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ASYMPTOTICS FOR EIGENVALUES OF STURM-LIOUVILLE

OPERATOR WITH PERIODIC BOUNDARY CONDITIONS

A.V. KARPIKOVA

Abstract. We employ the similar operators method for studying the spectral properties
of the Sturm—Liouville operator generated by the differential expression 𝑙(𝑦) = −𝑦′′ − 𝑣𝑦
with a complex potential 𝑣 and subject to periodic boundary conditions 𝑦(0) = 𝑦(2𝜋),
𝑦′(0) = 𝑦′(2𝜋). We obtain the results on the asymptotics for the spectrum of the operator.
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1. Introduction

Let 𝐿2[0, 2𝜋] be the Hilbert space of complex-valued square integrable functions defined on
[0, 2𝜋] with the scalar product of the form

(𝑥, 𝑦) =
1

2𝜋

2𝜋∫︁
0

𝑥(𝜏)𝑦(𝜏)𝑑𝜏, 𝑥, 𝑦 ∈ 𝐿2[0, 2𝜋].

By 𝑊 2
2 [0, 2𝜋] we denote the Sobolev space {𝑦 ∈ 𝐿2[0, 2𝜋] : 𝑦′ is absolutely continuous and 𝑦′′ ∈

𝐿2[0, 2𝜋]}.
We consider a one-dimensional Strum-Liouville operator 𝐿 : 𝐷(𝐿) ⊂ 𝐿2[0, 2𝜋] → 𝐿2[0, 2𝜋]

defined by the differential expression

𝑙(𝑦) = −𝑦′′ − 𝑣𝑦

on the domain 𝑦 ∈ 𝐷(𝐿) = {𝑦 ∈ 𝑊 2
2 [0, 2𝜋] : 𝑦(0) = 𝑦(2𝜋), 𝑦′(0) = 𝑦′(2𝜋)} introduced by pe-

riodic boundary conditions. It is assumed that potential 𝑣 belongs to 𝐿2[0, 2𝜋] and 𝑣(𝑡) =∑︀
𝑘∈Z

𝑣𝑘𝑒
𝑖𝑘𝑡, 𝑡 ∈ [0, 2𝜋], is its Fourier series.

Operator 𝐿 can be represented as 𝐿 = 𝐴−𝐵, where operator 𝐴 : 𝐷(𝐴) = 𝐷(𝐿) ⊂ 𝐿2[0, 2𝜋] →
𝐿2[0, 2𝜋] is defined by the differential expression

𝑙0(𝑦) = −𝑦′′,

and operator 𝐵 is the multiplication by potential 𝑣. It is well-defined by the condition 𝐷(𝐵) ⊃
𝐷(𝐴). Operator 𝐵 will play the role of a perturbation.

Operator 𝐴 is self-adjoint and it has a compact resolvent. Its spectrum 𝜎(𝐴) reads as

𝜎(𝐴) = {𝑛2, 𝑛 ∈ Z+ = N ∪ {0}}, 𝐸0
𝑛 = Span {𝑒(1)𝑛 , 𝑒

(2)
𝑛 } is the eigenspace for an eigenvalue 𝑛2 ,

𝑛 ̸= 0, where 𝑒
(1)
𝑛 (𝑡) = 𝑒𝑛(𝑡) = 𝑒𝑖𝑛𝑡, 𝑒

(2)
𝑛 (𝑡) = 𝑒−𝑛(𝑡) = 𝑒−𝑖𝑛𝑡; 𝐸0

0 = {𝛼}, 𝛼 ∈ C.
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To study the spectral properties of the Sturm-Liouville operator, in the present paper we
employ the similar operators method developed in [1]–[6]. The matter of this method is the
similarity trasformation of the studied operator into an operator whose spectral properties are
close to the spectral properties of the unperturbed operator. In this way the study of operator
𝐿 is essentially simplified.

One of the main results of this paper is Theorem 1, where we obtain the specified asymptotics
for the eigenvalues of operator 𝐿. In the proof of this theorem we employ the following two-sided
sequences of complex numbers:

𝑐𝑛,𝑛 =
∑︁
𝑗∈Z

|𝑗|̸=|𝑛|

𝑣𝑛−𝑗
𝑣𝑗−𝑛

𝑗2 − 𝑛2
, 𝑐−𝑛,−𝑛 =

∑︁
𝑗∈Z

|𝑗|̸=|𝑛|

𝑣−(𝑛+𝑗)
𝑣𝑗+𝑛

𝑗2 − 𝑛2
,

𝑐−𝑛,𝑛 =
∑︁
𝑗∈Z

|𝑗|̸=|𝑛|

𝑣−(𝑛+𝑗)
𝑣𝑗−𝑛

𝑗2 − 𝑛2
, 𝑐𝑛,−𝑛 =

∑︁
𝑗∈Z

|𝑗|̸=|𝑛|

𝑣𝑛−𝑗
𝑣𝑗+𝑛

𝑗2 − 𝑛2
, 𝑛 ∈ Z.

We observe that 𝑐𝑛,𝑛 = 𝑐−𝑛,−𝑛.

Theorem 1. There exists a number 𝑚 ∈ Z+ such that the spectrum of operator 𝐿 is repre-
sented as

𝜎(𝐿) = 𝜎(𝑚)

⋃︁(︃ ⋃︁
𝑛>𝑚+1

𝜎𝑛

)︃
, (1)

where 𝜎(𝑚) is a finite set with total amount of elements not exceeding 2𝑚 + 1, while the sets
𝜎𝑛 = {𝜆+

𝑛 , 𝜆
−
𝑛 }, 𝑛 > 𝑚 + 1, contain at most two points and are defined by the identities

𝜆±
𝑛 = 𝑛2 + 𝑣0 −

1

2𝑛

∑︁
𝑘∈Z
𝑘 ̸=0

𝑣𝑘𝑣−𝑘

𝑘
±√

𝑣2𝑛𝑣−2𝑛 +
𝛽±
𝑛√
𝑛
, 𝑛 > 𝑚 + 1, (2)

where sequence 𝛽±
𝑛 possesses the property

∑︀
𝑛>𝑚+1

|𝛽±
𝑛 |

4
3 < ∞.

We mention that in paper by V. Tkachenko [7, Thm. 3.6] there was given an asymptotics
for the spectrum of operator 𝐿:

𝜆±
𝑛 = 𝑛2 + 𝑣0 + 𝛼±

𝑛 , 𝑛 → ∞, (3)

where 𝑣0 = 1
2𝜋

2𝜋∫︀
0

𝑣(𝑡)𝑑𝑡 is the mean of potential 𝑣, and
∞∑︀
𝑛=0

|𝛼±
𝑛 |2 < ∞.

The asymptotics for the spectrum in Theorem 1 is more precise by the order in comparison
with the asymptotics in formula (3). Indeed, we write one more calculated approximation that
increases the order of the error term.

In the case of real potential 𝑣 the asymptotics for the spectrum of operator 𝐿 was given in
monogrpaph by V.A. Marchenko [8, Thm.1.5.2]. If potential 𝑣 is real, we have the following
statement.

Theorem 2. There exists a number 𝑚 ∈ Z+ such that the spectrum of operator 𝐿 is repre-
sented as

𝜎(𝐿) = 𝜎(𝑚)

⋃︁(︃ ⋃︁
𝑛>𝑚+1

𝜎𝑛

)︃
, (4)

where 𝜎(𝑚) is a finite set with the total amount of the elements not exceepding 2𝑚 + 1, and the
sets 𝜎𝑛 = {𝜆+

𝑛 , 𝜆
−
𝑛 }, 𝑛 > 𝑚 + 1, contain at most two points and are defined by the identities

𝜆±
𝑛 = 𝑛2 + 𝑣0 −

1

2𝑛

∑︁
𝑘∈Z
𝑘 ̸=0

|𝑣𝑘|2

𝑘
± |𝑣2𝑛| +

𝛽±
𝑛

𝑛
, 𝑛 > 𝑚 + 1, (5)
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where sequence 𝛽±
𝑛 possesses the property

∑︀
𝑛>𝑚+1

|𝛽±
𝑛 | < ∞.

2. Preliminary similarity transformations

Let ℋ be a separable Hilbert space. By Endℋ we indicate the Banach algebra of linear
bounded operators in ℋ. A compact operator 𝑋 ∈ Endℋ is called Hilbert-Schmidt operator
(see[9]), if the trace of the self-adjoint operator 𝑋𝑋* is finite, i.e., tr (𝑋𝑋*) < ∞. The set of
Hilbert-Schmidt operators is a two-sided ideal S2(ℋ) (see [9]) in algebra Endℋ. Ideal S2(ℋ)
is a Hilbert space with the scalar product < 𝑋, 𝑌 >= tr (𝑋, 𝑌 *), 𝑋, 𝑌 ∈ S2(ℋ).

The symbol ‖𝑋‖2 indicates the Hilbert-Schmidt norm of operator 𝑋 ∈ S2(ℋ), i.e., ‖𝑋‖22 =
𝑡𝑟(𝑋𝑋*). We note that if 𝑒1, 𝑒2, . . . , 𝑒𝑛, . . . is an arbitrary orthonormalized basis in ℋ, operator
𝑋 ∈ Endℋ is a Sturm-Liouville operator if and only if ‖𝑋‖22 =

∑︀
𝑖,𝑗>1

|(𝑋𝑒𝑗, 𝑒𝑖)|2 < ∞ (see [9]).

Here we can introduce the ideal S1(ℋ) of nuclear operators.

Definition 1. Two linear operators 𝒜𝑖 : 𝐷(𝒜𝑖) ⊂ ℋ → ℋ, 𝑖 = 1, 2, are called similar, if
there exists a continuously invertible operator 𝑈 ∈ 𝐸𝑛𝑑ℋ such that 𝑈𝐷(𝒜2) = 𝐷(𝒜1) and
𝒜1𝑈𝑥 = 𝑈𝒜2𝑥, 𝑥 ∈ 𝐷(𝒜2). Operator 𝑈 is called transformation operator of operator 𝒜1 into
𝒜2.

It is important to note that similar operator have the same spectrum. This fact is perma-
nently used here in the employed similarity transformations.

We return back to considering differential operator 𝐿 = 𝐴−𝐵. In what follows we consider
Hilbert space ℋ = 𝐿2[0, 2𝜋] and the system of orthoprojectors 𝑃𝑛 : 𝐿2[0, 2𝜋] → 𝐿2[0, 2𝜋],
𝑛 ∈ Z+, of the form:

𝑃𝑛𝑥 = (𝑥, 𝑒𝑛)𝑒𝑛 + (𝑥, 𝑒−𝑛)𝑒−𝑛, 𝑛 ∈ N, 𝑃0𝑥 = (𝑥, 𝑒0)𝑒0. (6)

We note that 𝐴𝑃𝑛 = 𝜆𝑛𝑃𝑛, 𝑛 > 0.
By the symbol Γ𝐵 we denote the Hilbert-Schmidt operator

((Γ𝐵)𝑥)(𝑠) =
1

2𝜋

2𝜋∫︁
0

𝐺(𝑠, 𝜏)𝑥(𝜏)𝑑𝜏, 𝑥 ∈ ℋ,

where

𝐺(𝑠, 𝜏) =

{︃
1
4
(−𝑢( 𝑠+𝜏

2
) + 2( 𝑠−𝜏

2𝜋
)𝑢2(

𝑠+𝜏
2

)), 𝜏 6 𝑠,
1
4
(𝑢( 𝑠+𝜏

2
) + 2( 𝑠−𝜏

2𝜋
)𝑢2(

𝑠+𝜏
2

)), 𝜏 > 𝑠,
(7)

𝑢(𝑠) = 𝑢1(𝑠) + 𝑢2(𝑠), 𝑢1(𝑠) =
∑︁

𝑘∈2Z+1
𝑘 ̸=0

𝑣𝑘
𝑖𝑘
𝑒𝑖𝑘𝑠, 𝑢2(𝑠) =

∑︁
𝑘∈2Z
𝑘 ̸=0

𝑣𝑘
𝑖𝑘
𝑒𝑖𝑘𝑠.

In what follows we make the assumption 𝑣0 = 1
2𝜋

2𝜋∫︀
0

𝑣(𝑡)𝑑𝑡 = 0, which is not restrictive since

shifting the potential by a constant makes the same for the spectrum and does not change the
eigenfunctions. However, in the formulation of theorems on asymptotics for the eigenvalues
this constant is taken into consideration.

Together with Γ𝐵, in Lemma 1 we make use of the operator 𝐽𝐵 ∈ S2(ℋ) being

((𝐽𝐵)𝑥)(𝑠) =
1

2𝜋

2𝜋∫︁
0

𝑣(𝑠 + 𝜏)𝑥(𝜏)𝑑𝜏, 𝑥 ∈ ℋ.
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Let 𝑘 ∈ Z+. We define the operators

𝐽𝑘𝐵 = 𝐽𝐵 − 𝐽(𝑃(𝑘)𝐵𝑃(𝑘)) + 𝑃(𝑘)𝐵𝑃(𝑘), (8)

Γ𝑘𝐵 = Γ𝐵 − Γ(𝑃(𝑘)𝐵𝑃(𝑘)), (9)

where projector 𝑃𝑘 is defined by identity (6) and 𝑃(𝑘) =
∑︀
|𝑗|6𝑘

𝑃𝑗.

It is clear that 𝐽0𝐵 = 𝐽𝐵,Γ0𝐵 = Γ𝐵. By the definition of operators 𝐽𝑘𝐵 and Γ𝑘𝐵 we obtain
the following representations

𝐽𝑘𝐵 = 𝐽𝐵 − 𝑃(𝑘)𝐽𝐵𝑃(𝑘) + 𝑃(𝑘)𝐵𝑃(𝑘), Γ𝑘𝐵 = Γ𝐵 − (𝑃(𝑘)Γ𝐵𝑃(𝑘)) (10)

which imply 𝐽𝑘𝐵,Γ𝑘𝐵 ∈ S2(ℋ) for each 𝑘 > 0.
The proof of the next lemma reproduces that of Lemma 7 in paper [6].

Lemma 1. Operators Γ𝐵, 𝐽𝐵,𝐵 satisfy the following conditions:
(a)Γ𝐵 ∈ Endℋ and ‖Γ𝐵‖ < 1;
(b)(Γ𝐵)𝐷(𝐴) ⊂ 𝐷(𝐴);
(c)𝐵Γ𝐵, (Γ𝐵)𝐽𝐵 ∈ S2(ℋ);
(d) 𝐴(Γ𝐵)𝑥− (Γ𝐵)𝐴𝑥 = 𝐵𝑥− (𝐽𝐵)𝑥, 𝑥 ∈ 𝐷(𝐴);
(e) for each 𝜀 > 0 there exists a number 𝜆𝜀 ∈ 𝜌(𝐴) such that ‖𝐵(𝐴− 𝜆𝜀𝐼)−1‖ < 𝜀.

The proof of the next theorem can be made in the same way as for Theorem 2 in paper [6].

Theorem 3. If number 𝑘 ∈ Z+ is so that

‖Γ𝑘𝐵‖2 < 1, (11)

then operator 𝐿 = 𝐴 − 𝐵, where 𝐴 = 𝐿0, 𝐵 is the multiplication by potential 𝑣, is similar to
operator ̃︀𝐿 = 𝐿0 − ̃︀𝐵,

where ̃︀𝐵 = ̃︀𝐵𝑘 = 𝐽𝑘𝐵 + (𝐼 + Γ𝑘𝐵)−1(𝐵Γ𝑘𝐵 − (Γ𝑘𝐵)𝐽𝑘𝐵),

and the identity

(𝐴−𝐵)(𝐼 + Γ𝑘𝐵) = (𝐼 + Γ𝑘𝐵)(𝐴− ̃︀𝐵) (12)

holds true. Operators 𝐽𝑘𝐵,Γ𝑘𝐵,𝐵Γ𝑘𝐵, (Γ𝑘𝐵)(𝐽𝑘𝐵), ̃︀𝐵, ̃︀𝐵𝑘 are Hilbert-Schmidt operators in

S2(𝐿2[0, 2𝜋]). Operator ̃︀𝐵 in (12) can be represented as̃︀𝐵 = 𝐽𝐵 + 𝐵Γ𝐵 − (Γ𝐵)𝐽𝐵 + 𝐶 ∈ S2(𝐿2[0, 2𝜋]), (13)

where operator 𝐶 belongs to ideal S1(𝐿2,𝜋) of nuclear operators [9] defined on 𝐿2[0, 2𝜋].

The result obtained in Theorem 3 allows us to reduce the study of operator 𝐿 = 𝐴 − 𝐵

to studying operator 𝐴 − ̃︀𝐵, where operator ̃︀𝐵 is a Hilbert-Schmidt one. Thus, 𝜎(𝐴 − 𝐵) =

𝜎(𝐴− ̃︀𝐵).
To formulate Theorem 4, we introduce transformers (i.e., linear operators in a space of linear

operators; this is a terminology of M.G. Krein) 𝐽,Γ : S2(𝐿2[0, 2𝜋]) → S2(𝐿2[0, 2𝜋]) with the
following properties:

1) 𝐽 is a projector, ‖𝐽‖ = 1, and it is represented as absolutely converging in uniform
operator topology series

𝐽𝑋 =
∞∑︁
𝑛=0

𝑃𝑛𝑋𝑃𝑛 = 𝑋0, 𝑋 ∈ S2(𝐿2[0, 2𝜋]). (14)
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2) Transformer Γ is well-defined on each operator 𝑋 ∈ S2(𝐿2[0, 2𝜋]) by the identity (cf. [6])

Γ𝑋 =
∑︁
𝑖,𝑗>0
𝑖 ̸=𝑗

𝑃𝑖𝑋𝑃𝑗

𝜆𝑖 − 𝜆𝑗

. (15)

It follows from (14) and (15) that

‖𝐽𝑋‖22 =
∞∑︁
𝑛=0

‖𝑃𝑛𝑋𝑃𝑛‖ 6 ‖𝑋‖22, ‖Γ𝑋‖22 =
∑︁
𝑖,𝑗>0
𝑖 ̸=𝑗

‖𝑃𝑖𝑋𝑃𝑗‖22
|𝜆𝑖 − 𝜆𝑗|2

6 𝛾−1
0 ‖𝑋‖22,

where 𝛾0 = inf
𝑖 ̸=𝑗

𝑖,𝑗>𝑚

|𝜆𝑖 − 𝜆𝑗|.

We consider the sequences of transformers (𝐽𝑚), (Γ𝑚), 𝑚 ∈ Z+, defined by the identities

𝐽𝑚𝑋 = 𝑃(𝑚)𝑋𝑃(𝑚) +
∑︁

|𝑘|>𝑚+1

𝑃𝑘𝑋𝑃𝑘 = 𝐽(𝑋 − 𝑃(𝑚)𝑋𝑃(𝑚)) + 𝑃(𝑚)𝑋𝑃(𝑚),

Γ𝑚𝑋 = Γ(𝑋 − 𝑃(𝑚)𝑋𝑃(𝑚)),

where 𝑋 ∈ S2(ℋ). We note that 𝐽𝑚 is a projector. Since it is a self-adjoint operator, ‖𝐽𝑚‖ = 1.
Transformer Γ𝑚 is anti-self-adjoint, i.e., Γ*

𝑚 = −Γ𝑚 and ‖Γ𝑚‖ = 𝛾−1
0 = ( inf

𝑖 ̸=𝑗
𝑖,𝑗>𝑚

|𝜆𝑖 − 𝜆𝑗|)−1.

We note that in the proof of Theorem 1 we shall make use of the following properties of
transformers 𝐽𝑘,Γ𝑘

𝐽𝑘 ((Γ𝑘𝑋)(𝐽𝑘𝑌 )) = 0, 𝐽𝑘 ((Γ𝑘𝑋)𝐽𝑘(𝑌 Γ𝑘𝑋)) = 0, 𝑘 ∈ Z+, (16)

where 𝑋, 𝑌 ∈ S2(𝐿2[0, 2𝜋]).
In what follows we shall make use of a compact self-adjoint operator 𝐴0,

𝐴0 =
∞∑︁
𝑘=1

1

𝜆𝑘

𝑃𝑘 + 𝑃0.

Theorem 4 ([1],[3],[6]). For each number 𝑘 ∈ Z+ obeying the inequality

‖ ̃︀𝐵‖2 = ‖ ̃︀𝐵𝑘‖2 <
2𝑘 + 3

4
(17)

the operator 𝐴− ̃︀𝐵 is similar to the operator 𝐴− 𝐽𝑘 ̃︀𝑋, where operator ̃︀𝑋 solves the nonlinear
equation

𝑋 = ̃︀𝐵Γ𝑘𝑋 − (Γ𝑘𝑋)(𝐽𝑘 ̃︀𝐵) − (Γ𝑘𝑋)𝐽𝑘( ̃︀𝐵Γ𝑘𝑋) + ̃︀𝐵 = Φ(𝑋) (18)

considered in S2(𝐿2[0, 2𝜋]). Solution ̃︀𝑋 can be represented as 𝑋0𝐴
− 1

2
0 , where 𝑋0 ∈ S2(𝐿2[0, 2𝜋])

and it can be found by simple iteration methods. The similarity transformation of the operator

𝐴− ̃︀𝐵 into the operator 𝐴− 𝐽𝑘 ̃︀𝑋 is made by the invertible operator 𝐼 + Γ𝑘
̃︀𝑋 ∈ End(𝐿2[0, 2𝜋]).

3. Proof of Theorem 1

The choice of number 𝑘 ∈ Z+ is due to condition (17) in Theorem 4 notations of which we
employ.

Applying transformer 𝐽𝑘 to the both sides of equation (18) and employing property (16) of
transformers 𝐽𝑘, Γ𝑘, we obtain:

𝐽𝑘 ̃︀𝑋 =𝐽𝑘( ̃︀𝐵Γ𝑘
̃︀𝑋) + 𝐽𝑘 ̃︀𝐵 = 𝐽𝑘 ̃︀𝐵 + 𝐽𝑘( ̃︀𝐵Γ𝑘

̃︀𝐵) + 𝐽𝑘( ̃︀𝐵Γ𝑘( ̃︀𝑋 − ̃︀𝐵))

=𝐽𝑘 ̃︀𝐵 + 𝐽𝑘( ̃︀𝐵Γ ̃︀𝐵) + 𝐾 = 𝐽𝑘𝐵 + 𝐽𝑘(𝐵Γ𝐵) + 𝑇1 = 𝐽𝐵 + 𝐽(𝐵Γ𝐵) + 𝑇2,
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where operators 𝐾, 𝑇1, 𝑇2 are represented as 𝐾 = 𝐾0𝐴
− 1

2
0 , 𝑇1 = 𝑇1,0𝐴

− 1
2

0 , 𝑇2 = 𝑇2,0𝐴
− 1

2
0 and

operators 𝐾0, 𝑇1,0, 𝑇2,0 belong to the ideal of nuclear operators S1(𝐿2[0, 2𝜋]). It is clear
that 𝐽𝑘𝑇𝑗 = 𝑇𝑗, 𝑗 = 0, 1. While obtaining these identities we have also employed the following
properties: the product of two Hilbert-Schmidt operators is a nuclear operator and the operators
𝐽𝑘𝑋 − 𝐽𝑋, Γ𝑘𝑋 − Γ𝑋, 𝑋 ∈ S2(𝐿2[0, 2𝜋]), 𝑘 > 0, are of finite rank.

Thus, applying Theorems 3 and 4 to the considered operator 𝐿 = 𝐴 − 𝐵, we obtain that
the operator 𝐴 − 𝐵 is similar to the operator 𝐴 − (𝐽𝐵 + 𝐽(𝐵Γ𝐵) + 𝑇1) = 𝐴 − 𝐵0 and
𝜎(𝐴−𝐵) = 𝜎(𝐴−𝐵0), where 𝐵0 = 𝐽𝐵 + 𝐽(𝐵Γ𝐵) + 𝑇1, 𝑇1 ∈ S1(𝐿2[0, 2𝜋]).

The matrix for restriction 𝐵𝑛 of operator 𝑃𝑛𝐵0𝑃𝑛 on ℋ𝑛 in the basis 𝑒𝑛, 𝑒−𝑛 reads as(︂
0 𝑣2𝑛

𝑣−2𝑛 0

)︂
+

(︂
𝑐𝑛,𝑛 𝑐𝑛,−𝑛

𝑐−𝑛,𝑛 𝑐−𝑛,−𝑛

)︂
+

1

𝑛

(︂
𝑓1(𝑛) 𝑓2(𝑛)
𝑓3(𝑛) 𝑓4(𝑛)

)︂
,

where 𝑓1, 𝑓2, 𝑓3, 𝑓4 are summable sequences.
The eigenvalues 𝜇±

𝑛 of operator 𝐵𝑛 are

𝜇±
𝑛 =𝑐𝑛,𝑛 +

𝑓1(𝑛) + 𝑓4(𝑛)

2𝑛
±

± 1

2

√︃(︂
𝑓1(𝑛) − 𝑓4(𝑛)

𝑛

)︂2

+ 4

(︂
𝑣2𝑛 + 𝑐𝑛,−𝑛 +

𝑓2(𝑛)

𝑛

)︂(︂
𝑣−2𝑛 + 𝑐−𝑛,𝑛 +

𝑓3(𝑛)

𝑛

)︂
=𝑐𝑛,𝑛 +

𝑓1(𝑛) + 𝑓4(𝑛)

2𝑛
±
√︀

4(𝑣2𝑛 + 𝑐𝑛,−𝑛)(𝑣−2𝑛 + 𝑐−𝑛,𝑛)

2
±

± (
1

2

√︃(︂
𝑓1(𝑛) − 𝑓4(𝑛)

𝑛

)︂2

+ 4

(︂
𝑣2𝑛 + 𝑐𝑛,−𝑛 +

𝑓2(𝑛)

𝑛

)︂(︂
𝑣−2𝑛 + 𝑐−𝑛,𝑛 +

𝑓3(𝑛)

𝑛

)︂
−
√︀

4(𝑣2𝑛 + 𝑐𝑛,−𝑛)(𝑣−2𝑛 + 𝑐−𝑛,𝑛)

2
).

Then 𝜇±
𝑛 = 𝑐𝑛,𝑛 ±

√̃︀𝜔𝑛 + 𝛽±
𝑛 , where 𝛽±

𝑛 = 𝛼(𝑛)√
𝑛

,
∑︀

|𝑛|>𝑚+1

|𝛼(𝑛)| 43 < ∞.

Sequence 𝑐𝑛,𝑛, 𝑛 = 0, 1, . . ., can be represented as

𝑐𝑛,𝑛 =
∑︁
𝑗∈Z

|𝑗|̸=|𝑛|

𝑣𝑛−𝑗
𝑣𝑗−𝑛

𝑗2 − 𝑛2
=
∑︁
𝑘∈Z
𝑘 ̸=0

𝑘 ̸=−2𝑛

𝑣𝑘𝑣−𝑘

𝑘(𝑘 + 2𝑛)

=
1

2𝑛

∑︁
𝑘∈Z
𝑘 ̸=0

𝑘 ̸=−2𝑛

𝑣𝑘𝑣−𝑘

𝑘
− 1

2𝑛

∑︁
𝑘∈Z
𝑘 ̸=0

𝑘 ̸=−2𝑛

𝑣𝑘𝑣−𝑘

𝑘 + 2𝑛

=
1

2𝑛

∑︁
𝑘∈Z
𝑘 ̸=0

𝑣𝑘𝑣−𝑘

𝑘
− 1

2𝑛

𝑣2𝑛𝑣−2𝑛

−2𝑛
− 1

2𝑛

∑︁
𝑘∈Z

𝑘 ̸=−2𝑛

𝑣𝑘𝑣−𝑘

𝑘 + 2𝑛
=

1

2𝑛

∑︁
𝑘∈Z
𝑘 ̸=0

𝑣𝑘𝑣−𝑘

𝑘
+ 𝜔′

𝑛 +
𝛼′
𝑛

𝑛2
,

where 𝜔′
𝑛 = − 1

2𝑛

∑︀
𝑘∈Z

𝑘 ̸=−2𝑛

𝑣𝑘𝑣−𝑘

𝑘+2𝑛
, (𝛼′

𝑛) is a summable sequence.

Let us prove that
∑︀
𝑘∈Z

𝑘 ̸=−2𝑛

⃒⃒
𝑣𝑘𝑣−𝑘

𝑘+2𝑛

⃒⃒2
< ∞. In order to do it, we consider the convolution

(𝜔 * 𝛾)(𝑛) =
∑︁
𝑘∈Z
𝑘 ̸=0

𝜔(𝑘)𝛾(𝑛− 𝑘), 𝑛 ∈ Z,



34 A.V. KARPIKOVA

of the sequence 𝜔 : Z → C, 𝑤(𝑘) = 𝑣𝑘𝑣−𝑘, 𝑘 ∈ Z, with the property
∑︀
𝑘∈Z

|𝜔(𝑘)| < ∞, with

the sequence 𝛾 : Z → R, 𝛾(𝑘) =

{︃
1
𝑘
, 𝑘 ̸= 0

0, 𝑘 = 0
satisfying

∑︀
𝑘∈Z
𝑘 ̸=0

|𝛾(𝑘)|2 < ∞. Then sequence

𝜔′
𝑛 = −(𝜔 * 𝛾)(−2𝑛), 𝑛 ∈ Z, as a convolution of a summable sequence with a square integrable

sequence is square integrable. Thus, we obtain representation (2).
In the case of real potential 𝑣 sequence 𝛼 is summable and we arrive at the statement of

Theorem 2.
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