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ON VECTOR DERIVATIVE

NONLINEAR SCHRÖDINGER EQUATION

A.O. SMIRNOV, S.D. SHILOVSKY

Abstract. We propose a sequence of Lax pairs, the compatibility conditions of which
are integrable vector nonlinear equations. The first equations in this hierarchy are vector
Kaup — Newell, Chen — Lee — Liu, Gerdjikov — Ivanov integrable nonlinear equations.
The type of vector equation depends on an additional parameter 𝛼. The proposed form of
the vector Kaup — Newell equation has slight differences in comparison with the classical
form. We show that the evolution of simplest nontrivial solutions of these equations is a
composition of the evolutions of length and orientations of solution. We study properties
of spectral curves of simplest nontrivial solutions the vector equations in the constructed
hierarchy.
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1. Introduction

Recently a lot of attention was paid to vector variants of the nonlinear Schrödinger equations
(see, for instance, [1]– [8]). This is motivated by the aim to double the amount of informa-
tion transmitted by optic channels [9]– [13]. Of course, vectors forms of derivative nonlinear
Schrödinger equations are also actively studied (see, for instance, [14]– [23]). It should be noted
that the Lax pairs used in these works often differ one from another and this seems to be incor-
rect. This is why we propose a sequence of Lax pairs, which depend on functional parameters 𝑠
and 𝑠𝑘 (𝜕𝑡𝑘𝑠 = 𝜕𝑥𝑠𝑘). The compatibility conditions of these pairs are an hierarchy of integrable
vector nonlinear equations. For 𝑠 = 𝛼(p𝑡q) the first equation in this hierarchy is a vector form
of derivative nonlinear Schrödinger equation. If 𝛼 = 0, then this equation is Gerdjikov — Ivanov
equation [23]

𝑖p𝑡1 − p𝑥𝑥 + 2𝑖(p𝑡q𝑥)p− 2(p𝑡q)2p = 0,

𝑖q𝑡1 + q𝑥𝑥 + 2𝑖(q𝑡p𝑥)q+ 2(p𝑡q)2q = 0.

For 𝛼 = 1 the first equation in the constructed hierarchy is the vector Chen — Lee — Liu
equation

𝑖p𝑡1 − p𝑥𝑥 − 2𝑖(p𝑡q)p𝑥 = 0,

𝑖q𝑡1 + q𝑥𝑥 − 2𝑖(p𝑡q)q𝑥 = 0.
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We note that the found vector form of Kaup — Newell equation (𝛼 = 2)

𝑖p𝑡1 − p𝑥𝑥 − 2𝑖(p𝑡q)p𝑥 − 2𝑖(pq𝑡)𝑥p = 0,

𝑖q𝑡1 + q𝑥𝑥 − 2𝑖(p𝑡q)q𝑥 − 2𝑖(pq𝑡)𝑥q = 0,

differs from its classical version [14]. At the same time, in the scalar case there is no difference
between (p𝑡q) and (pq𝑡) and this equation is Kaup — Newell one. This is why it is one of its
integrable vector forms. For other values of the parameter 𝛼 equation has a more complicated
form. We note that choosing other values of the functional parameter 𝑠, we can obtain vector
derivative analogues of Kundu equation [24]– [26].
The work consists of Introduction, five section and concluding remarks. In Section 2 we

define the Lax operator

𝑖Ψ𝑥 = 𝑈Ψ, 𝑈 = −𝜆2𝐽 + 𝜆𝑄+𝑅 + 𝑠𝐽,

which depends on the functional parameter 𝑠 ∈ R, and we find the structure of the correspond-
ing monodromy matrix 𝑀 [27] by the equation

𝑖𝑀𝑥 +𝑀𝑈 − 𝑈𝑀 = 0. (1.1)

As usually, we seek matrix 𝑀 as a polynomial in the spectral parameter 𝜆

𝑀 =
𝑁∑︁
𝑘=0

𝑚𝑘(𝑥)𝜆
𝑘. (1.2)

The structure of the matrix 𝑈 gives rise to differences in the structure of the coefficients 𝑚𝑘 for
even and odd indices 𝑘. Apart of the structure of the matrix 𝑀 , by Equation (1.1) we also find
recurrent relations for the entries of the coefficients 𝑚𝑘(𝑥). In Section 3 we propose a sequence
of the second operators for the Lax pairs. The compatibility conditions of these Lax pairs are
evolutionary integrable nonlinear equations, which are rather simply written in terms of the
entries of matrix 𝑀 introduced in Section 2. The first equations in this hierarchy are vector
forms of the derivative variants of nonlinear Schrödinger equation given above. In the next
section we briefly discuss stationary equations, which are satisfied by multi–phase solutions.
As in other cases (see, for instance, [23], [26], [28]), the stationary equations are divided into
two groups. The first consists of two matrix equations, which are restrictions of Equation (1.1)
to the zeroth and first power of the spectral parameter 𝜆. Since the structure of coefficients 𝑚𝑘

depends on the parity of 𝑘, the scalar form of these stationary equations depends on the parity of
the highest power 𝑁 of the polynomial (1.2). The second group of stationary equations follows
from the constancy of the coefficients in the equation of the corresponding spectral curve. We
recall that the equation of spectral curve is the characteristic equations of the matrix 𝑀 [27].
In simplest cases the system of these stationary equations can be resolved. We note that as in
the case of usual vector equations [1], [26] and scalar derivative equations [28], the number of
the phases of solutions is less than the genus of its spectral curve.
In Section 5 we consider in detail the case 𝑁 = 3 (or 𝑛 = 1, where 𝑛 = 𝑁 − 2), when

the stationary equations have no solutions of form plane waves, but they can be still solved
analytically. The number 𝑛 can be regarded as the complexity level of solution. If 𝑛 = 0,
then solutions of stationary equations are planar waves. If 𝑛 = 1, then, as a rule, the solutions
are expressed in terms of elliptic functions and their degenerations. In this section we show
that for 𝑛 = 1, a natural geometric interpretation of functional parameters of the solution
vector arise, namely, its length and direction. We note that the length and direction of solution
vector are independent of the functional parameter 𝑠. Moreover, in this case the stationary
equations are reduced to a first order autonomous differential equation for the length and to
an equation relating the variation of the direction with its length. Also in this section we study
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the dependence of the behavior of simple nontrivial solutions and their spectral curves on the
parameters. We show that in the general case for 𝑛 = 1 the solution is two–phase, while the
genus of the corresponding curve is equal to 𝑔 = 3.
In Section 6 we consider evolutionary integrable nonlinear equations from the geometric point

of view. We show that if we do not employ stationary equations, the geometric approach has
no advantages. If we consider the case 𝑛 = 1 and use the formulas implied by the stationary
equations, then the evolution of the length and direction of the solution is described by rather
simple equations. There is still an open question whether the geometric approach remain
useful as the complexity level 𝑛 increases. We note that from the applied point of view the
length and the direction of solution are theoretical objects since in practice the polarized beams
passes through the splitter, while the optical fiber has a rather complicated structure, see, for
instance, [29], [30] and the references therein.

2. Monodromy matrix

Let the Lax operator be of form

𝑖Ψ𝑥 = 𝑈Ψ, (2.1)

where

𝑈 = −𝜆2𝐽 + 𝜆𝑄+𝑅 + 𝑠𝐽, (2.2)

𝐽 =
1

3

⎛⎝2 0 0
0 −1 0
0 0 −1

⎞⎠ , 𝑄 =

(︂
0 p𝑡

−q 0

)︂
, 𝑅 =

(︂
−p𝑡q 0𝑡

0 qp𝑡

)︂
, (2.3)

where p𝑡 = (𝑝1, 𝑝2), q
𝑡 = (𝑞1, 𝑞2).

We consider Equations (2.1), (2.2) with the matrices (2.3). Following the works [27], [28], we
seek the monodromy matrix 𝑀 of the function Ψ as a polynomial in the spectral parameter 𝜆.
Then Equation (1.1) implies the following structure for the matrix 𝑀 :

𝑀𝑛 = 𝑉𝑛 +
𝑛−1∑︁
𝑘=1

𝑐𝑘𝑉𝑛−𝑘 + 𝑐𝑛𝑈0 + 𝑐𝑛+1𝑉−1 + 𝐽𝑛,

where

𝑉−1 = −𝜆𝐽 +𝑄, 𝑈0 = 𝜆𝑉−1 +𝑅, 𝑉1 = 𝜆𝑈0 + 𝑉 0
1 , 𝑉𝑗+1 = 𝜆𝑉𝑗 + 𝑉 0

𝑗+1,

𝑉 0
2𝑘−1 =

(︂
0 H𝑡

𝑘

G𝑘 0

)︂
, 𝑉 0

2𝑘 =

(︂
−ℱ𝑘 0𝑡

0 𝐹𝑘

)︂
, ℱ𝑘 = Tr𝐹𝑘, 𝑘 ⩾ 1,

𝐽𝑛 =

⎛⎝−2𝑐𝑛+2 0 0
0 𝑐𝑛+2 + 𝑐𝑛+3 𝑐𝑛+4

0 𝑐𝑛+5 𝑐𝑛+2 − 𝑐𝑛+3

⎞⎠ .

Here 𝑐𝑘 ∈ R are some constants parameterizing the solution.
The entries of the matrix 𝑉 0

𝑘 satisfy the following recurrent relations

H1 = −𝑖p𝑥 + 𝑠p, G1 = −𝑖q𝑥 − 𝑠q,

H𝑘+1 =
(︀
𝐹 𝑡
𝑘 + ℱ𝑘𝐼

)︀
p−

(︀
pq𝑡 + (p𝑡q)𝐼

)︀
H𝑘 + 𝑠H𝑘 − 𝑖𝜕𝑥H𝑘,

G𝑘+1 = − (𝐹𝑘 + ℱ𝑘𝐼)q−
(︀
qp𝑡 + (q𝑡p)𝐼

)︀
G𝑘 + 𝑠G𝑘 + 𝑖𝜕𝑥G𝑘,

𝜕𝑥𝐹𝑘 = q𝜕𝑥H
𝑡
𝑘 − 𝜕𝑥G𝑘p

𝑡 − 𝑖
(︀
qp𝑡 + (q𝑡p)𝐼

)︀
G𝑘p

𝑡

− 𝑖qH𝑡
𝑘

(︀
qp𝑡 + (q𝑡p)𝐼

)︀
+ 𝑖𝑠(G𝑘p

𝑡 + qH𝑡
𝑘).

(2.4)
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In particular,

𝐹1 =𝑖
(︀
q𝑥p

𝑡 − qp𝑡
𝑥

)︀
− (qp𝑡)2 + 2𝑠qp𝑡,

ℱ1 =𝑖(p𝑡q𝑥 − q𝑡p𝑥)− (p𝑡q)2 + 2𝑠(p𝑡q),

𝐻2 =− p𝑥𝑥 + 2𝑖(p𝑡q𝑥)p− 2(p𝑡q)2p+ 2𝑠((p𝑡q)p− 𝑖p𝑥) + (𝑠2 − 𝑖𝑠𝑥)p,

𝐺2 =q𝑥𝑥 + 2𝑖(q𝑡p𝑥)q+ 2(p𝑡q)2q− 2𝑠((p𝑡q)q+ 𝑖q𝑥)− (𝑠2 + 𝑖𝑠𝑥)q,

ℱ2 =(p𝑡
𝑥q𝑥 − p𝑡q𝑥𝑥 − q𝑡p𝑥𝑥)− 2(p𝑡q)3 + 3𝑠2(p𝑡q) + 3𝑖𝑠(p𝑡q𝑥 − q𝑡p𝑥),

𝐻3 =𝑖p𝑥𝑥𝑥 + 3(p𝑡
𝑥q𝑥)p+ 3(p𝑡q𝑥)p𝑥 + 3𝑖(p𝑡q)(p𝑡

𝑥q)p+ 3𝑖(p𝑡q)2p𝑥

− 3𝑠p𝑥𝑥 − 3(𝑠𝑥 + 𝑖𝑠2 + 𝑖𝑠(p𝑡q))p𝑥 − (𝑠𝑥𝑥 − 𝑠3 − 6𝑠2(p𝑡q) + 6𝑠(p𝑡q)2)p

− 3𝑖𝑠(𝑠𝑥 + (q𝑡p𝑥)− 2(p𝑡q𝑥))p,

𝐺3 =𝑖q𝑥𝑥𝑥 − 3(p𝑡
𝑥q𝑥)q− 3(q𝑡p𝑥)q𝑥 + 3𝑖(p𝑡q)(q𝑡

𝑥p)q+ 3𝑖(p𝑡q)2q𝑥

+ 3𝑠q𝑥𝑥 + 3(𝑠𝑥 − 𝑖𝑠2 − 𝑖𝑠(p𝑡q))q𝑥 + (𝑠𝑥𝑥 − 𝑠3 − 6𝑠2(p𝑡q) + 6𝑠(p𝑡q)2)q

− 3𝑖𝑠(𝑠𝑥 + (p𝑡q𝑥)− 2(q𝑡p𝑥))q.

3. Integrable evolutionary nonlinear equations

We define the second equation in the Lax pair as

𝑖Ψ𝑡𝑘 = 𝑊𝑘Ψ, (3.1)

where 𝑊𝑘 = 𝑉2𝑘 + 𝑠𝑘𝐽 , 𝜕𝑡𝑘𝑠 = 𝜕𝑥𝑠𝑘. Then the compatibility conditions of the Lax pair imply
the following integrable nonlinear evolutionary equations

p𝑡𝑘 = 𝑖H𝑘+1 − 𝑖𝑠𝑘p,

q𝑡𝑘 = 𝑖G𝑘+1 + 𝑖𝑠𝑘q.
(3.2)

Equations (3.2), (2.4) yield

𝜕𝑡𝑘(p
𝑡q) = 𝜕𝑥(ℱ𝑘).

Hence, in Equations (3.2) we can let

𝑠 = 𝛼(p𝑡q), 𝑠𝑘 = 𝛼ℱ𝑘, (3.3)

where 𝛼 is some real number. The equations (3.2) are of simplest form in three cases, for 𝛼 = 0,
𝛼 = 1, and 𝛼 = 2.
Letting 𝛼 = 0, we have

𝑖p𝑡1 − p𝑥𝑥 + 2𝑖(p𝑡q𝑥)p− 2(p𝑡q)2p = 0,

𝑖q𝑡1 + q𝑥𝑥 + 2𝑖(q𝑡p𝑥)q+ 2(p𝑡q)2q = 0
(3.4)

and

p𝑡2 + p𝑥𝑥𝑥 − 3𝑖(p𝑡
𝑥q𝑥)p− 3𝑖(p𝑡q𝑥)p𝑥 + 3(p𝑡q)(p𝑡

𝑥q)p+ 3(p𝑡q)2p𝑥 = 0,

q𝑡2 + q𝑥𝑥𝑥 + 3𝑖(p𝑡
𝑥q𝑥)q+ 3𝑖(q𝑡p𝑥)q𝑥 + 3(p𝑡q)(q𝑡

𝑥p)q+ 3(p𝑡q)2q𝑥 = 0.

In this case Equation (3.4) is a vector form of the Gerdjikov — Ivanov equation.
For 𝛼 = 1 the evolutionary equations (3.2) cast into the form

𝑖p𝑡1 − p𝑥𝑥 − 2𝑖(p𝑡q)p𝑥 = 0,

𝑖q𝑡1 + q𝑥𝑥 − 2𝑖(p𝑡q)q𝑥 = 0
(3.5)
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and

p𝑡2 + p𝑥𝑥𝑥 + 3𝑖(p𝑡q)p𝑥𝑥 + 3𝑖(p𝑥q
𝑡)p𝑥 − 3(p𝑡q)2p = 0,

q𝑡2 + q𝑥𝑥𝑥 − 3𝑖(p𝑡q)q𝑥𝑥 − 3𝑖(q𝑥p
𝑡)q𝑥 − 3(p𝑡q)2q = 0.

It is easy to see that Equation (3.5) is the vector form of Chen — Lee — Liu equation.
Equation (3.2) with 𝛼 = 2 read as

𝑖p𝑡1 − p𝑥𝑥 − 2𝑖(p𝑡q)p𝑥 − 2𝑖(pq𝑡)𝑥p = 0,

𝑖q𝑡1 + q𝑥𝑥 − 2𝑖(p𝑡q)q𝑥 − 2𝑖(pq𝑡)𝑥q = 0
(3.6)

and

p𝑡2 + p𝑥𝑥𝑥 + 6𝑖(p𝑡q)p𝑥𝑥 + 3𝑖(p𝑡q𝑥)p𝑥 + 6𝑖(p𝑥q
𝑡)p𝑥 + 3𝑖(p𝑡

𝑥q𝑥)p

− 15(p𝑡q)2p𝑥 − 12(p𝑡q)(p𝑡q𝑥)p− 3(p𝑡q)(p𝑡
𝑥q)p = 0,

q𝑡2 + q𝑥𝑥𝑥 − 6𝑖(p𝑡q)q𝑥𝑥 − 3𝑖(q𝑡p𝑥)q𝑥 − 6𝑖(q𝑥p
𝑡)q𝑥 − 3𝑖(p𝑡

𝑥q𝑥)q

− 15(p𝑡q)2q𝑥 − 12(p𝑡q)(q𝑡p𝑥)q− 3(p𝑡q)(p𝑡q𝑥)q = 0.

Equation (3.6) is a new version of vector Kaup — Newell equation.

4. Stationary equations

Apart of recurrent relations, Equation (1.1) also yields stationary equations satisfied by
multi–phase solutions(︀

𝑖𝜕𝑥𝑉
0
𝑛 + [𝑉 0

𝑛 , 𝑅 + 𝑠𝐽 ]
)︀
+

𝑛−1∑︁
𝑘=1

𝑐𝑘
(︀
𝑖𝜕𝑥𝑉

0
𝑛−𝑘 + [𝑉 0

𝑛−𝑘, 𝑅 + 𝑠𝐽 ]
)︀

+ 𝑖𝑐𝑛𝜕𝑥𝑅 + 𝑐𝑛+1 (𝑖𝜕𝑥𝑄+ [𝑄,𝑅 + 𝑠𝐽 ]) + [𝐽𝑛, 𝑅] = 0

and(︀
𝑖𝜕𝑥𝑉

0
𝑛−1 + [𝑉 0

𝑛−1, 𝑅 + 𝑠𝐽 ] + [𝑉 0
𝑛 , 𝑄]

)︀
+

𝑛−2∑︁
𝑘=1

𝑐𝑘
(︀
𝑖𝜕𝑥𝑉

0
𝑛−1−𝑘 + [𝑉 0

𝑛−1−𝑘, 𝑅 + 𝑠𝐽 ] + [𝑉 0
𝑛−𝑘, 𝑄]

)︀
+ 𝑐𝑛−1

(︀
𝑖𝜕𝑥𝑅 + [𝑉 0

1 , 𝑄]
)︀
+ 𝑐𝑛 (𝑖𝜕𝑥𝑄+ 𝑠[𝑄, 𝐽 ]) + [𝐽𝑛, 𝑄] = 0.

Since the structures of the matrices 𝑉 0
𝑘 depend on the parity, the scalar forms of the stationary

equations also depend on the parity. The compatibility conditions of these two matrix equations
produce restrictions for the constants 𝑐𝑘. In particular, the recurrent equations (2.4) imply the
following realness conditions. If q = 𝜎p*, where 𝜎 = ±1, then

G𝑘 = −𝜎H*
𝑘, 𝐹 *

𝑘 = 𝐹 𝑡
𝑘, ℱ*

𝑘 = ℱ𝑘.

These conditions lead to the following symmetry of the matrices 𝑉 0
𝑘 (𝜆):(︀

𝑉 0
2𝑘(𝜆)

)︀†
= 𝑉 0

2𝑘(𝜆
*),

(︀
𝑉 0
2𝑘−1(𝜆)

)︀†
= −𝜎𝑉 0

2𝑘−1(𝜆
*).

Here † stands for the Hermitian conjugation. We note that similar relations hold for the matrices
𝐽 , 𝑄, 𝑅

𝐽† = 𝐽, 𝑄† = −𝜎𝑄, 𝑅† = 𝑅.

It follows from these symmetry relations that each stationary equations splits into two parts,
each of which is transformed according its own rule. Therefore, one of these parts vanishes
identically. It is easy to understand that this implies that all coefficients with odd indices are
zero. This is why 𝐽2𝑘−1 = 0, and the matrices 𝑀𝑛(𝜆) satisfy the following conditions

(𝑀2𝑘(𝜆))
† = 𝑀2𝑘(𝜆

*), (𝑀2𝑘−1(𝜆))
† = −𝜎𝑀2𝑘−1(𝜆

*). (4.1)
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The second set of stationary equations is implied by the constancy condition of the coefficients
in the equation of the spectral curve. We recall that the spectral curve is the characteristic
equation of the matrix 𝑀𝑛(𝜆):

Γ : ℛ(𝜇, 𝜆) = det(𝜇𝐼 −𝑀𝑛(𝜆)) = 0

or

ℛ(𝜇, 𝜆) = 𝜇3 +𝒜(𝜆)𝜇+ ℬ(𝜆) = 0, (4.2)

where

𝒜(𝜆) = −1

3
𝜆2𝑛+4 − 2𝑐2

3
𝜆2𝑛+2 +

𝑛+2∑︁
𝑘=2

𝒜𝑘𝜆
2𝑛+4−2𝑘,

ℬ(𝜆) = 2

27
𝜆3𝑛+6 +

2𝑐2
9
𝜆3𝑛+4 +

∑︁
𝑘⩾2

ℬ𝑘𝜆
3𝑛+6−2𝑘.

We also recall that the coefficients 𝒜𝑘 and ℬ𝑘 are additional integrals of the multi–phase
solutions. At the same time the highest coefficients 𝒜𝑘 and ℬ𝑘 for 𝑛 ⩾ 1 are related by the
identities

ℬ2 +
1

3
𝒜2 =

1

9
𝑐22, ℬ3 +

1

3
𝒜3 +

1

3
𝑐2𝒜2 = − 1

27
𝑐32. (4.3)

It follows from Conditions (4.3) that the discriminant of the polynomial ℛ(𝜇) is a polynomial
on 𝜆 of the degree 6𝑛+4. Since in the general case the curve (4.2) contains three infinite points
𝒫1,2,3

∞

𝜇(𝒫) =
𝜆𝑛

3

(︀
−2𝜆2 − 2𝑐2 + (3𝐴2 + 𝑐22)𝜆

−2 +𝑂(𝜆−4)
)︀
, 𝒫 → 𝒫1

∞,

𝜇(𝒫) =
𝜆𝑛

3

(︃
𝜆2 + 𝑐2 ±

√︂
26𝑐32
3

𝜆−1 +𝑂(𝜆−2)

)︃
, 𝒫 → 𝒫2,3

∞ ,

and respectively Γ contains no infinite branching points, in the general case the curve (4.2)
contains 6𝑛 + 4 branching points. Using Riemann — Hurwitz formula, we obtain that in the
general case the genus of the spectral curve is equal to 𝑔 = 3𝑛.
For even 𝑛 the curve (4.2) possesses the holomorphic involution 𝜏ℎ : (𝜇, 𝜆) → (𝜇,−𝜆). For

odd 𝑛 the holomorphic involution of the curve (4.2) has the form 𝜏ℎ : (𝜇, 𝜆) → (−𝜇,−𝜆). It
follows from the conditions (4.1) that the spectral curve (4.2) possesses the antiholomorphic
involution

∙ 𝜏𝑎 : (𝜇, 𝜆) → (𝜇*, 𝜆*) for even 𝑛,
∙ 𝜏𝑎 : (𝜇, 𝜆) → (−𝜎𝜇*, 𝜆*) for odd 𝑛.

5. Case 𝑛 = 1

For 𝑛 = 1 the matrix 𝑀 reads as (𝑐1 = 0 and 𝐽1 = 0)

𝑀 = 𝑉1 + 𝑐2𝑉−1.
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In this case the stationary equations are of the form

𝜕2
𝑥𝑝1 + 𝑖(𝑐2 − 2𝑝1𝑞1 − 𝑝2𝑞2 + 2𝑠)𝜕𝑥𝑝1 − 𝑖𝑝1𝑞2𝜕𝑥𝑝2

+ ((𝑐2 + 𝑠)(2𝑝1𝑞1 + 2𝑝2𝑞2 − 𝑠) + 𝑖𝑠𝑥)𝑝1 = 0,

𝜕2
𝑥𝑝2 + 𝑖(𝑐2 − 𝑝1𝑞1 − 2𝑝2𝑞2 + 2𝑠)𝜕𝑥𝑝2 − 𝑖𝑝2𝑞1𝜕𝑥𝑝1

+ ((𝑐2 + 𝑠)(2𝑝1𝑞1 + 2𝑝2𝑞2 − 𝑠) + 𝑖𝑠𝑥)𝑝2 = 0,

𝜕2
𝑥𝑞1 − 𝑖(𝑐2 − 2𝑝1𝑞1 − 𝑝2𝑞2 + 2𝑠)𝜕𝑥𝑞1 + 𝑖𝑝2𝑞1𝜕𝑥𝑞2

+ ((𝑐2 + 𝑠)(2𝑝1𝑞1 + 2𝑝2𝑞2 − 𝑠)− 𝑖𝑠𝑥)𝑞1 = 0,

𝜕2
𝑥𝑞2 − 𝑖(𝑐2 − 𝑝1𝑞1 − 2𝑝2𝑞2 + 2𝑠)𝜕𝑥𝑞2 + 𝑖𝑝1𝑞2𝜕𝑥𝑞1

+ ((𝑐2 + 𝑠)(2𝑝1𝑞1 + 2𝑝2𝑞2 − 𝑠)− 𝑖𝑠𝑥)𝑞2 = 0.

(5.1)

Following [23], [26], [31], in Equations (5.1) we make the change

𝑝𝑗 =
√
𝑢𝑗 exp

{︂
−
∫︁

𝑤𝑗

2𝑢𝑗

𝑑𝑥

}︂
, 𝑞𝑗 =

√
𝑢𝑗 exp

{︂∫︁
𝑤𝑗

2𝑢𝑗

𝑑𝑥

}︂
, (5.2)

where 𝑢𝑗 = 𝑝𝑗𝑞𝑗, 𝑤𝑗 = 𝑝𝑗𝜕𝑥𝑞𝑗 − 𝑞𝑗𝜕𝑥𝑝𝑗. After simplifications we obtain

𝑤1 = 𝑖𝑐5 + 𝑖(𝑐2 − 𝑢1 − 𝑢2 + 2𝑠)𝑢1,

𝑤2 = 𝑖𝑐6 + 𝑖(𝑐2 − 𝑢1 − 𝑢2 + 2𝑠)𝑢2

(5.3)

and
2𝑢1𝜕

2
𝑥𝑢1 − (𝜕𝑥𝑢1)

2 + (𝑐22 − 2(𝑐5 + 𝑐6) + 4𝑐2𝑢2 + 3𝑢2
2)𝑢

2
1

+ (4𝑐2 + 6𝑢2)𝑢
3
1 + 3𝑢4

1 − 𝑐25,

2𝑢2𝜕
2
𝑥𝑢2 − (𝜕𝑥𝑢2)

2 + (𝑐22 − 2(𝑐5 + 𝑐6) + 4𝑐2𝑢1 + 3𝑢2
1)𝑢

2
2

+ (4𝑐2 + 6𝑢1)𝑢
3
2 + 3𝑢4

2 − 𝑐26.

(5.4)

Here 𝑐5 and 𝑐6 are the integration constants. We observe that Equations (5.4) do not involve
the function 𝑠 and coincide completely with Equations (23) in the work [23].
In this case the coefficients in Equation (4.2) of the spectral curve read as

𝒜(𝜆) = −1

3
𝜆6 − 2𝑐2

3
𝜆4 +𝒜2𝜆

2 +𝒜3,

ℬ(𝜆) = 2

27
𝜆9 +

2𝑐2
9
𝜆7 + ℬ2𝜆

5 + ℬ3𝜆
3 + ℬ4𝜆,

(5.5)

where

𝒜2 =− 𝑐22 + 3𝑐5 + 3𝑐6
3

,

𝒜3 =
(𝜕𝑥𝑢1)

2

4𝑢1

+
(𝜕𝑥𝑢2)

2

4𝑢2

+
1

4

(︀
𝑢3
1 + 𝑢3

2

)︀
+

1

4
(2𝑐2 + 3𝑢2)𝑢

2
1 +

1

4
(2𝑐2 + 3𝑢1)𝑢

2
2

+ 𝑐2𝑢1𝑢2 +
𝑐22 − 2𝑐5 − 2𝑐6

4
(𝑢1 + 𝑢2) +

𝑐25
4𝑢1

+
𝑐26
4𝑢2

− 𝑐2(𝑐5 + 𝑐6)

2
,

ℬ2 =
2𝑐22 + 3𝑐5 + 3𝑐6

9
,

ℬ3 =− 1

3
𝒜3 +

2𝑐32
27

+
𝑐2(𝑐5 + 𝑐6)

3
,

ℬ4 =− 𝑐2
3
𝒜3 −

𝑢2(𝜕𝑥𝑢1)
2

4𝑢1

− 𝑢1(𝜕𝑥𝑢2)
2

4𝑢2

+
1

2
(𝜕𝑥𝑢1)(𝜕𝑥𝑢2)

− 𝑐25𝑢2

4𝑢1

− 𝑐26𝑢1

4𝑢2

+
1

2
𝑐5𝑐6.
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It is easy to see that the coefficients (5.5) in Equation (4.2) of the spectral curve are also
independent of the parameter 𝑠. Therefore, the amplitudes of the solutions of vector form
of derivative nonlinear Schrödinger equation are independent of the particular form of the
equation. Hence, the coefficients in the equations of spectral curves of the multi–phase solutions
of Equations (3.6), (3.5) and (3.4) are also independent of the type of equation. We recall
that solutions of scalar form of derivative nonlinear Schrödinger equation possess a similar
property [28].
Since the stationary equations (5.4) pass one into the other under the change 𝑢1 ↔ 𝑢2, and

the coefficients (5.5) are invariant under the change (𝑢1, 𝑐5) ↔ (𝑢2, 𝑐6), from the functions 𝑢1,
𝑢2 we proceed to the functions 𝑢, 𝑣:

𝑢 = 𝑢1 + 𝑢2, 𝑣 = 𝑢1 − 𝑢2. (5.6)

In the new notation Equations (5.4) and the coefficients (5.5) are of form [23]:

𝑢𝜕2
𝑥𝑣 + 𝑣𝜕2

𝑥𝑢− (𝜕𝑥𝑢)(𝜕𝑥𝑣) + (𝑐22 − 2(𝑐5 + 𝑐6) + 4𝑐2𝑢+ 3𝑢2)𝑢𝑣 + 𝑐26 − 𝑐25 = 0,

2𝑢𝜕2
𝑥𝑢+ 2𝑣𝜕2

𝑥𝑣 − (𝜕𝑥𝑢)
2 − (𝜕𝑥𝑣)

2

+ (𝑐22 − 2(𝑐5 + 𝑐6) + 4𝑐2𝑢+ 3𝑢2)(𝑣2 + 𝑢2)− 2(𝑐25 + 𝑐26) = 0

(5.7)

and

𝒜3 =
1

4
(𝑢+ 𝑐2)(𝑢

2 + 𝑐2𝑢− 2(𝑐5 + 𝑐6))

+
(2(𝑐25 + 𝑐26) + (𝜕𝑥𝑢)

2 + (𝜕𝑥𝑣)
2)𝑢− 2(𝑐25 − 𝑐26 + (𝜕𝑥𝑢)(𝜕𝑥𝑣))𝑣

4(𝑢2 − 𝑣2)
,

ℬ4 =− 𝑐2
3
𝒜3 −

((𝑐5 + 𝑐6)
2 + (𝜕𝑥𝑢)

2)𝑣2 + ((𝑐5 − 𝑐6)
2 + (𝜕𝑥𝑣)

2)𝑢2

4(𝑢2 − 𝑣2)

− (𝑐25 − 𝑐26 + (𝜕𝑥𝑢)(𝜕𝑥𝑣))𝑢𝑣

2(𝑢2 − 𝑣2)
.

(5.8)

Using relations (5.8), we can pass from Equations (5.7) to the identities

𝜕2
𝑥𝑢 = −2𝑢3 − 3𝑐2𝑢

2 − (𝑐22 − 2(𝑐5 + 𝑐6))𝑢+ 2𝒜3 + 𝑐2(𝑐5 + 𝑐6) (5.9)

and
6𝑣𝜕2

𝑥𝑣 − 3(𝜕𝑥𝑣)
2 + 3(𝑐22 − 2(𝑐5 + 𝑐6) + 4𝑐2𝑢+ 3𝑢2)𝑣2

− 12ℬ4 − 4𝑐2𝒜3 − 3(𝑐5 − 𝑐6)
2 = 0.

(5.10)

Integrating (5.9), we find

(𝜕𝑥𝑢)
2 = −𝑢4 − 2𝑐2𝑢

3 − (𝑐22 − 2(𝑐5 + 𝑐6))𝑢
2 + (4𝒜3 + 2𝑐2(𝑐5 + 𝑐6))𝑢+ 𝑐7, (5.11)

where 𝑐7 ∈ R is the integration constant. Therefore, 𝑢(𝑥) is an elliptic function with simple
poles or its degeneration. Since Equation (5.11) is an autonomous differential equation, the
dependence of the function 𝑢 on the variables 𝑡𝑘 is of the form

𝑢(𝑥, 𝑡𝑘) = 𝑢(𝑥+ 𝜑1(𝑡𝑘)).

The constant ℬ4 is related with the constant 𝑐7 by means of the relation

ℬ4 =
1

4
𝑐7 +

1

4
(𝑐5 + 𝑐6)

2 − 1

3
𝑐2𝒜3.

Following [23], we make the change 𝑣 = ̂︀𝑣𝑢 in Equation (5.10). After simplification with
using the relations (5.7), (5.9), (5.10) and (5.11) we get the following differential equation for
the function ̂︀𝑣

(𝜕𝑥̂︀𝑣)2 = 𝑐7̂︀𝑣2 + 2(𝑐25 − 𝑐26)̂︀𝑣 − 𝑐7 − 2(𝑐25 + 𝑐26)

𝑢2
. (5.12)
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Integrating (5.12) with 𝑐7 ̸= 0, we obtain

̂︀𝑣 =

√︀
((𝑐5 + 𝑐6)2 − 𝜅2) ((𝑐5 − 𝑐6)2 − 𝜅2)

𝜅2
sin (𝜅𝜃) +

𝑐25 − 𝑐26
𝜅2

, (5.13)

where 𝜕𝑥𝜃 = ±𝑢−1, 𝜅2 = −𝑐7.
For 𝑐7 = 0 Equation (5.12) reads as

(𝜕𝑥̂︀𝑣)2 = 2(𝑐25 − 𝑐26)̂︀𝑣 − 2(𝑐25 + 𝑐26)

𝑢2
. (5.14)

Integrating (5.14) with 𝑐25 ̸= 𝑐26, we find

̂︀𝑣 =
𝑐25 + 𝑐26
𝑐25 − 𝑐26

+ (𝑐25 − 𝑐26)
𝜃2

2
. (5.15)

It follows from the formulas (5.13) and (5.15) that the dependence of the function ̂︀𝑣 on the
variables 𝑡𝑘 is of the form ̂︀𝑣(𝑥, 𝑡𝑘) = ̂︀𝑣(𝜃(𝑥, 𝑡𝑘)), where 𝜃(𝑥, 𝑡𝑘) = 𝜃(𝑥+ 𝜑1(𝑡𝑘)) + 𝜑2(𝑡𝑘).
Since for 𝑛 = 1 the discriminant of the polynomial ℛ(𝜇) equals

−𝑐7𝜆
10 − (2𝒜3(𝑐5 + 𝑐6) + 𝑐2(𝑐5 + 𝑐6)

2 + 3𝑐2𝑐7)𝜆
8 + . . . ,

for 𝑐7 ̸= 0 the genus of the spectral curve is 𝑔 = 3. This statement is true once the curve is
connected and non–degenerate. Hence, for 𝑐7 ̸= 0 the spectral curve has the genus 𝑔 = 3 (or is
the degeneration of the curve of genus 𝑔 = 3) and at the same time, the corresponding solution
is two–phase. The first phase contains 𝜑1(𝑡𝑘), while the other does 𝜑2(𝑡𝑘).
Since for 𝑐7 = 0 the discriminant equals

−(2𝒜3 + 𝑐2(𝑐5 + 𝑐6))(𝑐5 + 𝑐6)𝜆
8 + . . . ,

for 𝒜3 ̸= −𝑐2(𝑐5 + 𝑐6)/2 the spectral curve has the genus 𝑔 = 2 (or a degeneration of the curve
of genus 𝑔 = 2). We note that as 𝑐7 = 0, the condition 𝑐26 ̸= 𝑐25 holds since otherwise Equation
(5.14) has no real solutions. We can also say that as 𝑐26 = 𝑐25, the condition 𝑐7 ̸= 0 is satisfied.
It follows from the formula (5.15) that as 𝑐7 = 0, a nonlinear resonance arises, when the

periodic oscillations of the function ̂︀𝑣 transform into its quadratic growth.
As 𝑐7 = 0 and 𝒜3 = −𝑐2(𝑐5 + 𝑐6)/2, Equation (5.11) reads as

(𝜕𝑥𝑢)
2 = 𝑢2(2(𝑐5 + 𝑐6)− (𝑢+ 𝑐2)

2).

In this case the function 𝑢 is expressed in terms of the elementary functions

𝑢 =
𝑎

cosh(𝑎𝑥+ 𝜑1(𝑡))
, 𝑎 =

√︁
2(𝑐5 + 𝑐6 − 𝑐2)− 𝑐22.

At the same time, the genus of the corresponding spectral curve is 𝑔 = 1.
Thus, the procedure of constructing simplest nontrivial solutions of vector derivative forms

of nonlinear Schrödinger equation consists of the following steps.

∙ Choose a function 𝑢(𝑥) satisfying Equation (5.11) and the constants 𝑐2, 𝑐5, 𝑐6, 𝑐7 and 𝒜3.
∙ Using the formula (5.13), by the function 𝑢(𝑥) and constants find the functions 𝜃(𝑥) and̂︀𝑣(𝑥).
∙ If 𝑐7 = 0, find the function ̂︀𝑣 by equation (5.15).
∙ Knowing the functions 𝑢(𝑥) and ̂︀𝑣(𝑥), find the function 𝑣(𝑥) = ̂︀𝑣(𝑥)𝑢(𝑥).
∙ Using formula (5.6), obtain the functions

𝑢1 =
1

2
(𝑢+ 𝑣) =

1

2
(1 + ̂︀𝑣)𝑢, 𝑢2 =

1

2
(𝑢− 𝑣) =

1

2
(1− ̂︀𝑣)𝑢.

∙ By the formula (5.3) find 𝑤1(𝑥) and 𝑤2(𝑥). Only at this step there arise the differences
in solutions of various versions of vector derivative forms of the nonlinear Schrödinger
equation.
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∙ By the formulas (5.2) find 𝑝𝑗(𝑥) and 𝑞𝑗(𝑥). Here, after calculating the integrals, in the
variables of the exponentials of the functions 𝑝𝑗 and 𝑞𝑗 there arise additional summands
depending on the variables 𝑡𝑘.

∙ Find specific values of the functions 𝜑𝑚(𝑡𝑘) by Equations (3.2).

Examples of simplest nontrivial solutions of the vector derivative nonlinear Schrödinger equa-
tion for 𝑠 = 0 were provided in the work [23]. At the same time the solutions corresponding to
𝑛 = 1 possess joint properties independent of the form of solution. In particular, as we have
obtained above, the spectral curve is defined by Equations (4.2), (5.5), where

𝒜2 = −𝑐22 + 3(𝑐5 + 𝑐6)

3
,

ℬ2 =
2𝑐22 + 3(𝑐5 + 𝑐6)

9
,

ℬ3 = −1

3
𝒜3 +

2𝑐32
27

+
𝑐2(𝑐5 + 𝑐6)

3
,

ℬ4 =
1

4
𝑐7 +

1

4
(𝑐5 + 𝑐6)

2 − 1

3
𝑐2𝒜3.

As = 1, the equation of the spectral curve depends on the constants 𝒜3, 𝑐2, 𝑐7 and (𝑐5 + 𝑐6).
It follows from Equation (5.11) that the equation for the function 𝑢(𝑥) depends on the same
constants. We observe that these constants are determined uniquely by Equation (5.11). We
also note that the five coefficients in the equation of spectral curve are determined by these
four constants and, as one can easily verify, they are related by the equation

𝒜3 + 3ℬ3 + (4𝒜2 + 3ℬ2)

√︂
1

3
𝒜2 + ℬ2 = 0. (5.16)

Hence, with the solutions of the stationary equations (5.1) not all curves of form (4.2), (5.5)
are associated but only ones, the coefficients of which obey the condition (5.16).
We recall that in the work [23] we pointed out the possibility of the geometric approach to

the analysis of simplest nontrivial solutions of vectors equations. The geometric interpretation
is as follows. Let

𝑝1 = |p| 𝑒𝑖𝛼1 cos(𝜑), 𝑝2 = |p| 𝑒𝑖𝛼2 sin(𝜑)

and q = 𝜎p*, where 𝜎 = ±1. We then have

𝑢1 = 𝑝1𝑞1 = 𝜎 |p|2 cos2(𝜑), 𝑢2 = 𝑝2𝑞2 = 𝜎 |p|2 sin2(𝜑)

and

𝑢 = 𝑢1 + 𝑢2 = 𝜎 |p|2 ,
𝑣 = 𝑢1 − 𝑢2 = 𝜎 |p|2 cos(2𝜑),̂︀𝑣 = 𝑣/𝑢 = cos(2𝜑) ⩽ 1.

If the reduction is of form

𝑞1 = 𝜎𝑝*1, 𝑞2 = −𝜎𝑝*2, (5.17)

then the angle 𝜑 becomes pure imaginary 𝜑 = 𝑖̂︀𝜑, ̂︀𝜑 ∈ R. Then the orientation of the vector

p is determined by the function ̂︀𝑣 = cosh(2̂︀𝜑) ⩾ 1. Thus, if ̂︀𝑣 < 1, the solution satisfies the
reduction q = 𝜎p*. If ̂︀𝑣 > 1, the reduction satisfies the relation (5.17). As ̂︀𝑣 = 1, the second
component of the vector p is absent (𝑢2 = 0). The sign of the reduction 𝜎 is determined by
the sign of 𝑢:

𝜎 = sign(𝑢).
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Thus, for 𝑛 = 1, the equations for the spectral curve and length of the vector are determined
by the same constants. Hence, by the equation of spectral curve we can uniquely determine
the equation for the length of the solution vector. At the same time, as it follows from Equa-
tion (5.13), the direction of the vector depends on the length and the constants 𝑐7, (𝑐5 + 𝑐6),
(𝑐5 − 𝑐6). Therefore, in the case 𝑛 = 1 the direction of the solution vector depends on the
additional parameter (𝑐5 − 𝑐6), which can not be determined by the equation of the spectral
curve. It follows from Equation (5.13) that as 𝑐7 ̸= 0 the solution vector oscillates around the
direction defined by the identity

cos(2𝜑0) = ̂︀𝑣0 = −(𝑐5 − 𝑐6)(𝑐5 + 𝑐6)

𝑐7
.

Thus, the parameter 𝑐5−𝑐6 determines the direction, around which the solution vector oscillates.
Sometimes the solutions to vector equations are constructed via those to scalar equations by

the rule 𝑝2 = 𝑚𝑝1, 𝑞2 = ±𝑚*𝑞1. The sign ‘−’ corresponds to the reduction (5.17). In this case

𝑢2 = ± |𝑚|2 𝑢1 and ̂︀𝑣 =
1∓ |𝑚2|
1± |𝑚2|

= 𝑐𝑜𝑛𝑠𝑡.

It follows from Equation (5.13) that for 𝑐7 ̸= 0 the function ̂︀𝑣 is constant in one of the following
two cases

𝑐7 = −(𝑐5 + 𝑐6)
2 and 𝑐7 = −(𝑐5 − 𝑐6)

2.

If 𝑐7 = −(𝑐5 + 𝑐6)
2, then the equation of the spectral curve reads as(︂

𝜇− 1

3
𝜆3 − 1

3
𝑐2𝜆

)︂(︂
𝜇2 +

(︂
1

3
𝜆3 +

1

3
𝑐2𝜆

)︂
𝜇

−2

9
𝜆6 − 4

9
𝑐2𝜆

4 − 1

9
(𝑐22 + 9(𝑐5 + 𝑐6))𝜆

2 +𝒜3

)︂
= 0.

In this case the spectral curves splits into two components, one of which is a rational curve.
The genus of the second component is equal to 2. In this case the direction of the solution
vector is determined by the equation

̂︀𝑣 = ̂︀𝑣0 = 𝑐5 − 𝑐6
𝑐5 + 𝑐6

or
𝑐6
𝑐5

= ± |𝑚|2 .

In this case the length of the solution vector can be both an elliptic function and its degeneration.
If 𝑐7 = −(𝑐5 − 𝑐6)

2, then the spectral curve for 𝑐5 ̸= 𝑐6 can be either a curve of genus 3 or its
degeneration. This seems to be related with the fact that the equation of the spectral curve is
independent of the parameter (𝑐5 − 𝑐6). In this case the length of the solution vector can be
both the elliptic function and its degeneration, while the direction is determined by the identity

̂︀𝑣 = ̂︀𝑣0 = 𝑐5 + 𝑐6
𝑐5 − 𝑐6

or
𝑐6
𝑐5

= ∓ |𝑚|2 .

In contrast to the Manakov system [1] and Kundu — Eckhaus equation [26], the construction of
solutions to vector equations by those of their scalar analogues not always leads to the splitting
of the spectral curve into separate components.
In conclusion of this section we note that as 𝑐7 = 0, the solution vector loses oscillations

of its direction depending on 𝜑2(𝑡𝑘) since in this case the orientation of the solution vector is
determined by the formula (5.15).
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6. Dynamics of multi–phase solutions

Now a natural question arises how general the geometric approach is. Can it be applied to
more complicated solutions? In this section we try to answer this question.
Instead of the relations (5.2) we consider the following identities

𝑝𝑗(𝑥, 𝑡) =
√︁

𝑢𝑗(𝑥, 𝑡)𝑒
𝑖𝛼𝑗(𝑥,𝑡), 𝑞𝑗(𝑥, 𝑡) =

√︁
𝑢𝑗(𝑥, 𝑡)𝑒

−𝑖𝛼𝑗(𝑥,𝑡). (6.1)

Substituting the expressions (6.1) into Equations (3.2) with 𝑡 = 𝑡1 and simplifying (without
using stationary equations), we find

𝜕𝑡1𝑢 = 𝜕𝑥((2𝑠− 𝑢)𝑢+ 𝑖𝑤),

𝜕𝑡1̂︀𝑣 = 2𝑠𝜕𝑥̂︀𝑣 − 𝑖𝜕𝑥𝑤

𝑢
̂︀𝑣 + 𝑖

𝜕𝑥 ̂︀𝑤
𝑢

.
(6.2)

Here

𝑤 = 𝑤1 + 𝑤2, ̂︀𝑤 = 𝑤1 − 𝑤2.

It follows from the relations (5.2) that 𝜕𝑥𝛼𝑗 = 𝑖𝑤𝑗/(2𝑢𝑗). The expressions for 𝜕𝑡1𝛼𝑗 are very
bulky and this is why we omit them.
In the case 𝑠 = 𝛼(p𝑡q) = 𝛼𝑢 (vector derivative equations of nonlinear Schrödinger equations)

Equations (6.2) cast into the form

𝜕𝑡1𝑢 = 𝜕𝑥((2𝛼− 1)𝑢2 + 𝑖𝑤),

𝜕𝑡1̂︀𝑣 = 2𝛼𝑢𝜕𝑥̂︀𝑣 − 𝑖𝜕𝑥𝑤

𝑢
̂︀𝑣 + 𝜕𝑥 ̂︀𝑤

𝑢
.

(6.3)

Here the dynamics of the length of vector is determined by the length itself and by an additional
function 𝑤, the complexity of which increases with the index 𝑛. However, the direction of the
vector depends on the direction itself, the length and additional functions 𝑤 and ̂︀𝑤.
As 𝑛 = 1, equations (5.3) yield the identities

𝑤 = 𝑖(𝑐5 + 𝑐6) + 𝑖(𝑐2 + (2𝛼− 1)𝑢)𝑢,̂︀𝑤 = 𝑖(𝑐5 − 𝑐6) + 𝑖(𝑐2 + (2𝛼− 1)𝑢)̂︀𝑣𝑢. (6.4)

Therefore, for 𝑛 = 1 equations (6.3) are of the form

𝜕𝑡1𝑢 = −𝑐2𝜕𝑥𝑢,

𝜕𝑡1̂︀𝑣 = (𝑢− 𝑐2)𝜕𝑥̂︀𝑣.
Hence, as 𝑛 = 1, the length of each solution vector to each vector derivative nonlinear
Schrödinger equation depends on (𝑥 − 𝑐2𝑡1). At the same time, its orientation varies in a
more complicated way.
In the case 𝑡 = 𝑡2 the dynamics of the length of solution is described by the following formula

𝜕𝑡2𝑢 =𝜕𝑥

(︂
(3𝑠2 − 2𝑢2)𝑢+ 3𝑖𝑠𝑤 +

3(𝑤2 − 2𝑤 ̂︀𝑤̂︀𝑣 + ̂︀𝑤2)

4𝑢(̂︀𝑣2 − 1)

+
3(𝜕𝑥𝑢)

2

4𝑢
+

3𝑢(𝜕𝑥̂︀𝑣)2
4(1− ̂︀𝑣2) − 𝜕2

𝑥𝑢

)︂
.

(6.5)

If the evolution of the vector is determined by the second equation in the hierarchy, then the
evolution of the length depends also on its direction. However, since for 𝑛 = 1 the direction of
vector depends on its length, the evolution of solution vector in the case 𝑛 = 1 is rather simple

𝜕𝑡2𝑢 = (𝑐22 − 2(𝑐5 + 𝑐6))𝜕𝑥𝑢,

𝜕𝑡2̂︀𝑣 = (𝑐22 − 2(𝑐5 + 𝑐6)− 2𝑐2𝑢)𝜕𝑥̂︀𝑣.
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Therefore, for 𝑛 = 1 and 𝑡 = 𝑡2, the length of solution vector also depends on the linear
combination of the variables (𝑥+(𝑐22−2(𝑐5+𝑐6))𝑡2). And again the evolution of the orientation is
determined in a more complicated way. While simplifying the evolution equations, we employed
the relations (5.9), (5.11), (5.12) and (6.4).

7. Concluding remarks

Simplification of Equations (6.2) and (6.5) for 𝑛 = 1 indicates that if for other values 𝑛, as
in the case 𝑛 = 1, the functions 𝑤, ̂︀𝑣 and ̂︀𝑣 are expressed only via the function 𝑢, then the
evolution of the length of solution vector will depend also only on the length itself and will
be independent of the orientation of the solution. Then the geometric interpretation of the
solution will make sense not only in the case 𝑛 = 1. The consideration of the case 𝑛 = 2
allowed us to answer partially this question. We note that the case 𝑛 = 2 is also interesting
by the fact that the monodromy matrix, stationary equations and equation of spectral curve
possess other symmetries. The increasing of the genus of spectral curve to 𝑔 = 6 for 𝑛 = 2 and
the appearance of the entries of matrix 𝐽2 in the stationary equations can produce additional
variants of the behavior of solution vector.
We also note that in the present case we do not study in detail the dependence of the

components of solution vector on the function 𝑠. This is related with the fact that it follows
from Equations (5.2) and (5.3) that this dependence is of rather simple form

𝑝𝑗(𝑠) = 𝑝𝑗(0) exp

{︂
−𝑖

∫︁
𝑠(𝑥)𝑑𝑥

}︂
, 𝑞𝑗(𝑠) = 𝑞𝑗(0) exp

{︂
𝑖

∫︁
𝑠(𝑥)𝑑𝑥

}︂
. (7.1)

Formula (7.1) points to a proper interpretation of Equations (3.4)–(3.6) as vector derivative
forms of nonlinear Schrödinger equation since as in the scalar case (see, for instance, [32]– [35])
there exists a gauge transformation of form (7.1) transforming one equation into the other with
preserving the amplitude of solution.
We note that the real and imaginary parts of the components of solutions depends rather

essentially on the function 𝑠. Since the information is transmitted via optical channels by means
of complex codes (see, for instance, [36]), the choice of equation corresponding to a particular
waveguide is very important.
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