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EXTREME POINT OF

COMPLETELY CONVEX STATE STRUCTURE

S.G. KHALIULLIN

Abstract. It is well–known that the set of states of a given quantum mechanical system is
to be closed from the point of view of the operational approach if we want to make mixed
states or convex combinations. That is, 𝑠1 and 𝑠2 are states, then the same is to be true
for 𝜆𝑠1 + (1− 𝜆)𝑠2, where 0 < 𝜆 < 1. We can define a convex combination of elements in a
linear space, but unfortunately, in the general case the linear space is artificial for the set of
states and has no physical meaning, but the procedure of forming the mixtures of states has
a natural meaning. This is why we provide an abstract definition of the mixtures, which is
independent of the linearity notion. We call this space a convex structure.

In the work we consider state spaces, generalized state spaces, in which we select pure
states, define operations and effects associated with the operations.

We also consider ultraproducts of the sequences of these structures, operations and effects.
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1. Introduction

Various authors give various definitions of state or state space. For instance, according to Sigal,
the state is a real function on the set of bounded observables, which possesses some properties. From
the point of view of Mackey [1], this definition admits too many states since not each state in the
sense of Sigal associates some probability distribution to each bounded observable. Sigal states are all
limits of such states, which indeed associates a probability distribution to each bounded observable.
In applications these ideal “limiting states” often turn out to be convenient.

On the other hand, the state is defined as some function acting from the structure of events to the
unit segment, see [2]. The value of this function is interpreted as a probability that some event occurs
at the current state. Finally, the state space is defined axiomatically and it is a convex structure and
even a complete metric space.

In the paper we consider the state spaces and generalized space states. These definitions of the
states make the studies more flexible. In the work we also study various approaches to the notion of
the operator in the state space, see [2], [3], pure operations and effects associated with the operations.

The work is devoted to defining and studying ultraproducts of abstract state spaces. It is shown
that completely convex state structures are stable with respect to the ultraproducts. Ultraproducts of
sequences of operations are also considered, and we prove that the ultraproduct of pure states, in the
general case, is not a pure operation.

2. Notion of state mixture. Preliminaries

We first recall some definitions.

Definition 2.1 (see, for instance, [2]). Let ℰ be a non–empty set, 𝑆 be the set of functions from ℰ
into the unit interval [0, 1]. A pair (ℰ , 𝑆) is called the event structure if the following two axioms hold:
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A1. If 𝑠(𝑎) = 𝑠(𝑏) for each 𝑠 ∈ 𝑆, then 𝑎 = 𝑏;
A2. If 𝑎1, 𝑎2, . . . ∈ ℰ satisfy the condition 𝑠(𝑎𝑖)+ 𝑠(𝑎𝑗) ⩽ 1, 𝑖 ̸= 𝑗, for each 𝑠 ∈ 𝑆, then there exists an

element 𝑏 ∈ ℰ , such that

𝑠(𝑏) + 𝑠(𝑎1) + 𝑠(𝑎2) + . . . . = 1

for each 𝑠 ∈ 𝑆.

The study of the properties of event structures and their ultraproducts can be found in work [6].

Definition 2.2 (see, for instance, [2]). Let (ℰ , 𝑆) be an event structure. The elements of the set ℰ
are called the events, while the elements of the set 𝑆 are called the states. The state set 𝑆 is called the
convex structure if it possesses the following two properties:

1. For all positive numbers 𝜆1, 𝜆2, . . . , 𝜆𝑛 such that
𝑛∑︀

𝑖=1
𝜆𝑖 = 1 and all states 𝑠1, 𝑠2, . . . , 𝑠𝑛 there

exists a unique element

⟨𝜆1, 𝜆2, . . . , 𝜆𝑛; 𝑠1, 𝑠2, . . . , 𝑠𝑛⟩ ∈ 𝑆;

2. ⟨𝜆1, . . . , 𝜆𝑛; 𝑠, 𝑠, . . . , 𝑠⟩ = 𝑠.

The defined in this way state ⟨𝜆1, 𝜆2, . . . , 𝜆𝑛; 𝑠1, 𝑠2, . . . , 𝑠𝑛⟩ is called the mixture of states
𝑠1, 𝑠2, . . . , 𝑠𝑛. For a mixture of two states we employ a simpler notation ⟨𝜆, 1− 𝜆; 𝑠, 𝑡⟩ = ⟨𝜆; 𝑠, 𝑡⟩ .
A state 𝑠 ∈ 𝑆 is called pure if it can not be written as 𝑠 = ⟨𝜆; 𝑡1, 𝑡2⟩ for some 𝑡1 ̸= 𝑡2.

We are going to introduce the notion of distance in a convex structure 𝑆. The closeness of states 𝑠
and 𝑡 can be measured by comparing the mixtures ⟨𝜆; 𝑠1, 𝑠⟩ and ⟨𝜆; 𝑡1, 𝑡⟩ with other states.

Definition 2.3. We define the distance 𝜎(𝑠, 𝑡) for two states 𝑠, 𝑡 ∈ 𝑆 as follows: if there exist two
states 𝑠1, 𝑡1 ∈ 𝑆 such that the condition ⟨𝜆; 𝑠1, 𝑠⟩ = ⟨𝜆; 𝑡1, 𝑡⟩ holds, then

𝜎(𝑠, 𝑡) = inf {0 < 𝜆 ⩽ 1 : ⟨𝜆; 𝑠1, 𝑠⟩ = ⟨𝜆; 𝑡1, 𝑡⟩} ;
otherwise, 𝜎(𝑠, 𝑡) = 1/2.

In the general case this function is not metric.

Definition 2.4. A convex structure 𝑆 is called the 𝜎–convex structure if the following conditions
are satisfied:

1. If
𝑠𝑛 ∈ 𝑆 and lim

𝑛,𝑚→∞
𝜎(𝑠𝑛, 𝑠𝑚) = 0,

then there exists a unique state 𝑠 ∈ 𝑆 such that

lim
𝑛→∞

𝜎(𝑠𝑛, 𝑠) = 0.

2. If

𝜆𝑖 > 0,
∞∑︁
𝑖=1

𝜆𝑖 = 1, 𝑡1, 𝑡2, · · · ∈ 𝑆,

and

𝑠𝑛 =

⟨
𝜆1, . . . , 𝜆𝑛,

∞∑︁
𝑖=𝑛+1

𝜆𝑖; 𝑡1, . . . , 𝑡𝑛, 𝑡𝑛+1

⟩
,

then

lim
𝑛,𝑚→∞

𝜎(𝑠𝑛, 𝑠𝑚) = 0.

Thus, we can consider mixtures of countably many states.

Definition 2.5. A mapping 𝑓 : 𝑆 → R is called the affine functional if

𝑓(⟨𝜆1, 𝜆2, . . . , 𝜆𝑛; 𝑠1, 𝑠2, . . . , 𝑠𝑛⟩) =
𝑛∑︁

𝑖=1

𝜆𝑖𝑓(𝑠𝑖)

for each set of states 𝑠1, . . . , 𝑠𝑛 and positive numbers 𝜆1, . . . , 𝜆𝑛, for which
𝑛∑︀

𝑖=1
𝜆𝑖 = 1.
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We note that the set of affine functionals 𝑆* is a linear space with respect to pointwise operations.
We define zero and unit functionals: 0(𝑠) = 0, e(𝑠) = 1 for all 𝑠 ∈ 𝑆. On 𝑆* we define a partial order
relation: 𝑓 ⩽ 𝑔 ⇔ 𝑓(𝑠) ⩽ 𝑔(𝑠) for all 𝑠 ∈ 𝑆. A functional 𝑓 ∈ 𝑆* is called the effect if 0 ⩽ 𝑓 ⩽ e. We
denote the set of effects by ℰ(𝑆). It forms a convex subset in the linear space 𝑆*.

Definition 2.6. A completely convex structure is a 𝜎–convex structure possessing the following prop-
erty: if 𝑓(𝑠) = 𝑓(𝑡) for each effect 𝑓, then 𝑠 = 𝑡.

The meaning of the latter definition is that it fails in some quantum systems, see [7]. It is well–known
[2] that if Definition 2.6 is satisfied, then 𝜎 is a metric and the space (𝑆, 𝜎) is a complete metric space.

Extreme points of the convex subset ℰ(𝑆) of the linear space 𝑆* are called the questions. The set of
questions 𝒫(𝑆) ⊆ 𝑆* inherits the order 𝑆* and this is why it is a partially ordered set with the smallest
element 0 and the greatest element e.

Now we equip 𝑆* with a weak *–topology. This is a natural topology for 𝑆*, since in this topology
a sequence of effects 𝑓𝑛 converges to an effect 𝑓 if and only if 𝑓𝑛(𝑠) → 𝑓(𝑠) for each state 𝑠, 𝑛→ ∞.

Let 𝑆 be a convex structure. We define the set 𝑆+ = {(𝛼, 𝑠) : 𝛼 ⩾ 0, 𝑠 ∈ 𝑆} and we let (𝛼, 𝑠) = (𝛽, 𝑡)
if 𝛼 = 𝛽 ̸= 0 and 𝑠 = 𝑡, and (0, 𝑠) = (0, 𝑡) = 0 for all 𝑠, 𝑡 ∈ 𝑆. If 𝑆 is a state set, we call 𝑆+ a generalized
state set. Then we define a convex structure on 𝑆+ by letting

⟨𝜆1, 𝜆2, . . . , 𝜆𝑛; (𝛼1, 𝑠1), . . . , (𝛼𝑛, 𝑠𝑛)⟩ =

(︃
𝑛∑︁

𝑖=1

𝜆𝑖𝛼𝑖,

⟨
𝜆1𝛼1∑︀𝑛
𝑖=1 𝜆𝑖𝛼𝑖

, . . . ,
𝜆𝑛𝛼𝑛∑︀𝑛
𝑖=1 𝜆𝑖𝛼𝑖

; 𝑠1, . . . , 𝑠𝑛

⟩)︃
.

Here we identify an element of form (1, 𝑠) ∈ 𝑆+ as an element 𝑠 ∈ 𝑆. In the same way as in the case
of state space 𝑆, the generalized state space can be treated as a complete metric space.

We denote by 𝑆*
+ the set of affine functionals for 𝑆+. It is known [2] that if 𝑓 ∈ 𝑆*, then there exists

a unique extension 𝑓 ∈ 𝑆*
+, and if 𝑓 ∈ 𝑆*

+, then 𝑓((𝛼, 𝑠)) = 𝛼𝑓(𝑠) for all (𝛼, 𝑠) ∈ 𝑆+. In particular,
there exists a unique extension of the unit functional ê ∈ 𝑆*

+ and ê((𝛼, 𝑠)) = 𝛼.

Definition 2.7. An operation is an affine mapping 𝐹 : 𝑆+ → 𝑆+ obeying the condition

ê(𝐹 (𝑤)) ⩽ ê(𝑤) (2.1)

for all 𝑤 = (𝛼, 𝑠) ∈ 𝑆+, 0 ⩽ 𝛼 ⩽ 1.

Here we note that the operation describes the change of the state related with some external action,
and the operation preserves the state mixtures. If 𝐹 is an operation such that

(𝛼, 𝑡) ∈ 𝑆+, 𝐹 ((𝛼, 𝑡)) = (𝛼′, 𝑡′),

then it can be considered as a mapping consisting of two parts: 𝛼 → 𝛼′, 𝑡 → 𝑡′. The part 𝑡 → 𝑡′ is
a distortion of a state, while 𝛼 → 𝛼′ is a degree of state weakening due to the action. For 𝑠 ∈ 𝑆 we
interpret 𝑒(𝐹 (𝑠)) as the probability of transferring the state 𝑠 due to the operation 𝐹.

For the operation 𝐹 we define a linear mapping 𝐹 * : 𝑆*
+ → 𝑆*

+ as

(𝐹 *𝑓)(𝑤) = 𝑓(𝐹 (𝑤))

for each 𝑓 ∈ 𝑆*
+, 𝑤 ∈ 𝑆+.

With each operation 𝐹 we associate its effect defined as

𝑓 = 𝐹 *(ê)|𝑆.
Since ê(𝐹 (𝑠)) = (𝐹 *ê)(𝑠) = 𝑓(𝑠) for each 𝑠 ∈ 𝑆, the effect 𝑓 determines only the probability of
transferring the state. Thus, the operation itself contains more information than the associated effect.

As in the case of usual states, we introduce the notion of extreme points (pure states) in the
generalized state space 𝑆+.

Definition 2.8. An operation is called pure if it transforms pure states into pure states.

Example 2.1. Let 𝐻 be a complex separable Hilbert space and 𝑆 be the set of density operators
on 𝐻. In this case 𝑆 is a 𝜎–convex structure, see [2]. Let us consider the set of bounded self–adjoint
operators 𝐴 on 𝐻 obeying the condition 0 ⩽ 𝐴 ⩽ 𝐼. We let e = 𝐼. We define the effect

𝐴(𝑠) = Tr(𝐴𝑠).
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It is known [3], [4] that such effects describe all effects on 𝑆, and the effect 𝐴 is a question if and only
if 𝐴 is a projection. A generalized state 𝑤 = (𝛼, 𝑠) ∈ 𝑆+ is defined as an operator 𝛼𝑠, 0 < 𝛼 ⩽ 1,
𝑠 ∈ 𝑆. Thus, the class 𝑆+ can be regarded as a class of operators with a positive trace.

In this case

ê(𝑤) = Tr(𝑤) = 𝛼Tr(𝑠).

Now we approach the conception of the operation from a bit another point of view.

Definition 2.9 ([3]). Let 𝑆1 and 𝑆2 be state spaces in Hilbert spaces 𝐻1 and 𝐻2 (finite– or infinite–
dimensional) being 𝜎–convex structures, respectively. The operation on 𝑆1 is defined as a positive linear
mapping 𝑇 : 𝑆1 → 𝑆2 obeying the condition

e2(𝑇 (𝑠)) ⩽ e1(𝑠) or (Tr(𝑇 (𝑠)) ⩽ Tr(𝑠) )

for all 𝑠 ∈ 𝑆1, where e1 is the unity in 𝑆1, and e2 is the unity in 𝑆2.

If 𝑇 is a pure operation, the structure of this operation is well–known [3], namely, it is represented
in one of the following forms:

𝑇 (𝑠) = 𝐵𝑠𝐵*,

or

𝑇 (𝑠) = Tr(𝑠𝐵)|𝜓 >< 𝜓|,
where 𝐵 : 𝐻1 → 𝐻2 is a linear bounded operator, 𝜓 ∈ 𝐻2. In the latter case the operation 𝑇 is
degenerate, that is, 𝑇 maps all states 𝑠 ∈ 𝑆1 into a single state in 𝑆2 defined by a vector 𝜓 ∈ 𝐻2.
In these cases the pure operation possesses a property e2(𝑇 (𝑠)) = e1(𝑠), or, in other words, the pure
operation preserves the effect.

3. Ultraproducts of completely convex structures

Definition 3.1. Let (𝑆𝑛, 𝜎𝑛) be a sequence of completely convex structures, U be a nontrivial ul-
trafilter in the set of natural numbers N. We consider the Cartesian product

∏︀∞
𝑛=1 𝑆𝑛 of a sequence

(𝑆𝑛) and introduce in it an equivalence relation by letting

(𝑠𝑛) ∼ (𝑡𝑛) ⇔ lim
U
𝜎𝑛(𝑠𝑛, 𝑡𝑛) = 0.

The set of all equivalence classes
∏︀∞

𝑛=1 𝑆𝑛 defined by this relation is called the ultraproduct of the
sequence (𝑆𝑛) and it is denoted by 𝑆U = (𝑆𝑛)U .

In the ultraproduct (𝑆𝑛)U we naturally define the metric 𝜎U by letting

𝜎U (𝑠, 𝑡) = lim
U
𝜎𝑛(𝑠𝑛, 𝑡𝑛), 𝑡 = (𝑡𝑛)U , 𝑠 = (𝑠𝑛)U ,

and effects

𝑓U (𝑠) = lim
U
𝑓𝑛(𝑠𝑛), 𝑓𝑛 ∈ ℰ(𝑆𝑛), 𝑠 = (𝑠𝑛)U .

The pair (𝑆U , 𝜎U ) is called the ultraproduct of sequence of completely convex structures.

Theorem 3.1. Let (𝑆𝑛, 𝜎𝑛)𝑛⩾1 be a sequence of completely convex structures, U be a nontrivial
ultrafilter in the set of natural numbers N. Then the ultraproduct (𝑆U , 𝜎U ) is a completely convex
structure.

Proof. We are going to show that the ultraproduct preserves the structure of completely convex space.
The state mixtures are introduced in a natural way: for all positive numbers 𝜆1, 𝜆2, . . . , 𝜆𝑚 such

that
∑︀𝑚

𝑖=1 𝜆𝑖 = 1 and all states (𝑠1𝑛)U , (𝑠
2
𝑛)U , . . . , (𝑠

𝑚
𝑛 )U we let⟨︀

𝜆1, 𝜆2, . . . , 𝜆𝑚; (𝑠1𝑛)U , (𝑠
2
𝑛)U , . . . , (𝑠

𝑚
𝑛 )U

⟩︀
=
⟨︀
𝜆1, 𝜆2, . . . , 𝜆𝑚; 𝑠1𝑛, 𝑠

2
𝑛, . . . , 𝑠

𝑚
𝑛

⟩︀
U

∈ 𝑆U .

It is obvious that

⟨𝜆1, . . . , 𝜆𝑚; (𝑠𝑛)U , (𝑠𝑛)U , . . . , (𝑠𝑛)U ⟩ = (𝑠𝑛)U .

We consider a sequence ((𝑠𝑘𝑛)U )𝑘⩾1 such that

lim
𝑘,𝑚→∞

𝜎U ((𝑠𝑘𝑛)U , (𝑠
𝑚
𝑛 )U ) = 0.
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Then for each 𝜀 > 0 there exist an element 𝑈 ∈ U and 𝑁 ∈ N such that for all 𝑛 ∈ 𝑈 and all 𝑘 > 𝑁,
𝑚 > 𝑁 we have 𝜎𝑛(𝑠

𝑘
𝑛, 𝑠

𝑚
𝑛 ) < 𝜀. Then for all 𝑛 ∈ 𝑈 there exists a state 𝑠𝑛 such that lim

𝑘→∞
𝜎𝑛(𝑠

𝑘
𝑛, 𝑠𝑛) = 0.

Therefore,
lim
𝑘→∞

𝜎U ((𝑠𝑘𝑛)U , (𝑠𝑛)U ) = 0.

This shows that the ultraproduct of 𝜎–convex structures is a 𝜎–convex structure. The definition of the
ultraproduct (𝑆𝑛)U and the effect on it implies that (𝑆U , 𝜎U ) is a completely convex structure.

We denote by �̂� the metric in 𝑆+. Since (𝑆+, �̂�) is a completely convex structure with respect to
this metric, the definition of the ultraproduct of sequence of generalized state spaces coincides with
the previous definition. We note that in this case

𝑆U + = 𝑆+U = (R̃+)U × 𝑆U ,

where
(R̃+)U = {(𝛼𝑛)U : 𝛼𝑛 ⩾ 0, sup

𝑛
𝛼𝑛 <∞}.

Theorem 3.2. Let (𝑆𝑛+, �̂�𝑛)𝑛⩾1 be a sequence of generalized state spaces, U be a nontrivial filter
in the space of natural numbers N. Then the ultraproduct (𝑆U +, �̂�U ) is a completely convex structure.

The proof follows from Theorem 3.1.

Definition 3.2. Suppose that we are given two sequences of state spaces (𝑆
(1)
𝑛 )𝑛⩾1 and (𝑆

(2)
𝑛 )𝑛⩾1

being completely convex structures, operations 𝑇𝑛 : 𝑆
(1)
𝑛 → 𝑆

(2)
𝑛 , and a nontrivial ultrafilter U in the

set of natural numbers N. We define the ultraproduct of sequence of operations (𝑇𝑛) as the mapping

𝑇U : 𝑆
(1)
U → 𝑆

(2)
U , where

𝑇U (𝑠
(1)
U ) = (𝑇𝑛(𝑠

(1)
𝑛 ))U , 𝑠

(1)
U = (𝑠(1)𝑛 )U .

It is easy to see that the ultraproduct of sequence of operations is an operation. The natural question
arises: whether the ultraproduct of sequence of pure operations is a pure operation? In the general
case the answer turns out to be negative, as the following counterexample shows.

We are going to construct two sequences of state spaces and a sequence of pure operations such

that the ultraproduct of the latter is not a pure operation. Let 𝑆
(1)
𝑛 be the set of 𝐻

(1)
𝑛 –quasi–invariant

probability measures defined on a measurable space (Ω
(1)
𝑛 ,Σ

(1)
𝑛 ) = (R,ℬ(R)), where

𝐻(1)
𝑛 = {𝑥 ∈ R : |𝑥| <∞}, 𝑛 ∈ N.

It is well–known that the Gaussian measures are 𝐻
(1)
𝑛 –quasi–invariant and ergodic with respect to the

translations by the elements of 𝐻
(1)
𝑛 , and hence, (see, for instance, [5]), are extreme points in the set

of 𝐻
(1)
𝑛 –quasi–invariant measures, that is, in the set 𝑆

(1)
𝑛 , 𝑛 ∈ N. The pair (Σ

(1)
𝑛 , 𝑆

(1)
𝑛 ) is an event

structure (see, for instance, [6]), and at the same time 𝑆
(1)
𝑛 is a completely convex structure, 𝑛 ∈ N.

Let 𝑆
(2)
𝑛 be a set of 𝐻

(2)
𝑛 –quasi–invariant probability measures 𝜇𝑛 =

∏︀𝑛
𝑘=1 𝜇𝑘, 𝜇𝑘 ∈ 𝑆

(1)
𝑛 , defined on

a measurable space (Ω
(2)
𝑛 ,Σ

(2)
𝑛 ) = (R𝑛,ℬ(R𝑛)), 𝑛 ∈ N, where

𝐻(2)
𝑛 = {𝑥𝑛 ∈ R𝑛 : ‖𝑥𝑛‖ <∞}, 𝑛 ∈ N.

At the same time the Gaussian measures are extreme points in 𝑆
(2)
𝑛 since they are 𝐻

(2)
𝑛 –ergodic, 𝑛 ∈ N.

The pair (Σ
(2)
𝑛 , 𝑆

(2)
𝑛 ) is an event structure, 𝑆

(2)
𝑛 is a completely convex structure, 𝑛 ∈ N.

We consider a pure operation 𝑇𝑛 : 𝑆
(1)
𝑛 → 𝑆

(2)
𝑛 letting

𝑇𝑛(𝜇𝑛) = 𝜇𝑛,

where 𝜇𝑛 is the Gaussian measure from 𝑆
(1)
𝑛 with the parameters 𝑁(0, 1), 𝜇𝑛 is the Gaussian measure

from 𝑆
(2)
𝑛 with the parameters 𝑁(0, 𝐼𝑛), where 𝐼𝑛 is the unit matrix, 𝑛 ∈ N.

We consider ultraproducts of sequences of two event structures (Σ
(1)
𝑛 , 𝑆

(1)
𝑛 )𝑛⩾1 and (Σ

(2)
𝑛 , 𝑆

(2)
𝑛 )𝑛⩾1

with respect to the nontrivial ultrafilter U on the set of natural numbers N. In this case the state
spaces are represented as

𝑆
(1)
U =

{︁
𝜇
(1)
U : 𝜇

(1)
U ( · ) = lim

U
𝜇𝑛( · )

}︁
, 𝑆

(2)
U =

{︁
𝜇
(2)
U : 𝜇

(2)
U ( · ) = lim

U
𝜇𝑛( · )

}︁
,
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for more detail see [6]. Then the measure 𝜇
(1)
U is (�̃�

(1)
𝑛 )U –quasi–invariant, where

�̃�(1)
𝑛 =

{︁
𝑥𝑛 ∈ R : sup

𝑛
|𝑥𝑛| <∞

}︁
,

the measure 𝜇
(2)
U is (�̃�

(2)
𝑛 )U –quasi–invariant,

�̃�(2)
𝑛 =

{︁
𝑥𝑛 ∈ R𝑛 : sup

𝑛
‖𝑥𝑛‖ <∞

}︁
.

The measure 𝜇
(1)
U is also (�̃�

(1)
𝑛 )U –ergodic, therefore, it is an extreme point of the set 𝑆

(1)
U , but the

measure 𝜇
(2)
U is not an extreme point of 𝑆

(2)
U since it is not (�̃�

(2)
𝑛 )U –ergodic, see [5].

We define the operation 𝑇U : (𝑆
(1)
𝑛 )U → (𝑆

(2)
𝑛 )U by letting 𝑇U ( · ) = lim

U
𝑇𝑛( · ). Then the ultraprod-

uct of pure operations

𝑇U (𝜇
(1)
U ) = lim

U
𝑇𝑛(𝜇𝑛) = lim

U
𝜇𝑛 = 𝜇

(2)
U

is not a pure operation. Let us formulate the result.

Theorem 3.3. There exist two sequences of state spaces and a sequence of pure operations such
that the ultraproduct of latter is not a pure operation.
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