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CATEGORICAL CRITERION FOR EXISTENCE

OF UNIVERSAL 𝐶*–ALGEBRAS

R.N. GUMEROV, E.V. LIPACHEVA, K.A. SHISHKIN

Abstract. We deal with categories, which determine universal 𝐶*–algebras. These cate-
gories are called the compact 𝐶*–relations. They were introduced by T.A. Loring. Given
a set 𝑋, a compact 𝐶*–relation on 𝑋 is a category, the objects of which are functions
from 𝑋 to 𝐶*–algebras, and morphisms are *–homomorphisms of 𝐶*–algebras making the
appropriate triangle diagrams commute. Moreover, these functions and *–homomorphisms
satisfy certain axioms. In this article, we prove that every compact 𝐶*–relation is both
complete and cocomplete. As an application of the completeness of compact 𝐶*–relations,
we obtain the criterion for the existence of universal 𝐶*–algebras.
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1. Introduction

The motivation for our work comes from the theory of universal 𝐶*–algebras generated by
sets of generators subject to relations (see [1]– [6]) and the study of limits for inductive systems
consisting of universal 𝐶*–algebras and their *–homomorphisms in [7]– [12]. A categorical
approach to relations that determine universal 𝐶*–algebras was developed by Loring [5]. In the
framework of this approach, one deals with categories called 𝐶*–relations. Given a set 𝑋, a 𝐶*–
relation ℛ on 𝑋 is a category, the objects of which are functions from 𝑋 to 𝐶*–algebras, and
morphisms are *–homomorphisms of 𝐶*–algebras making the appropriate triangle diagrams
commute. In addition, the objects and the morphisms of ℛ satisfy certain axioms. The 𝐶*–
relations determining universal 𝐶*–algebras are called compact. A necessary and sufficient
condition for ℛ to be compact is the existence of an initial object 𝐶*(ℛ) in the category ℛ [5].
The universal 𝐶*–algebra for the compact 𝐶*–relation ℛ is the initial object 𝐶*(ℛ) of this
category, that is, an object with precisely one outgoing morphism for each other object of ℛ.

The 𝐶*–relations called the *–polynomial relations associated with *–polynomial pairs were
studied in [13]. A polynomial pair (𝑋,𝑃 ) consists of a non–empty set 𝑋 and a non–empty
subset 𝑃 of the free *–algebra 𝐹 (𝑋) generated by 𝑋 over the field of complex numbers. The
objects of the *–polynomial relation associated with (𝑋,𝑃 ) are all functions 𝑓 from the set
𝑋 to 𝐶*–algebras satisfying the property: the set 𝑃 is contained in the kernel of the unique
*–homomorphism, which is an extension of 𝑓 to the free *–algebra 𝐹 (𝑋). It was proved in [13]
that every 𝐶*–algebra is a universal 𝐶*–algebra determined by a *–polynomial relation and
every compact 𝐶*–relation is isomorphic to a *–polynomial relation.
In this article we continue the study of properties of the compact 𝐶*–relations initiated

in [13]. We show that each compact 𝐶*–relation is both complete and cocomplete. To obtain

R.N. Gumerov, E.V. Lipacheva, K.A. Shishkin, A categorical criterion for the existence of

universal 𝐶*–algebras.

© Gumerov R.N., Lipacheva E.V., Shishkin K.A. 2024.

Submitted November 3, 2023.

113

https://doi.org/10.13108/2024-16-3-113


114 R.N. GUMEROV, E.V. LIPACHEVA, K.A. SHISHKIN

this result, we use of the completeness and cocompleteness of the category of 𝐶*–algebras and
their *–homomorphisms [16]. The completeness of every compact 𝐶*–relation together with
the aforementioned equivalence between the compactness of a 𝐶*–relation ℛ and the existence
of an initial object in ℛ yields the criterion for the existence of the universal 𝐶*–algebra 𝐶*(ℛ).
Namely, 𝐶*(ℛ) exists if and only if the category ℛ is complete.

The article is organized as follows. It consists of the Introduction and three sections. Section 2
contains needed notation, definitions and facts from the category theory and the theory of 𝐶*–
relations. In Section 3 we prove that every compact 𝐶*–relation is complete. As a consequence
of this result, we obtain the criterion for the existence of universal 𝐶*–algebras. Section 4 is
devoted to the proof of the cocompleteness of all compact 𝐶*–relations.

2. Preliminaries

In this section, we recall some necessary definitions and facts from the theory of categories
and functors. For detail we refer the reader to book [17].

Let 𝒞 be a category and ℐ be a small category. A functor 𝒟 : ℐ → 𝒞 is called a diagram in
𝒞 of shape ℐ.
A cone on the diagram 𝒟 is a pair (𝒱 , 𝜏), where 𝒱 : ℐ → 𝒞 is a constant functor and 𝜏 : 𝒱 → 𝒟

is a natural transformation from 𝒱 to 𝒟. Thus, the functor 𝒱 sends each object 𝐼 of ℐ to a
fixed object 𝑉 in 𝒞 and 𝒱(𝑓) is the identity 1𝑉 on 𝑉 for each morphism 𝑓 of ℐ. Moreover, one
has a family of morphisms 𝜏𝐼 : 𝑉 → 𝒟(𝐼) indexed by objects 𝐼 of the category ℐ such that the
diagram

𝑉

𝜏𝐽

!!

𝜏𝐼

}}
𝒟(𝐼)

𝒟(𝑓)
// 𝒟(𝐽)

commutes for every morphism 𝑓 : 𝐼 → 𝐽 in ℐ.
A cone (𝒱 , 𝜏) on the diagram 𝒟 is said to be universal if for every cone (𝒱 ′, 𝜏 ′) on 𝒟 there

exists a unique morphism 𝜙 : 𝑉 ′ → 𝑉 in 𝒞 such that 𝜏 ′ = 𝜏 ∘ 𝜙, that is, the diagram

𝑉 ′

𝜏 ′𝐽

��

𝜏 ′𝐼





𝜙

��
𝑉

𝜏𝐽

!!

𝜏𝐼

}}
𝒟(𝐼)

𝒟(𝑓)
// 𝒟(𝐽)

commutes for every morphism 𝑓 : 𝐼 → 𝐽 in ℐ. A universal cone on 𝒟 is called a limit of the
diagram 𝒟. A category is said to be complete if it has a limit for every diagram in this category.
In what follows, two basic types of limits of diagrams are involved in our arguing. These are

products and equalizers; let us recall the definitions.
Let Λ be a set. We denote by ℒ the discrete category, the objects of which are the elements

of Λ and all morphisms are the identities. Let {𝐶𝜆}𝜆∈Λ be a family of objects in the category 𝒞.
Consider the diagram 𝒟 : ℒ → 𝒞, which sends an object 𝜆 of ℒ to the object 𝐶𝜆 in 𝒞. A limit of
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the diagram 𝒟 is called the product of the family {𝐶𝜆}𝜆∈Λ. It is denoted by

(︂∏︀
𝜆∈Λ

𝐶𝜆, {𝑝𝜆}𝜆∈Λ
)︂
.

The object
∏︀
𝜆∈Λ

𝐶𝜆 itself is often called the product of the family {𝐶𝜆}𝜆∈Λ. The morphisms 𝑝𝜆

are called the projections of the product. Thus, the product possesses the following universal
property. For each object 𝐶 in 𝒞 and each Λ–indexed family of morphisms 𝑓𝜆 : 𝐶 → 𝐶𝜆 in 𝒞
there exists a unique morphism 𝑓 : 𝐶 →

∏︀
𝜆∈Λ

𝐶𝜆 such that for each 𝜇 ∈ Λ the diagram

𝐶

𝑓

��

𝑓𝜇

!!∏︀
𝜆∈Λ

𝐶𝜆
𝑝𝜇 // 𝐶𝜇

is commutative. We say that a category has all products if every family of its objects indexed
by a set has a product in this category.

Another basic limit is an equalizer, which is defined as follows. Let ℰ be a category with
two objects, say 𝐴 and 𝐵, with two morphisms 𝑢, 𝑣 : 𝐴 → 𝐵, and with no other morphisms
except for identities. Let 𝑓, 𝑔 : 𝐶1 → 𝐶2 be morphisms of the category 𝒞. We refer to pairs of
morphisms like 𝑓 and 𝑔 as parallel morphisms. Consider the diagram 𝒟 in 𝒞 of shape ℰ such
that 𝒟(𝑢) = 𝑓 and 𝒟(𝑣) = 𝑔. A limit of this diagram 𝒟 : ℰ → 𝒞 is called the equalizer of 𝑓
and 𝑔. Thus, it is a pair (𝐸, 𝑒), where 𝐸 is an object of the category 𝒞 and 𝑒 : 𝐸 → 𝐶1 is a
morphism of 𝒞 such that 𝑓 ∘ 𝑒 = 𝑔 ∘ 𝑒 and the following universal property holds:

𝐸
𝑒 // 𝐶1

𝑓 //
𝑔

// 𝐶2

𝐻

ℎ

>>

𝑑

OO

every morphism ℎ : 𝐻 → 𝐶1 such that 𝑓 ∘ ℎ = 𝑔 ∘ ℎ can be factorized uniquely through 𝑒, that
is, there exists a unique morphism 𝑑 : 𝐻 → 𝐸 such that 𝑒 ∘ 𝑑 = ℎ. In case each pair of parallel
morphisms in a category 𝒞 has an equalizer, we say that 𝒞 has all equalizers.
The next result states that all limits can be built up from products and equalizers [17, Ch.

V, Sect. 2, Cor. 2].

Lemma 2.1. A category is complete if and only if it has all products and equalizers.

Using the duality principle, one obtains the dual notions, namely, a cocone, a universal
cocone, a colimit, a coproduct, a coequalizer, a cocomplete category and the dual of Lemma 2.1.
For details, we refer the reader to [17, Ch. II, Sect. 1].

We denote by 𝐶*–alg the category of all 𝐶*–algebras and *–homomorphisms between them.
The trivial 𝐶*–algebra consisting of single zero element is denoted by 0.
For a family {𝐴𝜆 | 𝜆 ∈ Λ} of objects in 𝐶*–alg indexed by a set Λ, we consider the direct

product ∏︁
𝜆∈Λ

𝐴𝜆 :=
{︁
(𝑎𝜆)

⃒⃒
‖(𝑎𝜆)‖ = sup

𝜆
‖𝑎𝜆‖ < +∞

}︁
,

which is a 𝐶*–algebra with respect to the coordinatewise algebraic operations and the supremum
norm.
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Further, we give the definitions of categories from Loring’s paper [5]. These categories are
the main objects of investigation in the present article.

Given a set 𝑋, the null 𝐶*–relation on 𝑋 is the category ℱ𝑋 , the objects of which are all
functions of the form 𝑗 : 𝑋 → 𝐴, where 𝐴 is a 𝐶*–algebra. For two objects 𝑗 : 𝑋 → 𝐴 and
𝑘 : 𝑋 → 𝐵 in ℱ𝑋 , a morphism from 𝑗 to 𝑘 is each *–homomorphism of 𝐶*–algebras 𝜙 : 𝐴→ 𝐵
making the diagram

𝑋

𝑗

��

𝑘

  
𝐴

𝜙 // 𝐵

commute, i.e., 𝑘 = 𝜙 ∘ 𝑗.
A 𝐶*–relation on 𝑋 is a full subcategory ℛ of ℱ𝑋 satisfying the following axioms:

C1 the function 𝑋 → 0 is an object of ℛ;
C2 if 𝜙 : 𝐴 → 𝐵 is an injective *–homomorphism of 𝐶*–algebras, 𝑓 : 𝑋 → 𝐴 is a function

and 𝜙 ∘ 𝑓 is an object of ℛ, then 𝑓 is an object of ℛ;
C3 if 𝜙 : 𝐴→ 𝐵 is a *–homomorphism of 𝐶*–algebras and 𝑓 : 𝑋 → 𝐴 is an object of ℛ, then

𝜙 ∘ 𝑓 is an object of ℛ;
C4f if 𝑓𝑖 : 𝑋 → 𝐴𝑖 is an object of ℛ for every 𝑖 = 1, . . . , 𝑛, 𝑛 ∈ N, then the function

𝑛∏︁
𝑖=1

𝑓𝑖 : 𝑋 →
𝑛∏︁
𝑖=1

𝐴𝑖

is an object of ℛ.

Objects of 𝐶*–relations are also called the representations.
A 𝐶*–relation ℛ on a set 𝑋 is said to be compact if, in addition, the following condition is

fulfilled:

C4 for each non–empty set Λ, if 𝑓𝜆 : 𝑋 → 𝐴𝜆 is an object of ℛ for every 𝜆 ∈ Λ, then the
function ∏︁

𝜆∈Λ

𝑓𝜆 : 𝑋 →
∏︁
𝜆∈Λ

𝐴𝜆

is also an object of ℛ.

The following statement is a reformulation of Theorem 2.10 from [5] (see also [2, Prop.
1.3.6], [3, Sect. 3.1] and [4, Sect. 1.4]).

Lemma 2.2. Let ℛ be a 𝐶*–relation on a set 𝑋. Then ℛ is compact if and only if there
exists an initial object in ℛ.

In what follows, for a compact 𝐶*–relation ℛ on a set 𝑋, we consider an initial object
𝑖 : 𝑋 → 𝐴 of ℛ. The 𝐶*–algebra 𝐴 is denoted by 𝐶*(ℛ). Thus, for every representation
𝑗 : 𝑋 → 𝐵 of ℛ there exists a unique *–homomorphism of 𝐶*–algebras 𝑘 : 𝐶*(ℛ) → 𝐵 such
that the diagram

𝑋

𝑖

��

𝑗

""
𝐶*(ℛ)

𝑘
// 𝐵

is commutative, i.e., 𝑗 = 𝑘 ∘ 𝑖.
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The object 𝑖 : 𝑋 → 𝐶*(ℛ) is called the universal representation, and the 𝐶*–algebra 𝐶*(ℛ)
is called the universal 𝐶*–algebra for the compact 𝐶*–relation ℛ.
Finally, we give three examples of 𝐶*–relations, which are denoted by ℛ1, ℛ2 and ℛ3. Since

every 𝐶*–relation must be a full subcategory in the null 𝐶*–relation ℱ𝑋 , we specify only objects
for these categories. One can easily verify that Axioms C1, C2, C3 and C4f hold in ℛ1, ℛ2,
and ℛ3, that is, these categories are 𝐶*–relations.

Example 2.1. Let 𝑋 = {𝑥} be an one–element set. We consider the category ℛ1, the objects
of which are all functions 𝑓 : 𝑋 → 𝐴, where 𝐴 is a 𝐶*–algebra, and 𝑓(𝑥) is a normal element
of 𝐴.

We claim that ℛ1 is not a compact 𝐶*–relation. Indeed, to see this, we fix a 𝐶*–algebra
𝐴 and a non–zero normal element 𝑎 ∈ 𝐴. For each 𝑛 ∈ N, we consider the object 𝑓𝑛 of the
category ℛ1 defined as

𝑓𝑛 : 𝑋 → 𝐴 : 𝑥 ↦→ 𝑛𝑎.

Since sup𝑛∈N ‖𝑓𝑛(𝑥)‖ = +∞, Axiom C4 is not valid for ℛ1. That is, the 𝐶
*–relation ℛ1 is not

compact, as claimed.
By Lemma 2.2, there is no initial object in the category ℛ1, and the universal 𝐶*–algebra for

ℛ1 is not defined.
We note that the category ℛ1 is a *–polynomial relation associated with the *–polynomial

pair (𝑋, {𝑥*𝑥− 𝑥𝑥*}). This fact also guarantees that ℛ1 is a 𝐶*–relation [13, Prop. 2].

Example 2.2. Let 𝑋 = {𝑥}. As objects of the category ℛ2, we take all functions of the
form 𝑓 : 𝑋 → 𝐴, where 𝐴 is a unital 𝐶*–algebra and 𝑓(𝑥) is a unitary element in 𝐴. It is
straightforward to verify that Axiom C4 is satisfied in the 𝐶*–relation ℛ2, hence, it is compact.
By Lemma 2.2, there exist the universal representation in ℛ2 and the universal 𝐶*–algebra

𝐶*(ℛ2).
Using the continuous functional calculus, one can see that 𝐶*(ℛ2) is isomorphic to the com-

mutative 𝐶*–algebra 𝐶(𝑆1) consisting of all continuous complex–valued functions on the unit
circle 𝑆1 in the complex plane.

Example 2.3. Let 𝑛 ⩾ 2 be an integer and 𝑋 = {𝑥1, . . . , 𝑥𝑛} be a set consisting of 𝑛
elements. We define ℛ3 as the category, the objects of which are all functions of the form
𝑓 : 𝑋 → 𝐴, where 𝐴 is a unital 𝐶*–algebra and 𝑓(𝑥1), . . . , 𝑓(𝑥𝑛) are isometries with pairwise
orthogonal ranges. It is easy to see that Axiom C4 holds for the 𝐶*–relation ℛ3, that is, ℛ3 is
compact.

Consequently, by Lemma 2.2, there is the universal representation 𝑖 : 𝑋 → 𝐶*(ℛ3) in the
category ℛ3.

The universal 𝐶*–algebra 𝐶*(ℛ3) is called the Toeplitz — Cuntz algebra for 𝑛 generators.
This algebra was defined and studied by Cuntz [14], [15]. In particular, it was shown that the
Toeplitz — Cuntz algebra contains a closed two–sided ideal, which is isomorphic to the compact
operators on an infinite–dimensional separable Hilbert space, and the quotient of 𝐶*(ℛ3) by
this ideal is the Cuntz algebra [14]. In [11], [12], the universal property of 𝐶*(ℛ3) is used for
constructing the direct sequences of the Toeplitz — Cuntz algebras and studying properties of
reduced semigroup 𝐶*–algebras.

3. Completeness of compact 𝐶*–relations

In this section we show that all compact 𝐶*–relations are complete. Our proof is based on
the fact that the category 𝐶*–alg is complete [16]. More precisely, we explore explicit limit
constructions in the category 𝐶*–alg from [16]. Using completeness of compact 𝐶*–relations
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and Lemma 2.2, we obtain the criterion for the existence of universal 𝐶*–algebras for 𝐶*–
relations.

Lemma 3.1. Every compact 𝐶*–relation ℛ on a set 𝑋 has all products.

Proof. Let {𝑓𝜆 : 𝑋 → 𝐴𝜆}𝜆∈Λ be a family of objects of ℛ indexed by elements of a set Λ.
Consider the function ∏︁

𝜆∈Λ

𝑓𝜆 : 𝑋 →
∏︁
𝜆∈Λ

𝐴𝜆 : 𝑥 ↦→ (𝑓𝜆(𝑥))𝜆∈Λ, 𝑥 ∈ 𝑋.

By Axiom C4, it is an object of the category ℛ. For each 𝜆 ∈ Λ, we denote by 𝑝𝜆 the natural
projection of the direct product of the 𝐶*–algebras

∏︀
𝜇∈Λ

𝐴𝜇 onto the 𝐶*–algebra 𝐴𝜆. Obviously,

the *–homomorphism 𝑝𝜆 is a morphism of ℛ.
We claim that the pair (︃∏︁

𝜆∈Λ

𝑓𝜆, {𝑝𝜆 :
∏︁
𝜇∈Λ

𝐴𝜇 → 𝐴𝜆}𝜆∈Λ

)︃
is a product of this family in ℛ. Indeed, to show that this pair satisfies the universal property,
we take an object 𝑓 : 𝑋 → 𝐴 and a family of morphisms {𝑔𝜆 : 𝐴 → 𝐴𝜆}𝜆∈Λ in the category ℛ
such that

𝑔𝜆 ∘ 𝑓 = 𝑓𝜆 whenever 𝜆 ∈ Λ. (3.1)

Since the pair

(︂∏︀
𝜆∈Λ

𝐴𝜆, {𝑝𝜆}𝜆∈Λ
)︂

is a product [16, Thm. 2.9] of the family {𝐴𝜆}𝜆∈Λ in the

category of 𝐶*–algebras and their *–homomorphisms, there is a unique *–homomorphism∏︁
𝜆∈Λ

𝑔𝜆 : 𝐴→
∏︁
𝜆∈Λ

𝐴𝜆 : 𝑎 ↦→ (𝑔𝜆(𝑎))𝜆∈Λ

such that

𝑝𝜇 ∘
∏︁
𝜆∈Λ

𝑔𝜆 = 𝑔𝜇 (3.2)

for each index 𝜇 ∈ Λ, that is, in the next diagram the bottom triangle is commutative:

𝑋

𝑓





𝑓𝜇

��

∏︀
𝜆∈Λ

𝑓𝜆

��∏︀
𝜆∈Λ

𝐴𝜆

𝑝𝜇

  
𝐴

∏︀
𝜆∈Λ

𝑔𝜆

>>

𝑔𝜇
// 𝐴𝜇

Moreover, using (3.2), (3.1) and the commutativity of the triangle on the right–hand side of
the diagram, we have the equalities(︁

𝑝𝜇 ∘

(︃∏︁
𝜆∈Λ

𝑔𝜆

)︃
∘ 𝑓
)︁
(𝑥) = (𝑔𝜇 ∘ 𝑓)(𝑥) = 𝑓𝜇(𝑥) =

(︁
𝑝𝜇 ∘

∏︁
𝜆∈Λ

𝑓𝜆

)︁
(𝑥)
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for every index 𝜇 ∈ Λ and for every 𝑥 ∈ 𝑋. Consequently, by the definition of an element
of a product in category of 𝐶*–algebras, the triangle on the left–hand side of the diagram is
commutative: (︃∏︁

𝜆∈Λ

𝑔𝜆

)︃
∘ 𝑓 =

∏︁
𝜆∈Λ

𝑓𝜆,

that is, the *–homomorphism
∏︀
𝜆∈Λ

𝑔𝜆 is a morphism of the 𝐶*–relation ℛ.

Thus, the required universal property is satisfied and the pair

(︂∏︀
𝜆∈Λ

𝑓𝜆, {𝑝𝜆}𝜆∈Λ
)︂

is a product

in the category ℛ, as claimed. The proof is complete.

To prove the following statement we use the fact that the category 𝐶*–alg has all equalizers
[16, Lm. 2.5].

Lemma 3.2. Every compact 𝐶*–relation ℛ on a set 𝑋 has all equalizers.

Proof. We take two objects 𝑓 : 𝑋 → 𝐴 and 𝑔 : 𝑋 → 𝐵 and two parallel morphisms 𝜙 : 𝐴 → 𝐵
and 𝜓 : 𝐴→ 𝐵 from 𝑓 to 𝑔 in the category ℛ.

Let us consider the 𝐶*–algebra 𝐸 and the *–homomorphism 𝜀 of 𝐶*–algebras defined as

𝐸 = {𝑎 ∈ 𝐴 | 𝜙(𝑎) = 𝜓(𝑎)} , 𝜀 : 𝐸 → 𝐴 : 𝑎 ↦→ 𝑎, 𝑎 ∈ 𝐸.

It is clear that

𝐸
𝜀 // 𝐴

𝜙 //

𝜓
// 𝐵

is an equalizer diagram in the category of 𝐶*–alg.
Further, we define a function 𝑒 : 𝑋 → 𝐸 such that the pair (𝑒 : 𝑋 → 𝐸, 𝜀) is an equalizer

of morphisms 𝜙 and 𝜓 in the category ℛ. We show that this function is determined by the
condition

𝜀 ∘ 𝑒 = 𝑓. (3.3)

Namely, we let

𝑒(𝑥) := 𝑓(𝑥), 𝑥 ∈ 𝑋. (3.4)

First of all, we need to verify that the function 𝑒 : 𝑋 → 𝐸 given by the rule (3.4) is well–defined,
that is,

𝑓(𝑥) ∈ 𝐸 whenever 𝑥 ∈ 𝑋. (3.5)

Since 𝜙 and 𝜓 are parallel morphisms from 𝑓 to 𝑔 in ℛ, we have

𝜙(𝑓(𝑥)) = 𝑔(𝑥) = 𝜓(𝑓(𝑥)).

Hence, condition (3.5) holds, as required.
Since 𝜀 : 𝐸 → 𝐴 is an injective *–homomorphism and 𝑓 : 𝑋 → 𝐴 is an object of the category

ℛ, by Axiom C2, it follows from the equality (3.3) that the function 𝑒 is an object of ℛ.
Moreover, the equality (3.3) implies that the *–homomorphism 𝜀 is a morphism of ℛ.
We claim that the pair (𝑒 : 𝑋 → 𝐸, 𝜀 : 𝐸 → 𝐴) is an equalizer of the morphisms 𝜙 : 𝐴 → 𝐵

and 𝜓 : 𝐴→ 𝐵 in ℛ. Indeed, firstly, we have the equality

𝜙 ∘ 𝜀 = 𝜓 ∘ 𝜀.

Secondly, we need to show that the pair (𝑒, 𝜀) possesses the universal property in the category
ℛ. To this end, we take a pair (ℎ : 𝑋 → 𝐶, 𝜒 : 𝐶 → 𝐴) consisting of an object ℎ in ℛ and
a morphism 𝜒 in ℛ from ℎ to 𝑓 such that 𝜙 ∘ 𝜒 = 𝜓 ∘ 𝜒. By the universal property of the
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equalizer (𝐸, 𝜀) in the category 𝐶*–alg, there exists a unique *–homomorphism 𝜏 : 𝐶 → 𝐸 of
𝐶*–algebras making the triangle

𝐸
𝜀 // 𝐴

𝜙 //

𝜓
// 𝐵

𝐶

𝜒

??

𝜏

OO

commute, that is,

𝜒 = 𝜀 ∘ 𝜏. (3.6)

Since the *–homomorphism of 𝐶*–algebras 𝜒 is a morphism of the category ℛ, we have the
equality

𝑓 = 𝜒 ∘ ℎ. (3.7)

Using the equalities (3.3), (3.7) and (3.6), we obtain

𝜀 ∘ 𝑒 = 𝑓 = 𝜒 ∘ ℎ = 𝜀 ∘ 𝜏 ∘ ℎ. (3.8)

Since the function 𝜀 is a monomorphism in the category of sets and functions, the equality (3.8)
implies the equality 𝑒 = 𝜏 ∘ ℎ. The latter means that the *–homomorphism 𝜏 is a morphism
in ℛ from ℎ to 𝑒. Thus, the pair (𝑒, 𝜀) is an equalizer of parallel morphisms 𝜙 and 𝜓 in ℛ, as
claimed. The proof is complete.

Using Lemma 3.1, Lemma 3.2 and Lemma 2.1, we have

Theorem 3.1. Every compact 𝐶*–relation is a complete category.

As an application of Theorem 3.1, we obtain the criterion for the existence of universal
𝐶*–algebra.

Theorem 3.2. Let ℛ be a 𝐶*–relation. Then the universal 𝐶*–algebra 𝐶*(ℛ) exists if and
only if the category ℛ complete.

Proof. By Lemma 2.2, the category ℛ has a universal representation 𝑖 : 𝑋 → 𝐶*(ℛ) if and
only if the 𝐶*–relation ℛ is compact. By Theorem 3.1, every compact 𝐶*–relation is complete.
Conversely, if the 𝐶*–relation ℛ is complete, then ℛ has all products and satisfies Axiom C4,
as required. This completes the proof.

4. Cocompleteness of compact 𝐶*–relations

In this section we show that every compact 𝐶*–relation is cocomplete. In our proof we
employ colimit constructions in the category 𝐶*–alg (see [16]).

Lemma 4.1. Each compact 𝐶*–relation ℛ on a set 𝑋 has all coproducts.

Proof. Let {𝑓𝜆 : 𝑋 → 𝐴𝜆}𝜆∈Λ be a family of objects in the category ℛ and the pair(︃∐︁
𝜆∈Λ

𝐴𝜆, {𝑖𝜆 : 𝐴𝜆 →
∐︁
𝜇∈Λ

𝐴𝜇}𝜆∈Λ

)︃
be a coproduct of the family {𝐴𝜆}𝜆∈Λ of 𝐶*–algebras in 𝐶*–alg (see [16, Lm. 2.3]).
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In the 𝐶*–algebra
∐︀
𝜆∈Λ

𝐴𝜆, we consider the closed two-sided ideal 𝐼 generated by the differences

𝑖𝜆(𝑓𝜆(𝑥))− 𝑖𝜇(𝑓𝜇(𝑥)), where 𝑥 runs over 𝑋 and 𝜆, 𝜇 ∈ Λ:

𝐼 =
⟨︀{︀
𝑖𝜆(𝑓𝜆(𝑥))− 𝑖𝜇(𝑓𝜇(𝑥))

⃒⃒
𝑥 ∈ 𝑋, 𝜆, 𝜇 ∈ Λ

}︀⟩︀
.

We denote by

𝑝 :
∐︁
𝜆∈Λ

𝐴𝜆 →
∐︁
𝜆∈Λ

𝐴𝜆

⧸︁
𝐼

the canonical *–homomorphism between the 𝐶*–algebras.
By the construction of the ideal 𝐼, we have

𝑝 ∘ 𝑖𝜆 ∘ 𝑓𝜆 = 𝑝 ∘ 𝑖𝜇 ∘ 𝑓𝜇
whenever 𝜆, 𝜇 ∈ Λ. We let 𝑓 = 𝑝 ∘ 𝑖𝜆 ∘ 𝑓𝜆 for 𝜆 ∈ Λ. By Axiom C3, the function 𝑓 is an object
of the category ℛ. Hence, the *–homomorphism 𝑝 ∘ 𝑖𝜆 is a morphism of ℛ for every 𝜆 ∈ Λ.
We claim that the pair(︃

𝑓 : 𝑋 →
∐︁
𝜆∈Λ

𝐴𝜆

⧸︁
𝐼, {𝑝 ∘ 𝑖𝜆 : 𝐴𝜆 →

∐︁
𝜇∈Λ

𝐴𝜇

⧸︁
𝐼}𝜆∈Λ

)︃
(4.1)

is a coproduct of the family {𝑓𝜆 : 𝑋 → 𝐴𝜆}𝜆∈Λ in the category ℛ. Indeed, we need to verify
that (4.1) satisfies the universal property.

To this end, we take a pair

(ℎ : 𝑋 → 𝐶, {𝑔𝜆 : 𝐴𝜆 → 𝐶}𝜆∈Λ)

where ℎ is an object of ℛ and 𝑔𝜆 is a morphism in ℛ from 𝑓𝜆 to ℎ for every 𝜆 ∈ Λ.
Let us show that there is a unique *–homomorphism

𝜙 :
∐︁
𝜆∈Λ

𝐴𝜆

⧸︁
𝐼 → 𝐶

such that 𝜙 ∘ 𝑓 = ℎ, that is, 𝜙 is a morphism of ℛ from 𝑓 to ℎ, and 𝑔𝜆 = 𝜙 ∘ (𝑝 ∘ 𝑖𝜆) for every
𝜆 ∈ Λ.

To do this, for arbitrary index 𝜇 ∈ Λ, we consider the diagram

𝑋

𝑖𝜇∘𝑓𝜇

��

ℎ

��

𝑓𝜇

��
𝐴𝜇

𝑖𝜇

{{

𝑔𝜇

!!∐︀
𝜆∈Λ

𝐴𝜆

𝑝

!!

∐︀
𝜆∈Λ

𝑔𝜆

// 𝐶

∐︀
𝜆∈Λ

𝐴𝜆

⧸︁
𝐼

𝜙

>>
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Since
∐︀
𝜆∈Λ

𝐴𝜆 is a coproduct in the category 𝐶*–alg, there is a unique *–homomorphism
∐︀
𝜆∈Λ

𝑔𝜆

making the central triangle in the above diagram commute.
For all 𝜇, 𝜈 ∈ Λ, we have(︀∐︁

𝜆∈Λ

𝑔𝜆
)︀
∘ (𝑖𝜇 ∘ 𝑓𝜇 − 𝑖𝜈 ∘ 𝑓𝜈) =

(︁(︀∐︁
𝜆∈Λ

𝑔𝜆
)︀
∘ 𝑖𝜇 ∘ 𝑓𝜇

)︁
−
(︁(︀∐︁

𝜆∈Λ

𝑔𝜆
)︀
∘ 𝑖𝜈 ∘ 𝑓𝜈

)︁
=
(︀
𝑔𝜇 ∘ 𝑓𝜇

)︀
−
(︀
𝑔𝜈 ∘ 𝑓𝜈

)︀
= ℎ− ℎ = 0.

It follows that the kernel of
∐︀
𝜆∈Λ

𝑔𝜆 contains the ideal 𝐼, and there is a unique *–homomorphism

𝜙 :
∐︁
𝜆∈Λ

𝐴𝜆

⧸︁
𝐼 → 𝐶

such that the bottom triangle in the above diagram is commutative, that is,

𝜙 ∘ 𝑝 =
∐︁
𝜆∈Λ

𝑔𝜆.

It is easy to see that 𝜙 ∘ 𝑓 = ℎ. Therefore, 𝜙 is a morphism of ℛ. Moreover, we have

𝑔𝜆 = 𝜙 ∘ (𝑝 ∘ 𝑖𝜆) for each 𝜆 ∈ Λ.

Thus, the required universal property is satisfied, and the pair (4.1) is a coproduct in the
category ℛ, as claimed. The proof is complete.

In the proof of the following statement we use the explicit construction of a coequalizer in
the category 𝐶*–alg (see [16, Lm. 2.5]).

Lemma 4.2. Every compact 𝐶*–relation ℛ on a set 𝑋 has all coequalizers.

Proof. We take two objects 𝑓 : 𝑋 → 𝐴 and 𝑔 : 𝑋 → 𝐵 and two parallel morphisms 𝜙 : 𝐴 → 𝐵
and 𝜓 : 𝐴→ 𝐵 from 𝑓 to 𝑔 in the category ℛ.

In the 𝐶*–algebra 𝐵, we construct the closed two–sided ideal 𝐼 generated by the differences
𝜙(𝑎)− 𝜓(𝑎), where 𝑎 runs over 𝐴:

𝐼 = ⟨{𝜙(𝑎)− 𝜓(𝑎) | 𝑎 ∈ 𝐴}⟩.
Let 𝐶 = 𝐵

⧸︀
𝐼 and 𝜋 : 𝐵 → 𝐶 be the canonical surjection. It was shown in the proof of

Lemma 2.5 in [16] that

𝐴
𝜙 //

𝜓
// 𝐵

𝜋 // 𝐶

is a coequalizer diagram in the category 𝐶*–alg.
To construct a coequalizer of the morphisms 𝜙 and 𝜓 in the category ℛ, we use Axiom C3

and define the object 𝑐 : 𝑋 → 𝐶 of ℛ by

𝑐 := 𝜋 ∘ 𝑔, (4.2)

which guarantees that the *–homomorphism 𝜋 is a morphism of the category ℛ from 𝑔 to 𝑐.
We claim that the pair (𝑐 : 𝑋 → 𝐶, 𝜋 : 𝐵 → 𝐶) is a coequalizer of the morphisms 𝜙 : 𝐴→ 𝐵

and 𝜓 : 𝐴→ 𝐵 in ℛ. Indeed, by the construction of the ideal 𝐼, we have the equality

𝜋 ∘ 𝜙 = 𝜋 ∘ 𝜓.

We need to prove that the pair (𝑐, 𝜋) has the universal property in the category ℛ. To this
end, we take a pair (ℎ : 𝑋 → 𝐷,𝜒 : 𝐵 → 𝐷) consisting of an object ℎ in ℛ and a morphism 𝜒
in ℛ from 𝑔 to ℎ such that 𝜒∘𝜙 = 𝜒∘𝜓. By the universal property of the coequalizer (𝐶, 𝜋) in
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the category 𝐶*–alg, there exists a unique *–homomorphism 𝜏 : 𝐶 → 𝐷 of 𝐶*–algebras making
the triangle in the diagram

𝐴
𝜙 //

𝜓
// 𝐵

𝜒

��

𝜋 // 𝐶

𝜏

��
𝐷

commute, that is,

𝜒 = 𝜏 ∘ 𝜋. (4.3)

It remains to show that the *–homomorphism of 𝐶*–algebras 𝜏 is a morphism from 𝑐 to ℎ in
the category ℛ. Because the *–homomorphism of 𝐶*–algebras 𝜒 is a morphism of the category
ℛ, we have

ℎ = 𝜒 ∘ 𝑔. (4.4)

By the equalities (4.4), (4.3) and (4.2), we get

ℎ = 𝜒 ∘ 𝑔 = 𝜏 ∘ 𝜋 ∘ 𝑔 = 𝜏 ∘ 𝑐,
which means that 𝜏 is a morphism from 𝑐 to ℎ in the category ℛ, as required. It follows that
the pair (𝑐, 𝜋) is a coequalizer of parallel morphisms 𝜙 and 𝜓 in ℛ, as claimed. This completes
the proof.

As an immediate consequence of Lemma 4.1, Lemma 4.2, Lemma 2.1 and the categorical
duality principle [17, Ch. II, Sect. 1], we obtain the following theorem.

Theorem 4.1. Every compact 𝐶*–relation is a cocomplete category.
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