetries of Darboux integrable systems
are linearized (see, for instance, [10]). Therefore (3.7) is linearized by an appropriately chosen
differential substitution.
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4. Construction of exact solutions to coupled systems
via integrable reductions of dressing chains

Now we discuss how the dressing chain can be used to construct explicit solutions to the
coupled systems. As an illustrative example we take the system

𝑢𝑡 = 𝑢𝑥𝑥 +
(︀
𝑢2 + 2𝑢𝑉

)︀
𝑥
,

𝑣𝑡 = −𝑣𝑥𝑥 +
(︀
𝑉 2
)︀
𝑦
+ (2𝑢𝑣)𝑥, 𝑉𝑦 = 𝑣𝑥,

(4.1)

corresponding to the Volterra lattice (here 𝑢 := 𝑢𝑛 and 𝑣 := 𝑣𝑛)

𝑢𝑛,𝑦 = 𝑢𝑛(𝑣𝑛+1 − 𝑣𝑛), 𝑣𝑛,𝑥 = 𝑣𝑛(𝑢𝑛 − 𝑢𝑛−1).

Let us consider its reduction
𝑢𝑦 = −𝑢𝑣, 𝑣𝑥 = 𝑢𝑣 (4.2)

obtained due to cutting–off constraint 𝑢−𝑘 = 0, 𝑣𝑘 = 0, 𝑘 = 1, 2, 3, . . .. Here the sought functions
are 𝑢 := 𝑢0 and 𝑣 := 𝑣0. The functions

𝐼 =
𝑢𝑥

𝑢
− 𝑢 and 𝐽 =

𝑣𝑦
𝑣

+ 𝑣

are characteristic integrals of the system. Indeed, it is checked straightforwardly that the
necessary conditions 𝐷𝑦𝐼 = 0 and 𝐷𝑥𝐽 = 0 for the integrals definitely hold. Therefore we
have a system of differential equations (Bernoulli equations)

𝑢𝑥

𝑢
− 𝑢 = 𝑓1(𝑥),

𝑣𝑦
𝑣

+ 𝑣 = 𝑓2(𝑦)

for searching solution to the system (4.2), where 𝑓1 and 𝑓2 are arbitrary functions.
It is easy to verify that general solution of the system can be parametrized in the following

form

𝑢(𝑥, 𝑦) = −𝑊𝑥

𝑊
=

𝜌′(𝑥)

𝜙(𝑦)− 𝜌(𝑥)
, 𝑣(𝑥, 𝑦) =

𝑊𝑦

𝑊
=

−𝜙′(𝑦)

𝜙(𝑦)− 𝜌(𝑥)
, (4.3)

where 𝑊 = 𝜙(𝑦)− 𝜌(𝑥) and 𝑊𝑥, 𝑊𝑦 denote the derivatives of 𝑊 with respect to 𝑥 and 𝑦. Here
the functions 𝜙(𝑦), 𝜌(𝑥) are chosen arbitrarily. Note that 𝑊𝑥𝑦 = 0.
Now we assume that functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) depend on one more independent variable 𝑡

due to the system (4.1). In other words we have 𝜙 = 𝜙(𝑦, 𝑡) and 𝜌 = 𝜌(𝑥, 𝑡). Then by integrating
equation 𝑉𝑦 = 𝑣𝑥 we derive an explicit expression for the nonlocality

𝑉 = −
∫︁

𝜙𝑦𝜌𝑥𝑑𝑦

𝑊 2
=

𝜌𝑥
𝑊

+𝑅(𝑥, 𝑡) = −𝑢+𝑅(𝑥, 𝑡).

Let us set 𝑅(𝑥, 𝑡) = 0 for simplicity. Then we get (see also Example 1)

𝑉 = −𝑢. (4.4)

Afterward the coupled system (1.2) turns into

𝑢𝑡 = 𝑢𝑥𝑥 − 2𝑢𝑢𝑥, 𝑣𝑡 = −𝑣𝑥𝑥 + 2𝑢𝑢𝑦 + 2(𝑢𝑣)𝑥. (4.5)

Using the substitution (4.3), we reduce the system (4.5) to an overdetermined system of
equations with a single sought function 𝑊 . To apply the substitution (4.3), we have to use
the explicit representations of the derivatives of 𝑢 and 𝑣:

𝑢𝑦 = −𝑣𝑥 =
𝑊𝑥𝑊𝑦

𝑊 2
, 𝑢𝑥 = −𝑊𝑥𝑥

𝑊
+

𝑊𝑥𝑊𝑦

𝑊 2
,

𝑢𝑡 = −𝑊𝑥𝑡

𝑊
+

𝑊𝑥𝑊𝑡

𝑊 2
, 𝑣𝑡 =

𝑊𝑦𝑡

𝑊
− 𝑊𝑦𝑊𝑡

𝑊 2
,

𝑣𝑥𝑥 = −𝑊𝑥𝑥𝑊𝑦

𝑊 2
+ 2

𝑊 2
𝑥𝑊𝑦

𝑊 3
, 𝑢𝑥𝑥 = −𝑊𝑥𝑥𝑥

𝑊
+ 3

𝑊𝑥𝑊𝑥𝑥

𝑊 2
− 2

𝑊 3
𝑥

𝑊 3
.
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The formulas above allow us to bring the system (4.5) to the following form

𝑊𝑊𝑡𝑦 = 𝑊𝑦𝑊𝑡 −𝑊𝑥𝑥𝑊𝑦,

𝑊𝑊𝑡𝑥 = 𝑊𝑊𝑥𝑥𝑥 +𝑊𝑥𝑊𝑡 −𝑊𝑥𝑊𝑥𝑥.
(4.6)

The next step is to solve it explicitly. Let us start with the second equation in (4.6). First, we
represent the equation as

𝑊𝑊𝑥𝑡 −𝑊𝑥𝑊𝑡

𝑊 2
=

𝑊𝑊𝑥𝑥𝑥 −𝑊𝑥𝑊𝑥𝑥

𝑊 2
.

Then integrating the latter we get

𝑊𝑡

𝑊
=

𝑊𝑥𝑥

𝑊
+ 𝑔(𝑡, 𝑦).

Now we simplify the first equation in (4.6) due to the relation

𝑊𝑡 = 𝑊𝑥𝑥 + 𝑔(𝑡, 𝑦)𝑊 (4.7)

and obtain an equation of the form

𝑊𝑦𝑡 = 𝑔(𝑡, 𝑦)𝑊𝑦. (4.8)

If we apply the operator 𝐷𝑦 of the total differentiation with respect to 𝑦 to both sides of (4.7)
and then simplify it in virtue of the equation 𝑊𝑥𝑥𝑦 = 0, we arrive at the relation

𝑊𝑦𝑡 = 𝑔(𝑡, 𝑦)𝑊𝑦 + 𝑔𝑦(𝑡, 𝑦)𝑊. (4.9)

Comparing relations (4.8) and (4.9), we arrive at 𝑔𝑦(𝑡, 𝑦) = 0 or, the same,

𝑔(𝑡, 𝑦) = 𝑔(𝑡).

Analyzing the above reasoning, we conclude that the desired function 𝑊 = 𝑊 (𝑥, 𝑦, 𝑡) is a
solution to the system

𝑊𝑥𝑦 = 0,

𝑊𝑡 = 𝑊𝑥𝑥 + 𝑔(𝑡)𝑊,

𝑊𝑡𝑦 = 𝑔(𝑡)𝑊𝑦.

(4.10)

Obviously the third equation of the system is easily integrated, since it is of the form

𝜕

𝜕𝑡
ln𝑊𝑦 = 𝑔(𝑡).

Hence it implies
ln𝑊𝑦 = ln𝐺(𝑡) + ln𝐹1(𝑦),

where

ln𝐺(𝑡) =

𝑡∫︁
0

𝑔(𝜏)𝑑𝜏

and the constant of integration ln𝐹1(𝑦) does not depend on 𝑥 due to the first equation in (4.10).
Then we integrate the obtained equation 𝑊𝑦 = 𝐺(𝑡)𝐹1(𝑦) with respect to 𝑦. It is convenient to
present the result in the form

𝑊 = 𝐺(𝑡)(𝐹 (𝑦) + 𝑆(𝑥, 𝑡)), (4.11)

where

𝐹 (𝑦) =

𝑦∫︁
0

𝐹1(𝑧)𝑑𝑧.

Now we substitute (4.11) into the second equation in (4.10). After a slight simplification we
obtain the heat equation for 𝑆(𝑥, 𝑡)

𝑆𝑡 = 𝑆𝑥𝑥. (4.12)



132 I.T. HABIBULLIN, A.R. KHAKIMOVA

Therefore general solution to the system (4.10) is given by (4.11) with arbitrary 𝐺(𝑡) and 𝐹 (𝑦)
and with an arbitrary solution 𝑆(𝑥, 𝑡) to (4.12). This leads us to the following theorem.

Theorem 4.1. Assume that 𝑆(𝑥, 𝑡) is a solution to Equation (4.12) and 𝐹 (𝑦) is an arbitrary

smooth function, then the functions defined by the rule

𝑢(𝑥, 𝑦, 𝑡) = − 𝜕

𝜕𝑥
ln(𝑆(𝑥, 𝑡) + 𝐹 (𝑦)),

𝑣(𝑥, 𝑦, 𝑡) =
𝜕

𝜕𝑦
ln(𝑆(𝑥, 𝑡) + 𝐹 (𝑦)),

𝑉 (𝑥, 𝑦, 𝑡) =
𝜕

𝜕𝑥
ln(𝑆(𝑥, 𝑡) + 𝐹 (𝑦))

(4.13)

give a solution to the coupled system (1.2).

Theorem 4.1 can be easily verified by a simple substitution.
As it is known, the solution of the heat equation (4.12) is given in a closed form by the

Poisson formula

𝑆(𝑥, 𝑡) =
1

2
√
𝜋𝑡

∫︁
𝑅

𝑆0(𝜉)𝑒
− (𝑥−𝜉)2

4𝑡 𝑑𝜉,

where 𝑆|𝑡=0 = 𝑆0(𝑥) is a bounded continuous function. Therefore solution (4.13) of coupled
system (1.2) depends on two arbitrary functions 𝑆0(𝑥) and 𝐹 (𝑦).

5. Second example

Taking a linear combination of two symmetries, we find a coupled system which depends
symmetrically on 𝑥 and 𝑦 (see (2.3) above)

𝑢𝑛,𝑠 = 𝜆𝑢𝑛,𝑥𝑥 + 𝜇𝑢𝑛,𝑦𝑦 + 𝜆
(︀
𝑢2
𝑛 + 2𝑢𝑛𝑉𝑛

)︀
𝑥
+ 𝜇

(︀
𝑈2
𝑛

)︀
𝑥
+ 𝜇(2𝑢𝑛𝑣𝑛)𝑦,

𝑉𝑛,𝑦 = 𝑣𝑛,𝑥, 𝜆 ̸= 0,

𝑣𝑛,𝑠 = −𝜆𝑣𝑛,𝑥𝑥 − 𝜇𝑣𝑛,𝑦𝑦 + 𝜆
(︀
𝑉 2
𝑛

)︀
𝑦
+ 𝜆(2𝑢𝑛𝑣𝑛)𝑥 + 𝜇

(︀
𝑣2𝑛 + 2𝑣𝑛𝑈𝑛

)︀
𝑦
,

𝑈𝑛,𝑥 = 𝑢𝑛,𝑦, 𝜇 ̸= 0.

(5.1)

The boundary conditions 𝑢−𝑘 = 0 and 𝑣𝑘 = 0, 𝑘 = 1, 2, 3, . . . imposed on the Volterra chain are
compatible with all symmetries. Therefore, to construct solutions of the system (2.3), one can
use the same ansatz

𝑢(𝑥, 𝑦) = −𝑊𝑥

𝑊
, 𝑣(𝑥, 𝑦) =

𝑊𝑦

𝑊

as in the previous example. Here 𝑊 = 𝜙(𝑦) − 𝜌(𝑥) with arbitrary functions 𝜙(𝑦), 𝜌(𝑥) and
𝑊𝑥, 𝑊𝑦 denote the derivatives of 𝑊 with respect to 𝑥 and 𝑦. We choose the nonlocalities as
𝑉 = −𝑢 and 𝑈 = −𝑣.
As a result, we arrive at the following system of equations:

𝑊𝑠𝑥−𝜆𝑊𝑥𝑥𝑥 − 𝜇𝑊𝑥𝑦𝑦 −
𝑊𝑥𝑊𝑠

𝑊
+ 𝜆

𝑊𝑥𝑥𝑊𝑥

𝑊
+ 2𝜇

𝑊𝑥𝑦𝑊𝑦

𝑊
− 𝜇

𝑊𝑥𝑊𝑦𝑦

𝑊
= 0,

𝑊𝑠𝑦+𝜆𝑊𝑥𝑥𝑦 + 𝜇𝑊𝑦𝑦𝑦 −
𝑊𝑦𝑊𝑠

𝑊
− 𝜇

𝑊𝑦𝑦𝑊𝑦

𝑊
− 2𝜆

𝑊𝑥𝑦𝑊𝑥

𝑊
+ 𝜆

𝑊𝑦𝑊𝑥𝑥

𝑊
= 0.

We integrate the first equation with respect to 𝑥 and the second one integrate with respect
to 𝑦. Finally we get the single equation

𝑊𝑠 − 𝜆𝑊𝑥𝑥 + 𝜇𝑊𝑦𝑦 − 𝑔(𝑠)𝑊 = 0.
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It is simplified by the linear transformation𝑊 = ℎ(𝑠)𝐻, where ℎ(𝑠) is a solution to the equation
ℎ′ = 𝑔ℎ. The transformation brings it to the simple equation

𝐻𝑠 = 𝜆𝐻𝑥𝑥 − 𝜇𝐻𝑦𝑦. (5.2)

Theorem 5.1. Assume that 𝐻(𝑥, 𝑦, 𝑠) is an arbitrary solution to Equation (5.2). Then the

functions

𝑢 = − 𝜕

𝜕𝑥
ln(𝐻), 𝑣 =

𝜕

𝜕𝑦
ln(𝐻),

𝑈 =
𝜕

𝜕𝑦
ln(𝐻), 𝑉 = − 𝜕

𝜕𝑥
ln(𝐻)

(5.3)

define a solution to the coupled system (5.1).

Recall that the solution of the heat equation (5.2) with 𝜆 = −𝜇 = 1 is given in a closed form
by the Poisson formula

𝐻(𝑥, 𝑦, 𝑠) =
1

4𝜋𝑠

∞∫︁
−∞

∞∫︁
−∞

𝐻0(𝜉, 𝜂)𝑒
− (𝑥−𝜉)2+(𝑦−𝜂)2

4𝑠 𝑑𝜉𝑑𝜂,

where 𝐻|𝑠=0 = 𝐻0(𝑥, 𝑦) is an arbitrary continuous and bounded function. Therefore, the
formulas (5.3) define a solution to the coupled system (5.1) depending on an arbitrary function
of two variables 𝐻0(𝑥, 𝑦).

6. Construction of a particular solution of lattice (1.8)

In this section we construct a particular solution of the lattice (2.4), subject to the following
additional constraints

𝑢 := 𝑢0, for 𝑛 ⩾ 1, 𝑢𝑛 = (−1)𝑛+1𝑖, for 𝑛 ⩽ −1, 𝑢𝑛 = (−1)𝑛𝑖. (6.1)

Then the lattice (2.4) takes the form

𝑢𝑥𝑦 =
2𝑢𝑢𝑥𝑢𝑦

𝑢2 + 1
.

Next, we use the integrals of lattice (2.4) found in [11], which for the choice of 𝑢𝑛 by virtue of
(6.1) read as

𝐽 =
𝑢𝑥

𝑢2 + 1
, 𝐼 =

𝑢𝑦

𝑢2 + 1
.

Recall that a function 𝐽(𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . .) is called a 𝑦–integral if the condition

𝐷𝑦𝐽(𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . .) = 0

is satisfied. The 𝑥–integral is defined similarly.
From the condition 𝐷𝑦𝐽(𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . .) = 0 we find

𝐽(𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . .) = 𝑓(𝑥)

or in our case we have
𝑢𝑥

𝑢2 + 1
= 𝑓(𝑥).

Integrating the last expression, we obtain

𝑢 = tan(𝐹 (𝑥) +𝐺(𝑦)),

where 𝐹 ′(𝑥) = 𝑓(𝑥). Thus, 𝐹 (𝑥) and 𝐺(𝑦) are arbitrary functions.
Let us rewrite the found solution in general form

𝑢 = tan𝑊 (𝑥, 𝑦), (6.2)

where 𝑊 (𝑥, 𝑦) = 𝐹 (𝑥) +𝐺(𝑦).
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Now we substitute (6.2) into the symmetry (2.7)

𝑢𝑛,𝑥2 = 𝑢𝑛,𝑥1𝑥1 − 2𝑢𝑛𝑢𝑛,𝑥1 + 𝑢2
𝑛 + 1− 2(𝑢2

𝑛 − 𝑢𝑛,𝑥1 + 1)𝐻𝑛

of Equation (2.4). First, we simplify this symmetry due to the restrictions (6.1), namely, we
find out what the value of nonlocality 𝐻. We let 𝑥 := 𝑥1, 𝑡 := 𝑥2, 𝑦 := 𝑦1, 𝐻 := 𝐻0:

𝑢𝑡 = 𝑢𝑥𝑥 − 2𝑢𝑢𝑥 + 𝑢2 + 1− 2(𝑢2 − 𝑢𝑥 + 1)𝐻, (6.3)

𝐷𝑦𝐻 = −𝐷𝑥

(︂
𝑢𝑦 + 𝑖𝑢− 1

𝑢+ 𝑖

)︂
.

We integrate the last equality with respect to 𝑦 and find

𝐻 = − 𝑢𝑥

𝑢+ 𝑖
− 𝜙(𝑥),

where 𝜙(𝑥) is an arbitrary function. Here we restrict ourselves to considering the case 𝜙(𝑥) = 0.
Due to this condition the symmetry (6.3) can be written as

𝑢𝑡 = 𝑢𝑥𝑥 −
2𝑢2

𝑥

𝑢+ 𝑖
− 2𝑖𝑢𝑥 + 𝑢2 + 1. (6.4)

Let us substitute 𝑢 = tan𝑊 (𝑥, 𝑦, 𝑡) into (6.4) and find

𝑊𝑡 = 𝑊𝑥𝑥 + 𝑖
(︀
2𝑊 2

𝑥 − 2𝑊𝑥 − 𝑖
)︀
.

We differentiate this equation with respect to 𝑥

𝑊𝑡,𝑥 = 𝑊𝑥𝑥𝑥 + 𝑖 (4𝑊𝑥𝑊𝑥𝑥 − 2𝑊𝑥𝑥)

and make the substitution

𝑊𝑥 =
1

2

(︁
−𝑖�̃� + 1

)︁
.

Then the equation reduces to the Burgers equation

�̃�𝑡 = �̃�𝑥𝑥 + 2�̃��̃�𝑥.

As it is known, the Burgers equation is reduced to the heat equation

�̄�𝑡 = �̄�𝑥𝑥

by means of the Cole — Hopf substitution

�̃� = −�̄�𝑥

�̄�
.

Therefore, the sought particular solution can be written as

𝑢 = tan(𝑊 ) = tan

(︂
𝐷−1

𝑥

(︂
1

2

(︁
−𝑖�̃� + 1

)︁)︂)︂
= tan

(︂
𝐷−1

𝑥

(︂
1

2

(︂
𝑖
�̄�𝑥

�̄�
+ 1

)︂)︂)︂
= tan

(︂
𝑖

2
ln(�̄� (𝑥, 𝑦, 𝑡)) +

𝑥

2
+ 𝐶(𝑦, 𝑡)

)︂
,

where �̄� (𝑥, 𝑦, 𝑡) is a solution of the heat equation.
Let us determine the dependence of function �̄� (𝑥, 𝑦, 𝑡) on the variable 𝑦. To do this, we

substitute the found solution into the 𝑥–integral
𝑢𝑦

𝑢2 + 1
= 𝑔(𝑦, 𝑡),

where 𝑔(𝑦, 𝑡) is an arbitrary function. After simplification we obtain

�̄� (𝑥, 𝑦, 𝑡) = 𝐹 (𝑥, 𝑡)�̄�(𝑦, 𝑡),
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where 𝐹 (𝑥, 𝑡) is arbitrary as well,

�̄�(𝑦, 𝑡) = 𝑒2𝑖𝐶(𝑦,𝑡)−2𝑖
∫︀
𝑔(𝑦,𝑡)𝑑𝑦.

Finally, the particular solution of the lattice (2.4) becomes

𝑢 = tan

(︂
𝑖

2
ln(𝐹 (𝑥, 𝑡)�̄�(𝑦, 𝑡)) +

𝑥

2
+ 𝐶(𝑦, 𝑡)

)︂
.

Returning to the corresponding coupled system (2.7), we see that its solution is given by

𝑢 = tan

(︂
𝑖

2
ln(𝐹 (𝑥, 𝑡)�̄�(𝑦, 𝑡)) +

𝑥

2
+ 𝐶(𝑦, 𝑡)

)︂
,

𝑣 = −𝑖.

Conclusion

The problem of constructing explicit solutions for multidimensional integrable models was
studied by many authors like Shabat, Zakharov, Novikov, Krichever, Manakov, Grinevich,
Santini, Fokas, Taimanov, Konopelcnenko, Bogdanov, Ferapontov, Pavlov, Dryuma and others.
A great variety of tools were suggested, see, for instance, [14]–[20].
Here we discuss the dressing chains method that provides an effective tool for constructing

explicit solutions for integrable nonlinear PDE in the dimension 1+1 (see, for instance, [12], [13]
and references therein). However, in 3D some difficulties arise due to the nonlocal variables (see
[1]). Examples considered in the article convince that to overcome these difficulties one can use
finite reductions of the dressing chains obtained by imposing cutting off constraints preserving
integrability. Besides the degenerate boundary conditions related to reductions integrable in
the sense of Darboux, one can use also more general boundary conditions compatible with the
integrability property of the lattices (see [9]).
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