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ON SOME PROPERTIES OF CAUCHY PROBLEM
FOR NON-STATIONARY THIRD ORDER
COMPOSITE TYPE EQUATION
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Abstract. In the paper we construct a solution to the Cauchy problem for a non-stationary
third order composite type equation and we study some of its properties.
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1. INTRODUCTION

The aim of the present work is to study some properties of solution to equation
"0 Ou B (1)
9z Ot
=1
in the domain D = {(z;;t) : —00 < ; < 00,0 < t < T'} subject to the initial condition
w(zy, o, ..., Ty, 0) = @(1, 29, ..., 2,), —00<x; < O0. (2)
If n=11n (1), we obtain the equation
Ugpgpr — Ut = O, (3)

which was studied in work [2]. In this work, there were constructed the fundamental solution
to equation (3) and potential theory, as well as there were developed the method of studying
boundary value problems and Cauchy problem for equation . Later the solution to the
Cauchy problem for equation was constructed in work [16] in a wider class and some of its
properties were studied. By the same method there was constructed a solution to the Cauchy
problem for the equation of high odd order [15]

a2k+1u L ou

If we let n = 2 in (1), we obtain the equation
Uggg + Uyyy — U = 0. (4)

We note that solutions to equation (4)) and linear Zakharov-Kuznetsov equation (see [4], [5])
Ut + Ugge + Ugyy = 0 (5)

have similar aysmptotic properties at infinity. Zakharov-Kuznetsov equation is one of
possible generalizations to Korteweg-de-Vries equation in a multi-dimensional space and it
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describes ion-acoustic wave processes in plasme [20]. The equation to the Cauchy problem for
equation (4)) was constructed in work [§].

The solvability class for the Cauchy problem in the classes of functions growing at infinity
was determined first in work by A.N. Tikhonov [I8] for the heat equation. Further study
for differential equation of odd order in the classes of functions growing at infinity was made
by means of the theory of generalized functions [9, 10, 11} 12, 13, 19]. At present, the most
complete theory for linear equations of even order (for instance, for linear equations of parabolic
type) was developed in [3], 14} [17).

In work [I] there was constructed the fundamental solution to equation (1)) in space R™*!

Ulxy — &m0 — &y ooyt — &t — 1)

_ 1 xl_é.l xn_gn ‘ ‘ - N (6)
_(t—7)3f<(t—7)§>mf<—(t—7)§>’ &t i=Tn

where f(z f cos(A? — A\z)d\, —o0 < z < 00, is the Airy function satisfying the equation

f(2)+ 52(:) =0, o

Function f(z) satisfies the following identities

0

7f(z)dz - / fe)dz= T, 7f(z)dz _ %” (8)

2. MAIN RESULTS

Theorem 1. Let p(xq,...
Dpy ={wi 1 a; < < by } i
function

a piece-wise continuous function with a compact support

y) be
= 1_ D (a; ;) C R"™ and having an bounded variation. Then the

™
R»

U($1,...,J}n,t) = in/U<x1_517---7«7%_én;t%O(glw"7§n)d§1~-d£n

satisfies equation ast > 0 and for each x9 € (a;, b;)

2 1
: 0 0 < 0 _ 100 0
tl_l)rJrrlou(xl,...,xn,t) 390( —0,...,2, O)—i—ggo(xl—i—O,...,xn—i—O).

The validity of the first part of the theorem follows immediately from the properties of the
fundamental solution to equation and the hypothesis of the theorem. The second part is
proven separately w.r.t. each spatial variable. Since the proof of this part of the theorem is
similar to work [16] and makes no essential troubles, we do not dwell on it.

Theorem 2. Let function p(z1,...,x,) be continuous and have a bounded variation on each
bounded domain D g, p,y = {z; - a; < x; < b}, i = 1,n, Dig,p,) C R"™, and the variation of the
function

P(y) = yi(y) 9)

be bounded as y < ag for each ag = const. Moreover, let

o(T1,. .., Ty Hw T, exp{const2|xz|2 }

i#j
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as x; — o0, x; < aj, j =1,n, i+ j =n; and

O(x1, .., Tpy) ~ Hw(xj)
J
as x; < aj;, where 1, 02 are positive numbers. Then the function

w(xy, ..., xp,,t) = %/U(ml =&yt — & )o(&, -, En)dE L dE, (10)

]R"I’l
satisfies equation as t > 0 and the condition
lim (1, .., t) = (2%, .. 20). (11)

(@1,..n,t) = (2,...,29,40)

Proof. We begin by proving the first part of the theorem. We differentiate expression (10) w.r.t.

x; to obtain
a3u o 0083Ux . 7‘."1‘“_ n,t
7Tn@:/“'/ S S )<P(§1,---,£n)d£1...d§n
J

3
(9xj

oo

/ / 83U 517“ gn’t)90<x1_§177xn_£n)d€1d€"

On the other hand,
BU(x1,...,x,;t)
ax?
While calculating the derivates we have made use of the identity . We get

”t————/ /le )¢<gl_thé,,,.,gn_znt%>dzl...dzn

- = / / f Zl ZJ 1)f(Zj+1) . f(Zn)dZI . de_lej+1 Ce dZn (12)

t*l
= IEY {U + ijﬂCj} :

1 1 1 T — &

: / 2f'(2;)p (51 —ath, 6 - Znt3) dzj = —g{up Tuph, 2= =
Let us prove that under the hypothesis of the theorem the integral in the right hand side of
(12) obtained by the formal differentiation converges. Let us study the convergence of integral
(12) as j = 1; other cases can be studied in the same way. Airy function satisfies the identities

[16]:
1 2, 3 3
e hexp (=20 ) (VA +0 (1217F)).
o [ (E) (o) N
sfiesp (~31e1t) (va+ 0 (112)).
for sufficiently large negative z;
zicos (Z]2)7 — = ) (VA + 0 (|22
f(z) ~ ( ) ( ( >> (14)

hain (Glaf1 - 7) (Vi +0 (117F)).
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for sufficiently large positive z.
Letjzl,t>t0>0, ai<$i<bi,i:2,3,...,n
We first consider the second term in the right hand side of (12). Then by (12) we have

ur2(T1, Ty ooy Ty, t) = /+/+/ f(z2)dz . .. /+/+/ f(zn)dzy
—00 —7ro 7o —0o0 —Tn Tn
/+/+/ 21 f'(z1)p (xl—zlt%,...,xn—znt%> dz (15)
/+/+/ f(z9)dzs . .. /+/+/ [J1+ Jo+ J3]f(2n)dzn,

where r; are sufficiently large positive numbers. First we consider the integrals involving the
expression Ji(xy,...,&y; 22, ..., 2y; t) for sufficiently large positive 7.
Let z¢[—o0; —r;, i =2,n|. Then by condition we have

—Tn

/f Z2 d22 /Jl(-%'la"'7$n;z2>"'7zn;t)f(zn)dzn

—00

bt

/f Z9)dzs . . /f Zn)dzy, / 211 (z1)p (3:1 —zlts —znt%) dz;
0o 3_s,
_1 3 (2 1) 2
~ O /22 * exp [—222 (— — Oz (@ +t3) ] dzy
3 z9
00 r 355\
_1 3 (2 1 2
-0 /zn4exp —27 (— — Oz, <&+t3) > dz,
3 Zn,
00 r 355\
_1 3 (9 2
-0 /z14exp —27 <§—sz52<xl+t) ) dz=

r1 -

We see that this integral converges uniformly to zero as r; — oo.
Suppose now that zy € [ry, 00|, zx € [—00, —1%], k = 3,n. Then by and the hypothesis
of the theorem we have

/f(ZQ)dZQ/f(Z3)ng.../Jl(l'l,...,l'n;ZQ,...,Zn;t)f(2n>dzn:

. .
/f %2 dZ?/f z3)dzs .. /f Zn dzn/21f(z1) <m1—21t3 —znt%> dz

5 3 (9 302
~ O /zfexp[ 1(——0_52( +t) )]dzl

1
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o0

_1 3 (2 n 2702 T 1
-0 /zn4 exp [—Zﬁ <§ — 027252 (:; 4+ t3 ) )] dzy, /w ($2 — 22153) f(29)dzs

I'n

= Ju(x1,t) .. Jin(@n, t) J12(22, t).

The convergence of integrals Jy1(z1,t), ..., Jin(2n,t) to zero as r; — oo, j = 1,3,...,n, is
obvious. We consider integral Jio(zs,1):

1 2 3
+ 0 /224005 <§z2 —%>¢<l‘2—22t§> dzy

2

Here
_1 2 3 T
2o Ycos | =22 — — (x —zt3)dz
/ 2 (3 2 4>?/1 2 2 2
T2
T 5 2 3w\ |2 1 —ih 3461 1
_1_ 1 5 ES ES
= cos | =22 — =) |—= — 13 Ty — 2ot3 <x —zt3>dz
/2 <3 2 4) 2 2 2 77D 2 2 2
T2
Vi M
< ]\/_,/22_1_51d22 _ (_) g,
01
r2
_7 2 3 1
Zo tcos | =z — — (ZE —zt§>dz
/ 2 (3 D) 4)%17 2 2 2
T2
r -5_5, 2 3 ™ To 1 _%_51 %4—51 1
= /22 > ocos| ey —— | |— —t3 Ty — 2ot3 P (xg — zgti) dzy
3 4 Z9

MY —s_
M/22 61d22 (6_) : "
1

This is why integral Jio(z2,t) converges to zero as ro — oo. In the same we prove the conver-
gence of the other integrals involving the expression Ji(x1,...,Tn, 22, ..., Zn, 1).
In what follows we shall make use of the following theorem.

Theorem 3 ([7]). Suppose that the variation of a function P(x) is bounded on an interval

(a,b) and
b

/Q(:E)d:}: <M.

a

Then
/@ (z)dz| < M {|P(x)| + V}(P(x))},

where V! is the variation of a function on interval (a,b).
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We proceed to the integrals involving the expression Js(z1, . .., Zp, 22, . . ., 25, t) for sufficiently
large positive 7.
Let 2z € [—o0, —7%]. Then by the hypothesis of the theorem we have

-T2 —Tn
/f(ZQ)dZQ.../Jg(:pl,...,a:n,ZQ,...,zn,t)dzn

—r9

= / f(z2)dz . .. /nf(zn)dzn/zlf'(zl)cp (:L‘l — zlt%, R znt%> dz

T1

o0

3_

w . 02
_1 3 (92 2
~ 0 /224exp [—zf <§—CZ2_52 (?+té) )] dzs
2

2

(%S) 3_5,
_1 3 [ 92 2
-0 /zn“exp [—zﬁ (§ — Oz, (@ —i—té) )] dz,
Zn

. /¢ (Il — th%> Zlf,(2,’1>d2’1 = Jgg(l’g, t) . Jgn(.l’n,t)Jg,l(ZL’l, t)

It is obvious that as r; — oo, integral Jsa(xo,t), ..., Js3,(2n, t) converges to zero. We consider
integral J3;(z1,1):

/77[)(1’1 — zlt%)zlf’(zl)dzl

T 5 2 3 T _1 2 3
~ /Zf sin (ng — %) Y (:m - zlt%> dz1 + O /21 4 ¢in <§222 — %) ) (;pl — th%) dz

T1 1

It is clear that as r; — oo, the second integral in the right hand side of this relation converges
to zero. This is why it is sufficient to study just the first integral in the right hand side:

r 5 2 3 1
/zf sin (5212 — %) (0 <x1 — zlt§> dz1

T1

00 _3_5 5
1_ 2 3 T xT 2% 3461
= /zf * sin <§zf — Z) <—1 = té) (xl - th%) ) (0 (ml — zlt%> dz
21

3 —3=6
where p =1, p(v) = (—% — t%) " For sufficiently large positive 71, the absolute value of
this integral is bounded by

2 1 1 2 1\ 110
3 ’ml—rltfﬁ ¢<x1—r1t3>)+V (:pl—vﬁt3> @b(xl—v

346

ol
~
ol
N———
c
\Y
<
—olw
1
~—
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r 2 2
25, . T
. 1 Zo=—2104d
sup /v 3 s1n(31) )U ,

3
where 7 <m < n.
The existence of the integrals (see [0])

/xp sin(ax + b)dx = aT}HF(l + p) cos (b—i— %) , a>0 —-1<p<0,
0

1 , pm
/mpcos(ax +b)dr = —arF1T(1 + p) sin (b + ?) , a<0, —-1<p<O

0
means that the expression under the sup converges to zero as r; — oo. Therefore, integral
J31(z1,t) converges to zero uniformly as r; — oc.

Suppose that 2o € [ry,0), 2z € (=00, —7%], kK = 3,n. Then by and the hypothesis of
the theorem we have

/f(zz)dzz/f(z;»,)dz;g.../Jg(arl,...,xn,ZQ,...,zn,t)dzn

[e.e]

= 7f(22)d22 e 7nf(zn)dzn / 21 f'(z1) e (xl — zlt%, Ty — ang%) dz,

T1

o) 3_5,
_1 3 (9 2
~0 /23 *exp [—232 <§ — Oz <ﬁ +t§> )] dzs
Z3

3

0o B e » z, . %—52
-0 Zn texp | —zn 3 Cz, 2| — +13 dzy,
Zn

I'n

: 7@/) ($2 - Z2t%> [(z2)dz 7@/) ($1 - th%> z21f' (z1)dz

= Jgg(l’g, t) Ce J3n<.’ll'n, t)Jgg(JZ'Q, t)J'g,l(iL'l, t)
The convergence of integrals Js3(xa,t),. .., Jsn(Tn,t), Jao(xe,t), J31(z1,t) follows from ((16)
and Theorem 3.

In the same we prove the convergence of the integrals involving the expression
J3(X1, o Ty 215 ey 20y 1)

Thus, we have proven that integral (12) converges uniformly in D(,,p,). Therefore, by the
arbitrariness of a;, b;, and ¢y integral (12)) converges uniformly in D.

Let us prove identity . We consider functions @(zy, . .., x,) with a compact support. We
assume that a; + 1 < 2? < b; — 1. We let ¢(z1,...,2,) = ®(a;, b;)¢(z1, . .., ,), where

B(as, bi) = {1’ o€ Dot
o 0, if @ & Dia;py)
Let
@z, t) = %/U(zl e — e )B(Er . E)dE . dEy.

R’!’L
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We consider the difference
U(T1, . X, t) = ul(xy, .o, Ty t) —a(xy, .., t), a4+ 1< < by — 1.

We have

—k1 —kn

U@h~w%i%—/f®ﬁmu./f@wﬂm—mﬁwuwn—%ﬁﬂ%

0 [ele} ) ) (16)
s [t [ feeto - ath. - s,
hi1 hn
=v1(x1, ..., T, t) +02(x1, ..., Ty, ),
where k’l = (bl — Ii)t_%, hz = (l’l — Cli>t_%.
By identities and the hypothesis of the theorem for sufficiently large k; we obtain

7 _1 2 3 1 %*52
Ul(l‘h"'vmnat) =0 /21 4eXp _ng "‘C(-’El—thg) le

k1

T _1 2 3 1\ 552
-0 /zn 1 exp (—gzﬁ +C (:Un — znﬁ) > dz,

1

Hence, vi(x1,...,2,,t) tends to zero as t — 40, k; — 0.
By Theorem 3, the second integral in can be estimated as

|va(21, ... T, t)| < {‘(p(xl — htd .z, — hnt%)

+V (@(371 —ath = 2atd); 2 2 hi) } Alas, ),

where
Bl ,Bn
A(ay, ;) = sup /f(zl)dzl . /f(zn)dzn Dohy <oy < B

Under the hypothesis of the theorem the first factor is bounded. Let us study A(a, ;) for
sufficiently large h; < a; < 5;. We have

B1 Bn
/f(zl)dzl.../f(zn)dzn.

Let us estimate the first integral; other integrals can be estimates in the same way:

B1 B1
/f(zl)dzl ~ /zl‘11 oS (%zlg - %) <ﬁ+ O (z;%>> dzy ~
h " (17)
~ [t (gy_g) (V7+0 (")) dv,
v

3
2

3
where v = af, 7 = (f.
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The first term in ([17)) can be estimated as follows:
1 2 ™ 1 2 ™
vzcos|-v——|dv|<Cllv 2sin|-v——
forton (o)<l (55
5

2
+C /V‘gsin(gy—%> <7_%+7_%+C(7_%—7’_%>.

V=T

v="y

Y

The second term is estimated by the expression 2 (fy_% — 7'_%> . We finally have

B1
sup /f(zl)dzl <C (ﬁ;z + a17> :

Thus, as t — 40, h; — oo, integral uniformly converges to zero. O

By means of the above theorem we can study the character of the growth for solutions
w(zy,...,x,,t) to the problem. For the sake of simplicity we study the such growth w.r.t.
variable z.

By , for sufficiently large positive numbers r; we get

U(.Tl,...,l'n,t) = %/U(Jfl _5177xn_£n7t>§0(£177£n>d€1d€n

R™

:%/U(&w»fn;t)w(& — &y 6 — &) . dE,
ks

= / f(z2)dzy . .. / f(zn)dz, / + / + f(z1)p(xr — zlt%, e Ty — znt%)dzl
—00 —00 — 00 —T1 T1
=up (1, ..y Ty t) + ug(T1, ..oy, 1) +ug(xy, . .., Ty, t).
In view of , and the hypothesis of Theorem 2 we have
lug (21, .o 20, 1) < Kexp{|x1|%_52}, (18)
(@1, - T, )] < M || 7370 (19)

Since us(xy,...,x,,t) is a bounded function, estimates , follow that the solution to
the Cauchy problem can grows exponentially at the infinity the growth rate does not exceed

exp {|x1|%752}, where 0y > 0.
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