
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 16. No 4 (2024). P. 1-11.

doi:10.13108/2024-16-4-1

ON ZAREMBA PROBLEM FOR SECOND–ORDER

LINEAR ELLIPTIC EQUATION WITH DRIFT

IN CASE OF LIMIT EXPONENT

M.D. ALIYEV, Yu.A. ALKHUTOV, G.A. CHECHKIN

Abstract. We establish the unique solvability of the Zaremba problem with the homo-
geneous Dirichlet and Neumann boundary conditions for an inhomogeneous linear second
order second order equation in the divergence form with measurable coefficients and lower
order terms. The problem is considered in a bounded strictly Lipschitz domain. We sup-
pose that the domain is contained in an 𝑛–dimensional Euclidean space, where 𝑛 ⩾ 2. If
𝑛 > 2, then the lower coefficient belong to the Lebesgue space with the limiting summability
exponent from the Sobolev embedding theorem. If 𝑛 = 2, then the lower coefficients are
summable at each power exceeding two. Apart of the unique solvability, we establish an
energy estimate for the solution.
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1. Introduction

In the paper we study the unique solvability of the Zaremba problem for an elliptic operator
with lower terms defined in a bounded strictly Lipschitz domain 𝐷 ∈ R𝑛, where 𝑛 > 1, of the
form

ℒ𝑢 := div(𝑎∇𝑢) + 𝑏 · ∇𝑢. (1.1)

Here 𝑎(𝑥) = {𝑎𝑖𝑗(𝑥)} is a uniformly elliptic real–valued measurable and symmetric matrix, that
is, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 and

𝛼|𝜉|2 ⩽
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 ⩽ 𝛼−1|𝜉|2 (1.2)

for almost each 𝑥 ∈ 𝐷 and for all 𝜉 ∈ R𝑛. The real–valued vector function

𝑏(𝑥) = (𝑏1(𝑥), . . . , 𝑏𝑛(𝑥))

in (1.1) obeys the condition

𝑏𝑗 ∈ 𝐿𝑝(𝐷), 𝑝 = 𝑛 if 𝑛 > 2, 𝑗 = 1, . . . 𝑛, (1.3)

𝑏𝑗 ∈ 𝐿𝑝(𝐷), 𝑝 > 2 if 𝑛 = 2, 𝑗 = 1, 2. (1.4)
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Before we pose the Zaremba problem, we introduce the Sobolev space of the functions
𝑊 1

2 (𝐷,𝐹 ), where 𝐹 ⊂ 𝜕𝐷 is a closed, as a completion of infinitely differentiable in the closure
of 𝐷 functions, which vanish in the vicinity of 𝐹 , by the norm

‖𝑣‖𝑊 1
2 (𝐷,𝐹 ) =

(︂ ∫︁
𝐷

𝑣2 𝑑𝑥+

∫︁
𝐷

|∇𝑣|2 𝑑𝑥
)︂1/2

.

For the functions 𝑣 ∈ 𝑊 1
2 (𝐷,𝐹 ) we apriori require the Friedrichs inequality∫︁

𝐷

𝑣2 𝑑𝑥 ⩽ 𝐶

∫︁
𝐷

|∇𝑣|2 𝑑𝑥. (1.5)

To formulate the result, we shall need a more detailed clarification for the notion of strictly
Lipshitz domain 𝐷. In order to do this, we denote by 𝑄 a cube centered at a point 𝑥0 ∈ 𝜕𝐷.
We introduce a Cartesian coordinate system with the origin at 𝑥0, in which the edges of the
cube are parallel to the coordinate systems and their length is equal 2𝑅0. We say that the
domain 𝐷 is strictly Lipshitz if for each point 𝑥0 ∈ 𝜕𝐷 the set 𝑄∩ 𝜕𝐷 is a graph of a Lipshitz
function 𝑥𝑛 = 𝑔(𝑥′), where 𝑥′ = (𝑥1, . . . , 𝑥𝑛−1), with a Lipshitz constant 𝐿. We suppose that
the length of edge of cube 𝑄 and the Lipshitz constant 𝐿 are independent of 𝑥0.
Let us provide a necessary and sufficient condition for the set 𝐹 ⊂ 𝜕𝐷, which ensures the

inequality (1.5). This requires the notion of capacity.
We denote by 𝒬𝑑 an open cube with the edge of length 𝑑 and sides parallel to the coordinate

axes assuming the Lipshitz domain 𝐷 has a diameter 𝑑 and 𝐷 ⊂ 𝒬𝑑. We introduce the notion
of capacity 𝐶2(𝐾,𝒬2𝑑) of a compact set 𝐾 ⊂ 𝒬𝑑 with respect to the cube 𝒬2𝑑 by the identity

𝐶2(𝐾,𝒬2𝑑) = inf

{︂ ∫︁
𝒬2𝑑

|∇𝜙|2 𝑑𝑥 : 𝜙 ∈ 𝐶∞
0 (𝒬2𝑑), 𝜙 ⩾ 1 on 𝐾

}︂
.

It follows from the results by Mazya [1, Sect. 14.1.2] and comments to the results of Chapter 14
of monograph [1] that for the inequality (1.5) holds for the functions 𝑣 ∈ 𝑊 1

2 (𝐷,𝐹 ) if and only
if

𝐶2(𝐹,𝒬2𝑑) > 0. (1.6)

Letting 𝐺 = 𝜕𝐷 ∖ 𝐹 , we consider the Zaremba problem

ℒ𝑢 = 𝑙 in 𝐷, 𝑢 = 0 on 𝐹,
𝜕𝑢

𝜕𝜈
= 0 on 𝐺, (1.7)

where 𝜕𝑢
𝜕𝜈

denotes the outward conormal derivative of the function 𝑢, and 𝑙 is a linear functional
in the dual space for 𝑊 1

2 (𝐷,𝐹 ).
By a solution to the problem (1.7) we mean a function 𝑢 ∈ 𝑊 1

2 (𝐷,𝐹 ), which satisfies the
integral identity ∫︁

𝐷

𝑎∇𝑢 · ∇𝜙𝑑𝑥−
∫︁
𝐷

𝑏 · ∇𝑢𝜙𝑑𝑥 = −𝑙(𝜙) (1.8)

for all test functions 𝜙 ∈ 𝑊 1
2 (𝐷,𝐹 ).

By the Friedrichs inequality (1.5) the space 𝑊 1
2 (𝐷,𝐹 ) can be equipped with the norm,

which involves only the gradient. Then each element in the Sobolev space can be one–to–one
isometrically associated with its gradient, which is an element in (𝐿2(𝐷))𝑛. Using the Hahn —
Banach theorem, for instance, as in arguing of Section 1.1.15 in the monograph [1] on the form
of the functionals in space dual to the Sobolev space, it is easy to show that the functional 𝑙
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can be written as

𝑙(𝜙) = −
𝑛∑︁

𝑖=1

∫︁
𝐷

𝑓𝑖𝜙𝑥𝑖
𝑑𝑥,

where 𝑓𝑖 ∈ 𝐿2(𝐷). This is why by (1.8) for a given functional a solution to the problem (1.7)
can be treated in the sense of the integral identity∫︁

𝐷

𝑎∇𝑢 · ∇𝜙𝑑𝑥−
∫︁
𝐷

𝑏 · ∇𝑢𝜙𝑑𝑥 =

∫︁
𝐷

𝑓 · ∇𝜙𝑑𝑥

for all test functions 𝜙 ∈ 𝑊 1
2 (𝐷,𝐹 ), in which the components of the vector functions 𝑓 =

(𝑓1, . . . , 𝑓𝑛) are functions from 𝐿2(𝐷). We note that for 𝑛 > 2 by the Sobolev embedding
theorem the exponent 𝑝 = 𝑛 is limiting, see the condition (1.3).
We are in position to formulate the main obtained result.

Theorem 1.1. If the conditions (1.2), (1.3) (or (1.4)) and (1.6) hold, then the Zaremba
problem (1.7) is uniquely solvable in 𝑊 1

2 (𝐷,𝐹 ) and its solution satisfies the estimate

‖∇𝑢‖𝐿2(𝐷) ⩽ 𝐶‖𝑓‖𝐿2(𝐷) (1.9)

with a constant 𝐶, which depends only on the coefficients of the operator ℒ, the domain 𝐷 and
the dimension of the space.

For 𝑛 > 2 we shall employ the representation of the lower coefficients 𝑏 ∈ (𝐿𝑛(𝐷))𝑛 of the
considered equation in the form

𝑏 = �̆�+̂︀𝑏, �̆� ∈ (𝐿∞(𝐷))𝑛, ̂︀𝑏 ∈ (𝐿𝑛(𝐷))𝑛, ‖̂︀𝑏‖𝐿𝑛(𝐷) ⩽ 𝜃. (1.10)

Here 𝜃 ∈ (0, 1) is a sufficiently small constant, which is determined during the arguing.

2. Auxiliary statements

As noted above, the Friedrichs inequality (1.5) holds for functions in the space 𝑊 1
2 (𝐷,𝐹 ),

and this space can be equipped with a norm involving only the gradient. In what follows we
use Sobolev embedding theorems for strictly Lipschitz domains having in mind such a norm. In
addition, the condition (1.6) is assumed to be satisfied, which implies the Friedrichs inequality
(1.5).
We shall need estimates for the bilinear form defined on the functions 𝑢, 𝑣 ∈ 𝑊 1

2 (𝐷,𝐹 )
associated with the operator ℒ, which reads as

ℓ(𝑢, 𝑣) =

∫︁
𝐷

𝑎∇𝑢 · ∇𝑣 𝑑𝑥−
∫︁
𝐷

(𝑏 · ∇𝑢)𝑣 𝑑𝑥. (2.1)

Lemma 2.1. If the coefficients of the operator ℒ in (1.1) satisfies the conditions (1.2), (1.3)
(or (1.4)), then

ℓ(𝑢, 𝑢) ⩾
𝛼

2

∫︁
𝐷

|∇𝑢|2 𝑑𝑥− 𝐶(𝛼, 𝑏, 𝑛, 𝑝,𝐷)

∫︁
𝐷

𝑢2 𝑑𝑥, (2.2)

where 𝐶(𝛼, 𝑏, 𝑛, 𝑝,𝐷) is a positive constant depending on 𝛼, 𝑏, 𝑛, 𝑝 and 𝐷.

Proof. By the condition (1.2) we have

ℓ(𝑢, 𝑢) ⩾ 𝛼

∫︁
𝐷

|∇𝑢|2 𝑑𝑥−
⃒⃒⃒⃒∫︁
𝐷

(𝑏 · ∇𝑢)𝑢 𝑑𝑥

⃒⃒⃒⃒
. (2.3)
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We first suppose that 𝑛 > 2 and estimate the second term in the right hand side of the
identity (2.1). By (1.10) we have∫︁

𝐷

(𝑏 · ∇𝑢)𝑢 𝑑𝑥 =

∫︁
𝐷

(�̆� · ∇𝑢)𝑢 𝑑𝑥+

∫︁
𝐷

(̂︀𝑏 · ∇𝑢)𝑢 𝑑𝑥. (2.4)

For the first integral in the right hand side of (2.4) we obtain⃒⃒⃒⃒ ∫︁
𝐷

(�̆� · ∇𝑢)𝑢 𝑑𝑥

⃒⃒⃒⃒
⩽ 𝐶(𝑛)‖�̆�‖𝐿∞(𝐷)

∫︁
𝐷

|∇𝑢| |𝑢| 𝑑𝑥

and by the Cauchy inequality with 𝜀 > 0 we find⃒⃒⃒⃒ ∫︁
𝐷

(�̆� · ∇𝑢)𝑢 𝑑𝑥

⃒⃒⃒⃒
⩽ 𝜀

∫︁
𝐷

|∇𝑢|2 𝑑𝑥+ 𝐶(𝜀, 𝑛)‖�̆�‖2𝐿∞(𝐷)

∫︁
𝐷

𝑢2 𝑑𝑥. (2.5)

We estimate the second integral in the right hand side of (2.4) by means of the Hölder
inequality ⃒⃒⃒⃒ ∫︁

𝐷

(̂︀𝑏 · ∇𝑢)𝑢 𝑑𝑥

⃒⃒⃒⃒
⩽ ‖̂︀𝑏‖𝐿𝑛(𝐷)

(︂ ∫︁
𝐷

|∇𝑢|2 𝑑𝑥
)︂1/2(︂ ∫︁

𝐷

|𝑢|
2𝑛
𝑛−2 𝑑𝑥

)︂𝑛−2
2𝑛

. (2.6)

By the Sobolev inequality we have(︂ ∫︁
𝐷

|𝑢|
2𝑛
𝑛−2 𝑑𝑥

)︂𝑛−2
2𝑛

⩽ 𝐶(𝑛,𝐷)

(︂ ∫︁
𝐷

|∇𝑢|2 𝑑𝑥
)︂1/2

.

By (2.6) and (1.10) this implies⃒⃒⃒⃒ ∫︁
𝐷

(̂︀𝑏 · ∇𝑢)𝑢 𝑑𝑥

⃒⃒⃒⃒
⩽ 𝐶(𝑛,𝐷)𝜃

∫︁
𝐷

|∇𝑢|2 𝑑𝑥. (2.7)

By (2.5) and (2.7) we find⃒⃒⃒⃒ ∫︁
𝐷

(𝑏 · ∇𝑢)𝑢 𝑑𝑥

⃒⃒⃒⃒
⩽ 𝜀

∫︁
𝐷

|∇𝑢|2 𝑑𝑥+ 𝐶(𝜀, 𝑛)‖�̆�‖2𝐿∞(𝐷)

∫︁
𝐷

𝑢2 𝑑𝑥+ 𝐶(𝑛,𝐷)𝜃

∫︁
𝐷

|∇𝑢|2 𝑑𝑥.

Choosing appropriate 𝜀 and 𝜃 from (2.3), we arrive at the estimate (2.2).
We are going to verify the inequality (2.2) for 𝑛 = 2. In this case we also employ the Hölder

inequality with another exponent(︂ ∫︁
𝐷

|𝑏|2𝑢2 𝑑𝑥

)︂1/2

⩽

(︂ ∫︁
𝐷

|𝑏|𝑝 𝑑𝑥
)︂1/𝑝(︂ ∫︁

𝐷

|𝑢|𝑝 𝑑𝑥
)︂1/𝑝

.

Here 𝑝 = 2𝑝
𝑝−2

, 𝑝 > 2, and it is clear that 𝑝 > 2. As a result for the second term in the right

hand side (2.3) we have⃒⃒⃒⃒∫︁
𝐷

(𝑏 · ∇𝑢)𝑢 𝑑𝑥

⃒⃒⃒⃒
⩽

(︂ ∫︁
𝐷

|∇𝑢|2 𝑑𝑥
)︂1/2(︂ ∫︁

𝐷

|𝑏|𝑝 𝑑𝑥
)︂1/𝑝(︂ ∫︁

𝐷

|𝑢|𝑝 𝑑𝑥
)︂1/𝑝

. (2.8)

According to the identity ∫︁
𝐷

|𝑢|𝑝 𝑑𝑥 =

∫︁
𝐷

|𝑢||𝑢|𝑝−1 𝑑𝑥,
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by the Cauchy — Shwartz inequality∫︁
𝐷

|𝑢|𝑝 𝑑𝑥 ⩽

(︂ ∫︁
𝐷

𝑢2 𝑑𝑥

)︂1/2(︂ ∫︁
𝐷

|𝑢|2(𝑝−1) 𝑑𝑥

)︂1/2

.

Thus, it follows from (2.8) that⃒⃒⃒⃒∫︁
𝐷

(𝑏 · ∇𝑢)𝑢 𝑑𝑥

⃒⃒⃒⃒
⩽

(︂ ∫︁
𝐷

|𝑏|𝑝 𝑑𝑥
)︂1/𝑝(︂ ∫︁

𝐷

|∇𝑢|2 𝑑𝑥
)︂1/2(︂ ∫︁

𝐷

|𝑢|2(𝑝−1) 𝑑𝑥

)︂ 1
2𝑝
(︂ ∫︁

𝐷

𝑢2 𝑑𝑥

)︂ 1
2𝑝

. (2.9)

Then by the Cauchy inequality(︂∫︁
𝐷

|𝑏|𝑝 𝑑𝑥
)︂1/𝑝(︂ ∫︁

𝐷

|∇𝑢|2 𝑑𝑥
)︂1/2(︂ ∫︁

𝐷

|𝑢|2(𝑝−1) 𝑑𝑥

)︂ 1
2𝑝
(︂ ∫︁

𝐷

𝑢2 𝑑𝑥

)︂ 1
2𝑝

⩽ 𝜀

∫︁
𝐷

|∇𝑢|2 𝑑𝑥+
1

2𝜀

(︂ ∫︁
𝐷

|𝑏|𝑝 𝑑𝑥
)︂2/𝑝(︂ ∫︁

𝐷

|𝑢|2(𝑝−1) 𝑑𝑥

)︂ 1
𝑝
(︂ ∫︁

𝐷

𝑢2 𝑑𝑥

)︂ 1
𝑝

(2.10)

and in view of the Young inequality and the identity 2𝑝
𝑝
= 4

𝑝−2
we find(︂ ∫︁

𝐷

|𝑏|𝑝 𝑑𝑥
)︂2/𝑝(︂ ∫︁

𝐷

|𝑢|2(𝑝−1) 𝑑𝑥

)︂ 1
𝑝
(︂ ∫︁

𝐷

𝑢2 𝑑𝑥

)︂ 1
𝑝

⩽ 𝜀1

(︂ ∫︁
𝐷

|𝑢|2(𝑝−1) 𝑑𝑥

)︂ 1
𝑝−1

+ 𝐶(𝜀1)

(︂ ∫︁
𝐷

|𝑏|𝑝 𝑑𝑥
)︂ 4

𝑝−2
∫︁
𝐷

𝑢2 𝑑𝑥.

By the Sobolev embedding theorem the inequality(︂ ∫︁
𝐷

|𝑢|2(𝑝−1) 𝑑𝑥

)︂ 1
𝑝−1

⩽ 𝐶(𝐷, 𝑝)

∫︁
𝐷

|∇𝑢|2 𝑑𝑥

holds and this is why(︂ ∫︁
𝐷

|𝑏|𝑝 𝑑𝑥
)︂2/𝑝(︂ ∫︁

𝐷

|𝑢|2(𝑝−1) 𝑑𝑥

)︂ 1
𝑝
(︂ ∫︁

𝐷

𝑢2 𝑑𝑥

)︂ 1
𝑝

⩽ 𝜀1𝐶(𝐷, 𝑝)

∫︁
𝐷

|∇𝑢|2 𝑑𝑥+ 𝐶(𝜀1, 𝑏, 𝑝)

∫︁
𝐷

𝑢2 𝑑𝑥.

(2.11)

By (2.9)–(2.11) in view of (2.3) under an appropriate choice of 𝜀1 we again arrive at the
inequality (2.2). The proof is complete.

Lemma 2.2. If the coefficients of the operator ℒ in (1.1) obey the conditions (1.2), (1.3)
(or (1.4)), then for a fixed 𝑢 ∈ 𝑊 1

2 (𝐷,𝐹 ) the mapping 𝑣 ↦→ ℓ(𝑢, 𝑣), where the form ℓ(𝑢, 𝑣) is
defined in (2.1), is a bounded linear functional on 𝑊 1

2 (𝐷,𝐹 ) and the estimate

|ℓ(𝑢, 𝑣)| ⩽ 𝐶(𝛼, 𝑏, 𝑛, 𝑝,𝐷)‖𝑢‖𝑊 1
2 (𝐷,𝐹 )‖𝑣‖𝑊 1

2 (𝐷,𝐹 ) (2.12)

holds.

Proof. Due to the uniform ellipticity condition (1.1)⃒⃒⃒⃒∫︁
𝐷

𝑎∇𝑢 · ∇𝑣 𝑑𝑥

⃒⃒⃒⃒
⩽ 𝛼−1‖𝑢‖𝑊 1

2 (𝐷,𝐹 )‖𝑣‖𝑊 1
2 (𝐷,𝐹 ). (2.13)
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For 𝑛 > 2, in view of the condition (1.3), we estimate the second term in the form (2.1) by
the Hölder inequality⃒⃒⃒⃒∫︁

𝐷

(𝑏 · ∇𝑢)𝑣 𝑑𝑥

⃒⃒⃒⃒
⩽ ‖𝑢‖𝑊 1

2 (𝐷,𝐹 )

(︂ ∫︁
𝐷

|𝑏|2𝑣2 𝑑𝑥
)︂1/2

⩽ ‖𝑢‖𝑊 1
2 (𝐷,𝐹 )

(︂ ∫︁
𝐷

|𝑏|𝑛 𝑑𝑥
)︂1/𝑛(︂ ∫︁

𝐷

|𝑣|
2𝑛
𝑛−2 𝑑𝑥

)︂𝑛−2
2𝑛

.

(2.14)

Using the Sobolev embedding theorem(︂ ∫︁
𝐷

|𝑣|
2𝑛
𝑛−2 𝑑𝑥

)︂𝑛−2
2𝑛

⩽ 𝐶(𝑛,𝐷)‖𝑣‖𝑊 1
2 (𝐷,𝐹 ),

by (2.13), (2.14) we arrive at (2.12).
If 𝑛 = 2, then the second term in the form (2.1) can be also estimated by the Hölder inequality⃒⃒⃒⃒∫︁

𝐷

(𝑏 · ∇𝑢)𝑣 𝑑𝑥

⃒⃒⃒⃒
⩽ ‖𝑢‖𝑊 1

2 (𝐷,𝐹 )

(︂ ∫︁
𝐷

|𝑏|2𝑣2 𝑑𝑥
)︂1/2

⩽ ‖𝑢‖𝑊 1
2 (𝐷,𝐹 )

(︂ ∫︁
𝐷

|𝑏|𝑝 𝑑𝑥
)︂1/𝑝(︂ ∫︁

𝐷

|𝑣|
2𝑝
𝑝−2 𝑑𝑥

)︂ 𝑝−2
2𝑝

,

(2.15)

where 𝑝 > 2. Again by the Sobolev embedding theorem(︂ ∫︁
𝐷

|𝑣|
2𝑝
𝑝−2 𝑑𝑥

)︂ 𝑝−2
2𝑝

⩽ 𝐶(𝑛,𝐷)‖𝑣‖𝑊 1
2 (𝐷,𝐹 )

and in view of (2.13), (2.15) we arrive at (2.12). The proof is complete.

Now we consider the Zaremba problem (1.7) for the homogeneous equation. We are going
to prove the maximum principle for its solutions. The function 𝑢 ∈ 𝑊 1

2 (𝐷,𝐹 ) is called a
subsolution to the Zaremba problem (1.7) for the homogeneous equation in the domain 𝐷 if∫︁

𝐷

𝑎∇𝑢 · ∇𝜙𝑑𝑥−
∫︁
𝐷

(𝑏 · ∇𝑢)𝜙𝑑𝑥 ⩽ 0, (2.16)

where 𝜙 ∈ 𝑊 1
2 (𝐷,𝐹 ) is an arbitrary non–negative function. In the same way we define a

supersolution 𝑢 ∈ 𝑊 1
2 (𝐷,𝐹 ) in the domain 𝐷, which obeys the inequality∫︁

𝐷

𝑎∇𝑢 · ∇𝜙𝑑𝑥−
∫︁
𝐷

(𝑏 · ∇𝑢)𝜙𝑑𝑥 ⩾ 0

for all non–negative functions 𝜙 ∈ 𝑊 1
2 (𝐷,𝐹 ).

The following statement for the Dirichlet problem can be found in [2], see also [3, Thm. 3.1].

Lemma 2.3. If the conditions (1.2), (1.3) (or (1.4)) are satisfied and the function 𝑢 ∈
𝑊 1

2 (𝐷,𝐹 ) is a subsolution in the domain 𝐷, then

ess sup
𝐷

𝑢 ⩽ 0. (2.17)

If 𝑢 ∈ 𝑊 1
2 (𝐷,𝐹 ) is a supersolution in the domain 𝐷, then

ess inf
𝐷

𝑢 ⩾ 0. (2.18)
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Proof. First we are going to prove (2.17). We argue by contradiction. Suppose that

ess sup
𝐷

𝑢 > 0.

Then there exists a number 𝑘 such that

0 < 𝑘 < ess sup
𝐷

𝑢.

We consider a function

𝑣 = max (𝑢− 𝑘, 0) = (𝑢− 𝑘)+,

which belongs to the space 𝑊 1
2 (𝐷,𝐹 ) and is non–negative. By (2.16) we have∫︁
𝐷

𝑎∇𝑣 · ∇𝑣 𝑑𝑥 ⩽
∫︁
𝐷

(𝑏 · ∇𝑣)𝑣 𝑑𝑥.

By the choice of the function 𝑣 this estimate can be rewritten as∫︁
𝐷∩{𝑢>𝑘}

𝑎∇𝑢 · ∇𝑢 𝑑𝑥 ⩽
∫︁

𝐷∩{𝑢>𝑘}

(𝑏 · ∇𝑢)𝑣 𝑑𝑥. (2.19)

We first suppose that 𝑛 > 2. Using the ellipticity condition (1.2) and applying the Hölder
inequality in the right hand side, we get

𝛼

∫︁
𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥 ⩽

(︂ ∫︁
𝐷∩{𝑢>𝑘}

|𝑏|𝑛 𝑑𝑥
)︂1/𝑛(︂ ∫︁

𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥
)︂1/2(︂ ∫︁

𝐷

|𝑣|
2𝑛
𝑛−2 𝑑𝑥

)︂𝑛−2
2𝑛

. (2.20)

Since 𝑣 ∈ 𝑊 1
2 (𝐷,𝐹 ), by the Sobolev embedding theorem(︂ ∫︁

𝐷

|𝑣|
2𝑛
𝑛−2 𝑑𝑥

)︂𝑛−2
2𝑛

⩽ 𝐶(𝑛,𝐷)

(︂ ∫︁
𝐷

|∇𝑣|2 𝑑𝑥
)︂1/2

= 𝐶(𝑛,𝐷)

(︂ ∫︁
𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥
)︂1/2

,

and it follows from (2.20) that

𝛼

∫︁
𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥 ⩽ 𝐶(𝑛,𝐷)

(︂ ∫︁
𝐷∩{𝑢>𝑘}

|𝑏|𝑛 𝑑𝑥
)︂1/𝑛 ∫︁

𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥. (2.21)

If 𝑀 = ess sup
𝐷

𝑢 = ∞, then the first integral in the right hand side of (2.21) tends to zero as

𝑘 → ∞, and this leads us to the contradiction.
If 𝑀 < ∞, then ∇𝑢 = 0 almost everywhere on the set 𝐷∩{𝑢 = 𝑀} and the estimate (2.21)

becomes

𝛼 ⩽ 𝐶(𝑛,𝐷)

(︂ ∫︁
𝑀𝑘

|𝑏|𝑛 𝑑𝑥
)︂1/𝑛

,

where

𝑀𝑘 = {𝑥 ∈ 𝐷 : 𝑘 < 𝑢(𝑥) < 𝑀, ∇𝑢(𝑥) ̸= 0}.
It is clear that the 𝑛–dimensional Lebesgue measure of the set 𝑀𝑘 tends to zero as 𝑘 → 𝑀

and hence (︂ ∫︁
𝑀𝑘

|𝑏|𝑛 𝑑𝑥
)︂1/𝑛

−→ 0 as 𝑘 → 𝑀,

and we again arrive at the contradiction that proves (2.17).
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We consider the remaining case for 𝑛 = 2. In view of (2.19), using the ellipticity condition
and applying the Hölder inequality with other exponents, we arrive at the estimate

𝛼

∫︁
𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥 ⩽

(︂ ∫︁
𝐷∩{𝑢>𝑘}

|𝑏|𝑝 𝑑𝑥
)︂1/𝑝(︂ ∫︁

𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥
)︂1/2(︂ ∫︁

𝐷

|𝑣|
2𝑝
𝑝−2 𝑑𝑥

)︂ 𝑝−2
2𝑝

, (2.22)

where 𝑝 > 2. For 𝑛 = 2 by the Sobolev embedding theorem(︂ ∫︁
𝐷

|𝑣|
2𝑝
𝑝−2 𝑑𝑥

)︂ 𝑝−2
2𝑝

⩽ 𝐶(𝑝,𝐷)

(︂ ∫︁
𝐷

|∇𝑣|2 𝑑𝑥
)︂1/2

= 𝐶(𝑝,𝐷)

(︂ ∫︁
𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥
)︂1/2

and by (2.22) we arrive at the estimate

𝛼

∫︁
𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥 ⩽ 𝐶(𝑝,𝐷)

(︂ ∫︁
𝐷∩{𝑢>𝑘}

|𝑏|𝑝 𝑑𝑥
)︂1/𝑝 ∫︁

𝐷∩{𝑢>𝑘}

|∇𝑢|2 𝑑𝑥. (2.23)

Further arguing based on (2.23) do not differ from the above given ones in the case 𝑛 > 2
and this again implies (2.17).
The estimate (2.18) can be proved in the same way. We just observe that if a function 𝑢 is a

supersolution to the equation, then the same function with the opposite sign is a subsolution.
The proof is complete.

Corollary 2.1. Under the conditions (1.2), (1.3) (or (1.4)) the Zaremba problem (1.7) pos-
sesses the unique solution.

3. Proof of Theorem 1.1

For 𝜎 > 0 we define the operator ℒ𝜎 by the formula ℒ𝜎𝑢 = ℒ𝑢− 𝜎𝑢. The estimate (2.2) of
Lemma 2.1 implies that the form associated with the operator ℒ𝜎

ℓ𝜎(𝑢, 𝑢) =

∫︁
𝐷

𝑎∇𝑢 · ∇𝑢 𝑑𝑥−
∫︁
𝐷

(𝑏 · ∇𝑢)𝑢 𝑑𝑥+ 𝜎

∫︁
𝐷

𝑢2 𝑑𝑥

is coercive for sufficiently large 𝜎 = 𝜎0(𝛼, 𝑏, 𝑛, 𝑝,𝐷), that is,

ℓ𝜎(𝑢, 𝑢) ⩾
𝛼

2

∫︁
𝐷

|∇𝑢|2 𝑑𝑥.

We note that under such choice 𝜎 = 𝜎0 the bilinear form

ℒ𝜎0(𝑢, 𝑣) =

∫︁
𝐷

𝑎∇𝑢 · ∇𝑣 𝑑𝑥−
∫︁
𝐷

(𝑏 · ∇𝑢)𝑣 𝑑𝑥+ 𝜎0

∫︁
𝐷

𝑢𝑣 𝑑𝑥 (3.1)

is bounded. This is implied by the estimate (2.12) applied to the first two terms in the right
hand side of (3.1) and the estimate∫︁

𝐷

𝑢𝑣 𝑑𝑥 ⩽ ‖𝑢‖𝐿2(𝐷)‖𝑣‖𝐿2(𝐷) ⩽ 𝐶(𝑛,𝐷)‖𝑢‖𝑊 1
2 (𝐷,𝐹 )‖𝑣‖𝑊 1

2 (𝐷,𝐹 )

implied by the Friedrichs inequality (1.5). Thus, the operator ℒ𝜎0 is bounded and coercive in
the Hilbert space 𝐻 = 𝑊 1

2 (𝐷,𝐹 ).
Let 𝐻* be the dual space for 𝐻. We define the operator I𝑢 : 𝐻 → 𝐻* by the identity

I = I𝑢𝑣 =

∫︁
𝐷

𝑢𝑣 𝑑𝑥, 𝑣 ∈ 𝐻. (3.2)
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Let us show that the mapping I𝑢 is compact. In order to do this we observe that the mapping
I𝑢 can be represented as the composition

I𝑢 = I1 ∘ I2. (3.3)

Here I2 : 𝐻 → 𝐿2(𝐷) is the natural embedding. Since the norm in the space 𝐻 coincides
with the norm in the space 𝑊 1

2 (𝐷), and the domain 𝐷 is strictly Lipshitz, by the theorem
on the compact embedding from [4, Sect. 11.5] the operator I2 is compact. The mapping
I1 : 𝐿2(𝐷) → 𝐻* is defined by the formulas (3.2) and (3.3). The continuity of the operator I1

and the compactness of the operator I2 imply the compactness of the operator I.
The equation ℒ𝑢 = 𝑙 for 𝑢 ∈ 𝐻, where 𝑙 is a functional from the space 𝐻* dual to 𝐻 =

𝑊 1
2 (𝐷,𝐹 ) is equivalent to the equation

ℒ𝜎0𝑢+ 𝜎0I𝑢𝑢 = 𝑙.

By the Lax — Milgram lemma [5] the inverse operator ℒ−1
𝜎0

defines a continuous one–to–one
correspondence of 𝐻* onto 𝐻. This is why, applying this operator to the previous equation, we
obtain an equivalent equation

𝑢+ 𝜎0ℒ−1
𝜎0
I𝑢𝑢 = ℒ−1

𝜎0
𝑙. (3.4)

By the compactness of I the mapping 𝑇 = −𝜎0ℒ−1
𝜎0
I𝑢 is also compact. Hence, by the

Fredholm alternative, see, for instance, [6, Sect. 5.3, Thm. 5.3], the existence of a function
𝑢 ∈ 𝐻 obeying Equation (3.4) is implied by the uniqueness in 𝐻 of the trivial solution of
the equation ℒ𝑢 = 0. Now the unique solvability of the Zaremba problem (1.7) is implied by
Corollary of Lemma 2.3.
We proceed to proving the estimate (1.9). In order to do this, we define a formally adjoint

for ℒ operator ℒ⋆ by the formula

ℒ⋆𝑢 := div(𝑎(𝑥)∇𝑢)− div(𝑏(𝑥)𝑢).

Since for the corresponding bilinear forms obeys the identity

ℓ⋆(𝑢, 𝑣) = ℓ(𝑣, 𝑢) for 𝑢, 𝑣 ∈ 𝑊 1
2 (𝐷,𝐹 ),

the operator ℒ⋆ is the adjoint one for the operator ℒ in the Hilbert space 𝐻. Replacing in the
above arguing ℒ by ℒ⋆, we see that the equation ℒ𝜎𝑢 = 𝑙 is equivalent to the equation

𝑢+ (𝜎0 − 𝜎)ℒ−1
𝜎 I𝑢𝑢 = ℒ−1

𝜎0
𝑙

and the adjoint 𝑇 ⋆
𝜎 of the compact mapping 𝑇𝜎 = (𝜎0 − 𝜎)ℒ−1

𝜎0
I (see (3.2)) is given by the

formula

𝑇 ⋆
𝜎 = (𝜎0 − 𝜎)(ℒ⋆

𝜎0
)−1I.

Using the theorem on the contracting mappings in a Banach space, see, for instance, [6, Sect.
5.1, Thm. 5.1], we arrive at the following statement similar to Theorem 8.6 in Section 8.2 of
the monograph [6].

Lemma 3.1. Suppose that the conditions (1.2), (1.3) (or (1.4)) are satisfied and the
Friedrichs inequality (1.5) holds. Then there exists an at most countable discrete set Σ ∈
(−∞, 0) such that if 𝜎 /∈ Σ, then the Zaremba problems for the equations

ℒ𝜎𝑢 = 𝑙 and ℒ⋆
𝜎𝑢 = 𝑙

are uniquely solvable in 𝑊 1
2 (𝐷,𝐹 ) for an arbitrary linear functional 𝑙 in dual space for

𝑊 1
2 (𝐷,𝐹 ).
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To prove the estimate (1.9), we consider the operator 𝐺𝜎 : 𝐻⋆ → 𝐻 defined by the identity
𝐺𝜎 = ℒ−1

𝜎 for 𝜎 /∈ Σ. It is natural to call this operator the Green operator for the Zaremba
problem (1.7). Using the Fredholm alternative, see, for instance, [6, Sect. 5.3, Thm. 5.3],
we conclude that this operator is bounded and hence, the estimate (1.9) holds. The proof of
Theorem 1.1 is complete.
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