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Abstract. In this work we obtain necessary and sufficient conditions for embedding of one
reproducing kernel Hilbert space into another reproducing kernel Hilbert space. The paper
is a continuation of works by the authors, in which the problem on coincidence or equivalence
of two reproducing kernel Hilbert spaces was studied. An important role is played by the
consistence condition of two complete systems of functions with some linear continuous
operator introduced by the authors before. The obtained results are demonstrated by
particular examples.
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1. Introduction

In many problems in the complex analysis a question often arises: whether a given reproduc-
ing kernel Hilbert space (RKHS) is contained in another wider RKHS? Many problems in the
probability theory, mathematical statistics, numerical methods, partial differential equations,
etc are reduced to studying RKHSs (see, for instance, [1], [2]).
We address the following question. Suppose that we are given two RKHSs 𝐻1 and 𝐻2

consisting of functions defined on some set Ω1 ⊂ C𝑛, 𝑛 ∈ N. What conditions guarantee the
embedding 𝐻1 ⊂ 𝐻2? We consider this problem in an equivalent formulation [3], [4]. Let 𝐻 be
RKHS consisting of functions defined on a set Ω ⊂ C𝑚, 𝑚 ∈ N, that is, for an arbitrary point
𝜉 ∈ Ω, the functional 𝛿𝜉 mapping each function 𝑓 ∈ 𝐻 into the value of the function 𝑓 at the
point 𝜉 ∈ Ω is a linear continuous functional on 𝐻. Suppose that {𝑒1( · , 𝜉)}𝜉∈Ω1 , {𝑒2( · , 𝜉)}𝜉∈Ω1

are some complete systems of functions 𝐻; Ω1 ⊂ C𝑛, 𝑛 ∈ N. We denotẽ︀𝑓(𝑧) 𝑑𝑒𝑓
= (𝑒1( · , 𝑧), 𝑓)𝐻 for all 𝑧 ∈ Ω1, ̃︀𝐻 = { ̃︀𝑓, 𝑓 ∈ 𝐻},

( ̃︀𝑓1, ̃︀𝑓2) ̃︀𝐻 𝑑𝑒𝑓
= (𝑓2, 𝑓1)𝐻 , ‖ ̃︀𝑓1‖ ̃︀𝐻 = ‖𝑓1‖𝐻 for all ̃︀𝑓1, ̃︀𝑓2 ∈ ̃︀𝐻, (1.1)̂︀𝑓(𝑧) 𝑑𝑒𝑓

= (𝑒2( · , 𝑧), 𝑓)𝐻 ∀𝑧 ∈ Ω1, ̂︀𝐻 = { ̂︀𝑓, 𝑓 ∈ 𝐻},

( ̂︀𝑓1, ̂︀𝑓2) ̂︀𝐻 𝑑𝑒𝑓
= (𝑓2, 𝑓1)𝐻 , ‖ ̂︀𝑓1‖ ̂︀𝐻 = ‖𝑓1‖𝐻 for all ̂︀𝑓1, ̂︀𝑓2 ∈ ̂︀𝐻. (1.2)

We need to find a condition, under which the spaces ̂︀𝐻 and ̃︀𝐻 possess the property ̂︀𝐻 ⊂ ̃︀𝐻,
that is, as a set of functions, ̂︀𝐻 is contained in ̃︀𝐻, and there exists a constant 𝐶 > 0 such that

‖ℎ‖ ̃︀𝐻 ⩽ 𝐶‖ℎ‖ ̂︀𝐻 for all ℎ ∈ ̂︀𝐻.
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It should be noted that the question on embedding of one RKHS into another RKHS was earlier
considered in relation with applications in the probability theory and mathematical statistics,
(see, for instance, [1]). This problem was studied in [5, Thm. 2.4] and [6, Thm. 1]. Theorem 2.2
in our work generalises the results of the cited works. The present work is a continuation of
the works [3], [4], [7], in which the problem on coincidence or equivalence of two RKHSs was
studied. We also study the consistence condition, when one RKHS is embedded into another
RKHS. It turns out that the results on the consistence condition are not simply extended from
the case of the equivalence of RKHSs to the case of embedding, see Theorems 2.3, 2.4 and
Examples 1, 2 in this work. The obtained results are demonstrated by particular examples of
weighted Bergman spaces on the unit disk.

2. Main results

Let 𝐻 be RKHS, {𝑒1( · , 𝜉)}𝜉∈Ω1 , {𝑒2( · , 𝜉)}𝜉∈Ω1 be some complete systems of functions in 𝐻,

Ω1 ⊂ C𝑛, 𝑛 ∈ N. The spaces ̃︀𝐻, ̂︀𝐻 are defined as in (1.1), (1.2).

Theorem 2.1. The embedding ̂︀𝐻 ⊂ ̃︀𝐻 is equivalent to the existence of a linear continuous

operator 𝐴 : 𝐻 → 𝐻 such that

𝐴 : 𝑒1( · , 𝑧) ↦→ 𝑒2( · , 𝑧) for all 𝑧 ∈ Ω1.

Proof. Necessity. Let ̂︀𝐻 ⊂ ̃︀𝐻. For ̂︀𝑓 ∈ ̂︀𝐻 we havê︀𝑓(𝑧) = (𝑒2( · , 𝑧), 𝑓)𝐻 for all 𝑧 ∈ Ω1. (2.1)

On the other hand, since ̂︀𝐻 ⊂ ̃︀𝐻, there exists a function 𝑔𝑓 ∈ 𝐻 such that the identitŷ︀𝑓(𝑧) = (𝑒1( · , 𝑧), 𝑔𝑓 )𝐻 = ̃︀𝑔𝑓 (𝑧) for all 𝑧 ∈ Ω1 (2.2)

is true. If ̂︀𝑓 ranges over the entire space ̂︀𝐻, then 𝑓 ranges over the entire space 𝐻. We define
the operator 𝐵 by the rule

𝐵 : 𝑓 ↦→ 𝑔𝑓 .

It is easy to show that 𝐵 is a linear operator. The expression (2.2) means that̂︀𝑓(𝑧) = ̃︀𝑔𝑓 (𝑧) = ̃︁𝐵𝑓(𝑧) for all 𝑧 ∈ Ω1, for all 𝑓 ∈ 𝐻. (2.3)

The operator 𝐵 is bounded. Indeed, by the identities (2.2), (2.3) and the condition ̂︀𝐻 ⊂ ̃︀𝐻 we
get

‖𝐵𝑓‖𝐻 =
⃦⃦ ̃︁𝐵𝑓

⃦⃦ ̃︀𝐻 = ‖ ̂︀𝑓‖ ̃︀𝐻 ⩽ 𝐶 · ‖ ̂︀𝑓‖ ̂︀𝐻 = 𝐶 · ‖𝑓‖𝐻 .

The latter means the boundedness of the operator 𝐵.
For all 𝑓 ∈ 𝐻, 𝑧 ∈ Ω1 we havê︀𝑓(𝑧) = (𝑒1( · , 𝑧), 𝐵𝑓)𝐻 = (𝐵*𝑒1( · , 𝑧), 𝑓)𝐻 , (2.4)

where 𝐵* is the adjoint operator of 𝐵. Deducting the identity (2.4) from (2.1), we obtain

0 ≡ (𝑒2( · , 𝑧)−𝐵*𝑒1( · , 𝑧), 𝑓)𝐻 for all 𝑓 ∈ 𝐻, 𝑧 ∈ Ω1

and

𝐵*𝑒1( · , 𝑧) = 𝑒2( · , 𝑧) for all 𝑧 ∈ Ω1.

We let 𝐴 = 𝐵*. We have constructed the operator

𝐴 : 𝐻 → 𝐻, 𝐴 : 𝑒1( · , 𝑧) ↦→ 𝑒2( · , 𝑧) for all 𝑧 ∈ Ω1,

and this completes the proof of necessity.
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Sufficiency. Suppose that there exists an operator 𝐴 such that

𝐴 : 𝑒1( · , 𝑧) ↦→ 𝑒2( · , 𝑧) for all 𝑧 ∈ Ω1.

The relation̂︀𝑓(𝑧) = (𝑒2( · , 𝑧), 𝑓)𝐻 = (𝐴𝑒1( · , 𝑧), 𝑓)𝐻 = (𝑒1( · , 𝑧), 𝐴*𝑓)𝐻 for all 𝑓 ∈ 𝐻

implies that if ̂︀𝑓 ∈ ̂︀𝐻, then ̂︀𝑓 ∈ ̃︀𝐻. Using the definitions of the norm in the spaces ̃︀𝐻, ̂︀𝐻, we
also have

‖ ̂︀𝑓‖ ̃︀𝐻 = ‖𝐴*𝑓‖𝐻 ⩽ 𝐶‖𝑓‖𝐻 = 𝐶‖ ̂︀𝑓‖ ̂︀𝐻 for all 𝑓 ∈ 𝐻,

where 𝐶 > 0 is some constant. Thus, ̂︀𝐻 ⊂ ̃︀𝐻. The proof is complete.

Let 𝐻1 be an RKHS consisting of the functions defined on the set Ω1
0 ⊂ C𝑟, 𝑟 ∈ N, the system

of function {𝑒1( · , 𝜉)}𝜉∈Ω1 belong to 𝐻1 and be complete in it. Let 𝐻2 be RKHS consisting of
the functions defined on the set Ω2

0 ⊂ C𝑠, 𝑠 ∈ N, the system of function {𝑒2( · , 𝜉)}𝜉∈Ω1 belong

to 𝐻2 and be complete in it. We define the spaces ̃︀𝐻1 and ̂︀𝐻2:̃︀𝑓(𝑧) 𝑑𝑒𝑓
= (𝑒1( · , 𝑧), 𝑓)𝐻1 for all 𝑧 ∈ Ω1, ̃︀𝐻1 = { ̃︀𝑓, 𝑓 ∈ 𝐻1},

( ̃︀𝑓1, ̃︀𝑓2) ̃︀𝐻1

𝑑𝑒𝑓
= (𝑓2, 𝑓1)𝐻1 , ‖ ̃︀𝑓1‖ ̃︀𝐻1

= ‖𝑓1‖𝐻1 for all ̃︀𝑓1, ̃︀𝑓2 ∈ ̃︀𝐻1, (2.5)

̂︀𝑔(𝑧) 𝑑𝑒𝑓
= (𝑒2( · , 𝑧), 𝑔)𝐻2 ∀𝑧 ∈ Ω1, ̂︀𝐻2 = {̂︀𝑔, 𝑔 ∈ 𝐻2},

(̂︀𝑔1, ̂︀𝑔2) ̂︀𝐻2

𝑑𝑒𝑓
= (𝑔2, 𝑔1)𝐻2 , ‖̂︀𝑔1‖ ̂︀𝐻2

= ‖𝑔1‖𝐻2 for all ̂︀𝑔1, ̂︀𝑔2 ∈ ̂︀𝐻2. (2.6)

The following theorem generalises Theorem 2.1.

Theorem 2.2. The embedding ̂︀𝐻2 ⊂ ̃︀𝐻1 is equivalent to the existence of a linear bounded

operator 𝐴 acting from 𝐻1 into 𝐻2 such that

𝐴 : 𝑒1( · , 𝜉) ↦→ 𝑒2( · , 𝜉) for all 𝜉 ∈ Ω1. (2.7)

Proof. Necessity. Let ̂︀𝐻2 ⊂ ̃︀𝐻1. For ̂︀𝑔 ∈ ̂︀𝐻2 we havê︀𝑔(𝑧) = (𝑒2( · , 𝑧), 𝑔)𝐻2 for all 𝑧 ∈ Ω1. (2.8)

If ̂︀𝑔 ranges over the entire space ̂︀𝐻2, then 𝑔 ranges over the entire space 𝐻2. On the other hand,
since ̂︀𝐻2 ⊂ ̃︀𝐻1, there exists ℎ𝑔 ∈ 𝐻1 such that the identity

̂︀𝑔(𝑧) = (𝑒1( · , 𝑧), ℎ𝑔)𝐻1 =
̃︀ℎ𝑔(𝑧) for all 𝑧 ∈ Ω1 (2.9)

holds.
We define the operator 𝐵 as

𝐵 : 𝑔 ↦→ ℎ𝑔.

It is easy to show that 𝐵 : 𝐻2 → 𝐻1 is a linear operator. The expression (2.9) means that

̂︀𝑔(𝑧) = ̃︀ℎ𝑔(𝑧) = ̃︁𝐵𝑔(𝑧) for all 𝑧 ∈ Ω1. (2.10)

The operator 𝐵 is bounded. Indeed, by the identities (2.9), (2.10) and the conditions ̂︀𝐻2 ⊂ ̃︀𝐻1

we find

‖𝐵𝑔‖𝐻1 = ‖̃︁𝐵𝑔‖ ̃︀𝐻1
= ‖̂︀𝑔‖ ̃︀𝐻1

⩽ 𝐶 · ‖̂︀𝑔‖ ̂︀𝐻2
= 𝐶 · ‖𝑔‖𝐻2 for all 𝑔 ∈ 𝐻2.

The latter means the boundedness of the operator 𝐵. For each 𝑔 ∈ 𝐻2, 𝑧 ∈ Ω1, we havê︀𝑔(𝑧) = (𝑒1( · , 𝑧), 𝐵𝑔)𝐻1 = (𝐵*𝑒1( · , 𝑧), 𝑔)𝐻2 . (2.11)
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Here 𝐵* : 𝐻1 → 𝐻2 is the adjoint operator for 𝐵. Deducting the identity (2.11) from (2.8), we
get

0 ≡ (𝑒2( · , 𝑧)−𝐵*𝑒1( · , 𝑧), 𝑔)𝐻2 for all 𝑔 ∈ 𝐻2, ∀𝑧 ∈ Ω1

and

𝐵*𝑒1( · , 𝑧) = 𝑒2( · , 𝑧) for all 𝑧 ∈ Ω1.

We let 𝐴 = 𝐵*. We have constructed the operator 𝐴 : 𝐻1 → 𝐻2 such that

𝐴 : 𝑒1( · , 𝑧) → 𝑒2( · , 𝑧) for all 𝑧 ∈ Ω1.

This completes the proof of necessity.
Sufficiency. Suppose that there exists an operator 𝐴 : 𝐻1 → 𝐻2 such that

𝐴 : 𝑒1( · , 𝑧) ↦→ 𝑒2( · , 𝑧) for all 𝑧 ∈ Ω1.

Then the operator 𝐴* acts from the space 𝐻2 into the space 𝐻1 and̂︀𝑔(𝑧) = (𝑒2( · , 𝑧), 𝑔)𝐻2 = (𝐴𝑒1( · , 𝑧), 𝑔)𝐻2 = (𝑒1( · , 𝑧), 𝐴*𝑔)𝐻1 = ̃︂𝐴*𝑔(𝑧)

for all 𝑧 ∈ Ω1 and 𝑔 ∈ 𝐻2. This implies that if a function ̂︀𝑔 belongs to ̂︀𝐻2, then ̂︀𝑔 also belongs
the space ̃︀𝐻1. Due to the definitions of the norms in the spaces ̃︀𝐻1, ̂︀𝐻2, for the functions
𝑔 ∈ 𝐻2, ̂︀𝑔 ∈ ̂︀𝐻2 the estimate

‖̂︀𝑔‖ ̃︀𝐻1
=
⃦⃦̃︂𝐴*𝑔

⃦⃦ ̃︀𝐻1
= ‖𝐴*𝑔‖𝐻1 ⩽ 𝐶‖𝑔‖𝐻2 = 𝐶‖̂︀𝑔‖ ̂︀𝐻2

for all 𝑔 ∈ 𝐻2

holds, where 𝐶 > 0 is some constant. Thus, we have shown that ̂︀𝐻2 ⊂ ̃︀𝐻1. The proof is
complete.

In what follows we study the issue on condition of consistence of complete systems of functions
with some linear continuous operator [3] for the case of embedding one RKHS into another
RKHS. We recall a definition from [3].

Definition 2.1. Systems of functions {𝑒𝑗( · , 𝑧)}𝑧∈Ω1, 𝑗 = 1, 2, belonging to RKHS 𝐻, are

called consistent with an operator 𝑇 : 𝐻 → 𝐻 if

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑒1( · , 𝑧2), 𝑇 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1. (2.12)

There arises a question: whether an analogue of Statements 3 and 4 from the work [3]
(see also [4]) is true? We suppose that the systems of functions {𝑒𝑗( · , 𝑧)}𝑧∈Ω1 , 𝑗 = 1, 2,
are orthosimilar expansion systems in RKHS 𝐻 with the same measure 𝜇 [8] (see also [9]).
Orthosimilar expansions systems were introduced in works by T.P. Lukashenko. As it turns
out, the condition that the systems {𝑒𝑗( · , 𝑧)}𝑧∈Ω1 , 𝑗 = 1, 2, are orthosimilar expansion systems
in the space 𝐻 with the same measure 𝜇 is a very strong condition. The space 𝐻 consists of
the functions defined on the set Ω ⊂ C𝑚, 𝑚 ∈ N.

Theorem 2.3. Let {𝑒𝑗( · , 𝑧)}𝑧∈Ω1, 𝑗 = 1, 2, be two orthosimilar expansion systems in an

RKHS 𝐻 with the same measure 𝜇. Suppose that there exists a linear continuous operator

𝑇 : 𝐻 → 𝐻 such that the systems of functions {𝑒𝑗( · , 𝑧)}𝑧∈Ω1, 𝑗 = 1, 2, are consistent with the

operator 𝑇 , that is,

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑒1( · , 𝑧2), 𝑇 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1.

Then the space ̂︀𝐻 is equivalent to the space ̃︀𝐻.

Remark 2.1. In contrast to [3, Statems. 3, 4], the operator 𝑇 : 𝐻 → 𝐻 is not supposed to

be invertible; it is only a linear continuous operator.
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Proof. Let {𝑒𝑗( · , 𝑧)}𝑧∈Ω1 , 𝑗 = 1, 2, be two orthosimilar expansion systems in the space 𝐻,
which are consistent with the operator 𝑇 , that is, the relation (2.12) holds, or, equivalently,

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑇𝑒2( · , 𝑧1), 𝑒1( · , 𝑧2))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1.

This identity implies(︃
𝑚∑︁
𝑘=1

𝑐𝑘𝑒1( · , 𝑧𝑘), 𝑒2( · , 𝜉)

)︃
𝐻

=

(︃
𝑚∑︁
𝑘=1

𝑐𝑘𝑇𝑒2( · , 𝑧𝑘), 𝑒1( · , 𝜉)

)︃
𝐻

for all 𝜉 ∈ Ω1. (2.13)

Here {𝑧𝑘}𝑚𝑘=1 is an arbitrary set of the points in Ω1, while {𝑐𝑘}𝑚𝑘=1 is an arbitrary set of complex
numbers. Then

𝑝(𝑡)
𝑑𝑒𝑓
=

𝑚∑︁
𝑘=1

𝑐𝑘𝑒1(𝑡, 𝑧𝑘), 𝑡 ∈ Ω,

is an arbitrary function in the linear span of the system {𝑒1( · , 𝑧)}𝑧∈Ω1 , and

𝑞(𝑡)
𝑑𝑒𝑓
=

𝑚∑︁
𝑘=1

𝑐𝑘𝑇𝑒2(𝑡, 𝑧𝑘), 𝑡 ∈ Ω,

is a function in the linear span of the system {𝑇𝑒2( · , 𝑧)}𝑧∈Ω1 . Then the functions 𝑝, 𝑞 belong to
𝐻, while the systems of functions {𝑒𝑗( · , 𝑧)}𝑧∈Ω1 , 𝑗 = 1, 2, are orthosimilar expansion systems
in 𝐻 with the measure 𝜇. Hence,

𝑝(𝑡) =

∫︁
Ω1

(𝑝, 𝑒2( · , 𝜉))𝐻𝑒2(𝑡, 𝜉) 𝑑𝜇(𝜉) for all 𝑡 ∈ Ω,

𝑞(𝑡) =

∫︁
Ω1

(𝑞, 𝑒1( · , 𝜉))𝐻𝑒1(𝑡, 𝜉) 𝑑𝜇(𝜉) for all 𝑡 ∈ Ω.

By the analogue of the Parseval identity [8, Thm. 1] and relation (2.13) the identity holds

‖𝑝‖2𝐻 =

∫︁
Ω1

|(𝑝, 𝑒2( · , 𝜉))|2 𝑑𝜇(𝜉) =
∫︁
Ω1

|(𝑞, 𝑒1( · , 𝜉))|2 𝑑𝜇(𝜉) = ‖𝑞‖2𝐻

or ‖𝑝‖𝐻 = ‖𝑞‖𝐻 . On the linear span of the system of functions {𝑒1( · , 𝑧)}𝑧∈Ω1 we define an
operator 𝐿1 by the rule 𝐿1 : 𝑝 ↦→ 𝑞. We denote by 𝐻1

0 the closure of the linear span of the
system of functions {𝑇𝑒2( · , 𝑧)}𝑧∈Ω1 by the norm of the space 𝐻. By the Banach theorem [10],
the operator 𝐿1 is continued to a linear continuous bijective unitary operator acting from 𝐻

onto 𝐻1
0 and 𝐿1 : 𝑒1( · , 𝜉) ↦→ 𝑇𝑒2( · , 𝜉) for all 𝜉 ∈ Ω1. This is why the operator 𝐴

𝑑𝑒𝑓
= 𝐿−1

1 ∘ 𝑇
is a linear continuous operator acting from 𝐻 into 𝐻 and 𝐴 : 𝑒2( · , 𝜉) ↦→ 𝑒1( · , 𝜉) for all 𝜉 ∈ Ω1.

Applying Theorem 2.1, we obtain ̃︀𝐻 ⊂ ̂︀𝐻.
It follows from relation (2.12) that

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑇 *𝑒1( · , 𝑧2), 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1, (2.14)

𝑇 * is the adjoint operator for 𝑇 . By (2.14) we get

(𝑒2( · , 𝑧2), 𝑒1( · , 𝑧1))𝐻 = (𝑇 *𝑒1( · , 𝑧2), 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1. (2.15)

Let {𝑧𝑘}𝑚𝑘=1 be an arbitrary set of points in Ω1 and {𝑐𝑘}𝑚𝑘=1 be an arbitrary set of complex
numbers and

𝑝(𝑡)
𝑑𝑒𝑓
=

𝑚∑︁
𝑘=1

𝑐𝑘𝑒2(𝑡, 𝑧𝑘), 𝑡 ∈ Ω,
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be a function from the linear span of the system {𝑒2( · , 𝑧)}𝑧∈Ω1 , and

𝑞(𝑡)
𝑑𝑒𝑓
=

𝑚∑︁
𝑘=1

𝑐𝑘𝑇
*𝑒1(𝑡, 𝑧𝑘), 𝑡 ∈ Ω,

be a function from the linear span of the system {𝑇 *𝑒1( · , 𝑧)}𝑧∈Ω1 . We define an operator
𝐿2 by the rule 𝐿2 : 𝑝 ↦→ 𝑞. We denote by 𝐻2

0 the closure of the linear span of the system
of functions {𝑇 *𝑒1( · , 𝑧)}𝑧∈Ω1 in the norm of the space 𝐻. By the Banach theorem [10] the
operator 𝐿2 is continued to a linear continuous bijective unitary operator acting from 𝐻 onto
𝐻2

0 , and this operator possesses the property 𝐿2 : 𝑒2( · , 𝜉) ↦→ 𝑇 *𝑒1( · , 𝜉) for all 𝜉 ∈ Ω1. This

is why the operator 𝐴
𝑑𝑒𝑓
= 𝐿−1

2 ∘ 𝑇 * is a linear continuous operator acting from 𝐻 into 𝐻 and

𝐴 : 𝑒1( · , 𝜉) ↦→ 𝑒2( · , 𝜉) for all 𝜉 ∈ Ω1. Applying Theorem 2.1, we get ̂︀𝐻 ⊂ ̃︀𝐻, that is, as a set of

function, ̂︀𝐻 is embedded into ̃︀𝐻 and for each ℎ ∈ ̂︀𝐻 the estimate ‖ℎ‖ ̃︀𝐻 ⩽ 𝐶1‖ℎ‖ ̂︀𝐻 holds with

a constant 𝐶1 > 0 independent of ℎ. Earlier we have shown that ̃︀𝐻 ⊂ ̂︀𝐻, that is, as a set of
functions, ̃︀𝐻 is embedded into ̂︀𝐻 and for each ℎ ∈ ̃︀𝐻 the estimate ‖ℎ‖ ̂︀𝐻 ⩽ 𝐶2‖ℎ‖ ̃︀𝐻 holds with

a constant 𝐶2 > 0 independent of ℎ. Thus, the spaces ̂︀𝐻 and ̃︀𝐻 are equivalent, that is, ̂︀𝐻, ̃︀𝐻
consist of the same functions and the relation

1

𝐶2

‖ℎ‖ ̂︀𝐻 ⩽ ‖ℎ‖ ̃︀𝐻 ⩽ 𝐶1‖ℎ‖ ̂︀𝐻 for all ℎ ∈ ̃︀𝐻
holds. The proof is complete.

The proven theorem implies the following corollary.

Corollary 2.1. Let {𝑒𝑗( · , 𝑧)}𝑧∈Ω1, 𝑗 = 1, 2, be two orthosimilar expansions systems in the

space 𝐻 with the same measure 𝜇. Assume that there exists a linear continuous operator

𝑇 : 𝐻 → 𝐻 such that the systems of functions {𝑒𝑗( · , 𝑧)}𝑧∈Ω1, 𝑗 = 1, 2, are consistent with the

operator 𝑇 , that is,

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑒1( · , 𝑧2), 𝑇 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1. (2.16)

Then the operator 𝑇 has a continuous inverse operator.

Proof. Under the made assumptions, by Theorem 2.3, the space ̂︀𝐻 is equivalent to the spacẽ︀𝐻. Applying [3, Statem. 2], we conclude on the existence of a linear continuous invertible
operator 𝑇1 such that the condition holds

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑒1( · , 𝑧2), 𝑇1𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1. (2.17)

On the other hand, by the assumptions, the identity (2.16) is true. Comparing (2.16) and (2.17),
we find the identity

(𝑒1( · , 𝑧2), 𝑇1𝑒2( · , 𝑧1))𝐻 = (𝑒1( · , 𝑧2), 𝑇 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1

or

(𝑒1( · , 𝑧2), 𝑇1𝑒2( · , 𝑧1)− 𝑇𝑒2( · , 𝑧1))𝐻 ≡ 0 for all 𝑧1, 𝑧2 ∈ Ω1. (2.18)

Since the system of functions {𝑒1( · , 𝜉)}𝜉∈Ω1 is complete in the space 𝐻, it follows from (2.18)
that

𝑇1𝑒2(𝜏, 𝑧1)− 𝑇𝑒2(𝜏, 𝑧1) = 0 for all 𝜏 ∈ Ω, 𝑧1 ∈ Ω1

or

𝑇1𝑒2(𝜏, 𝑧1) = 𝑇𝑒2(𝜏, 𝑧1) for all 𝜏 ∈ Ω, 𝑧1 ∈ Ω1

and

𝑇1𝑟(𝜏) = 𝑇𝑟(𝜏) for all 𝜏 ∈ Ω,
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where 𝑟(𝜏) is an arbitrary function from the linear span of system {𝑒2(𝜏, 𝜉)}𝜉∈Ω1 . Since the
system of functions {𝑒2( · , 𝜉)}𝜉∈Ω1 is complete in the space𝐻, and 𝑇1, 𝑇 are continuous operator,
the latter identity implies that

𝑇1𝑓(𝜏) = 𝑇𝑓(𝜏) for all 𝜏 ∈ Ω, 𝑓 ∈ 𝐻,

that is, the invertible operator 𝑇1 coincides with the operator 𝑇 . The proof is complete.

The question arises: whether there are analogues of Statements 1 and 2 in [3] formulated for

the case of coincidence or equivalence of RKHSs? If ̂︀𝐻 ⊂ ̃︀𝐻, whether the consistence condition

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑒1( · , 𝑧2), 𝑇 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1

is true? In the next section we provide Example 1, which shows in the general case the answer
to this question is negative. The condition 𝑑𝜇1 ⩽ 𝐶 · 𝑑𝜇2 means that if the set 𝑃 ⊂ Ω1 is
𝜇2–measurable, then 𝑃 is also 𝜇1–measurable and there exists a constant independent of the
choice of the set 𝑃 ⊂ Ω1 such that 𝜇1(𝑃 ) ⩽ 𝐶𝜇2(𝑃 ).

Theorem 2.4. Let 𝐻 be an RKHS consisting of the functions defined on the set Ω
and {𝑒1( · , 𝜉)}𝜉∈Ω1 be an orthosimilar expansion system in 𝐻 with the measure 𝜇1, while

{𝑒2( · , 𝜉)}𝜉∈Ω1 is an orthosimilar expansion system in 𝐻 with the measure 𝜇2. Let there ex-

ist a constant 𝐶 > 0 such that 𝑑𝜇1 ⩽ 𝐶 · 𝑑𝜇2 and a linear continuous operator 𝑇 : 𝐻 → 𝐻 such

that

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑒1( · , 𝑧2), 𝑇 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1. (2.19)

Then the space ̂︀𝐻 is embedded into the space ̃︀𝐻.

Proof. Let 𝑇 * be the adjoint operator for 𝑇 . The relation (2.19) implies

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑇 *𝑒1( · , 𝑧2), 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1

or

(𝑇 *𝑒1( · , 𝑧2), 𝑒2( · , 𝑧1))𝐻 = (𝑒2( · , 𝑧2), 𝑒1( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1. (2.20)

Let {𝑧𝑘}𝑚𝑘=1 be an arbitrary set of the points in Ω1 and {𝑐𝑘}𝑚𝑘=1 be an arbitrary set of complex
numbers and

𝑝(𝑡)
𝑑𝑒𝑓
=

𝑚∑︁
𝑘=1

𝑐𝑘𝑇
*𝑒1(𝑡, 𝑧𝑘), 𝑞(𝑡)

𝑑𝑒𝑓
=

𝑚∑︁
𝑘=1

𝑐𝑘𝑒2(𝑡, 𝑧𝑘), 𝑡 ∈ Ω.

Using the linearity of the scalar product in the first argument, by (2.20) we get the identity

(𝑝, 𝑒2( · , 𝜉))𝐻 = (𝑞, 𝑒1( · , 𝜉))𝐻 for all 𝜉 ∈ Ω1. (2.21)

Applying the analogue of the Parseval identity for orthosimilar expansion systems [8, Thm. 1]
and taking into consideration the condition 𝑑𝜇1 ⩽ 𝐶 · 𝑑𝜇2, by (2.21) we get the inequality

‖𝑞‖2𝐻 =

∫︁
Ω1

|(𝑞, 𝑒1( · , 𝜉))𝐻 |2 𝑑𝜇1(𝜉) =

∫︁
Ω1

|(𝑝, 𝑒2( · , 𝜉))𝐻 |2 𝑑𝜇1(𝜉)

⩽ 𝐶

∫︁
Ω1

|(𝑝, 𝑒2( · , 𝜉))𝐻 |2 𝑑𝜇2(𝜉) = 𝐶‖𝑝‖2𝐻 .
(2.22)

Let 𝐻0 be the closure of the linear span of the system of functions {𝑇 *𝑒1( · , 𝜉)}𝜉∈Ω1 by the
norm of the space 𝐻. Then 𝐻0 is a closed subspace of the space 𝐻. We consider an operator
𝐵 acting on the linear span of the system {𝑇 *𝑒1( · , 𝜉)}𝜉∈Ω1 by the rule

𝐵 : 𝑝 ↦→ 𝑞.
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Estimate (2.22) implies

‖𝐵𝑝‖𝐻 ⩽ 𝐶‖𝑝‖𝐻 for all 𝑝 ∈ span{𝑇 *𝑒1( · , 𝜉)}𝜉∈Ω1 . (2.23)

By the Banach theorem the operator 𝐵 is continued to a linear continuous operator acting from
𝐻0 into 𝐻. Thus,

‖𝐵ℎ‖𝐻 ⩽ 𝐶‖ℎ‖𝐻 for all ℎ ∈ 𝐻0. (2.24)

The operator 𝐵 possesses the property

𝐵 : 𝑇 *𝑒1( · , 𝜉) ↦→ 𝑒2( · , 𝜉) for all 𝜉 ∈ Ω1.

Then the operator 𝐴
𝑑𝑒𝑓
= 𝐵 ∘ 𝑇 * is a linear continuous operator acting from 𝐻 into 𝐻 and

possesses the property

𝐴 : 𝑒1( · , 𝜉) ↦→ 𝑒2( · , 𝜉) for all 𝜉 ∈ Ω1.

By Theorem 2.1 the space ̂︀𝐻 is embedded into the space ̃︀𝐻. The proof is complete.

3. Examples

3.1. Example 1. We consider the Bergman space 𝐵2(𝐷), which consists of the functions
analytic in the unit disk 𝐷 = {𝑧 ∈ C : |𝑧| < 1}. By 𝑙2 we denote the space of sequences

𝑙2 = {x = {𝑥𝑘}𝑘∈N0 : ‖x‖2𝑙2 =
∞∑︁
𝑘=0

|𝑥𝑘|2 < ∞},

where N0 := N
⋃︀
{0}. It is known that the operator 𝐴 defined on the space 𝑙2 by the rule

𝐴 : {𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛, . . . } ↦→ {0, 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛, . . . },

acts in the space 𝑙2 and is bounded (but not invertible). The image of the operator Im𝐴
is a closed subspace of the space 𝑙2. The operator 𝐴 generates a linear continuous operator
𝐴1 : 𝐵2(𝐷) → 𝐵2(𝐷), which acts by the rule: if

𝑓(𝑧) =
∞∑︁
𝑘=0

𝑓𝑘 ·
√
𝑘 + 1 · 𝑧𝑘, {𝑓𝑘}𝑘∈N0 ∈ 𝑙2,

then

𝐴1𝑓(𝑧) :=
∞∑︁
𝑘=0

𝑓𝑘 ·
√
𝑘 + 2 · 𝑧𝑘+1, {𝑓𝑘}𝑘∈N0 ∈ 𝑙2.

Since Im𝐴 is a closed subspace of the space 𝑙2, then Im𝐴1 is a closed subspace of the space
𝐵2(𝐷). It is easy to see that Im𝐴1 does not coincide with the space 𝐵2(𝐷). We let

𝑒1(𝑘, 𝑧) :=
√
𝑘 + 1 · 𝑧𝑘, 𝑘 ∈ N0, 𝑧 ∈ 𝐷;

𝑒2(𝑘, 𝑧) :=
√
𝑘 + 2 · 𝑧𝑘+1, 𝑘 ∈ N0, 𝑧 ∈ 𝐷.

Let 𝐻 = 𝑙2, then (see relations (1.1), (1.2)) Ω = N0, Ω1 = 𝐷, ̃︀𝐻 = 𝐵2(𝐷), ̂︀𝐻 = Im𝐴1. Suppose
that there exists an operator 𝑇 : 𝐻 → 𝐻 such that the consistence condition holds

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝐻 = (𝑒1( · , 𝑧2), 𝑇 𝑒2( · , 𝑧1))𝐻 for all 𝑧1, 𝑧2 ∈ Ω1. (3.1)

Then by Theorem 2.3 the spaces 𝐵2(𝐷) and Im𝐴1 are equivalent. However, we have just

established that this is not true. Thus, we have provided an example, when the space ̂︀𝐻 is
embedded into the space ̃︀𝐻, but the consistence condition (3.1) for the systems of functions
{𝑒𝑗( · , 𝑧)}𝑧∈Ω1 , 𝑗 = 1, 2, fails for any choice of the linear continuous operator 𝑇 .
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3.2. Example 2. We provide an example illustrating Theorem 2.4. Let 𝛼 > −1. We consider
the weighted Bergman space

𝐵2(𝐷,𝛼) :=

⎧⎨⎩𝑓 ∈ 𝐻(𝐷) : ‖𝑓‖2𝐵2(𝐷,𝛼) =

∫︁
𝐷

|𝑓(𝑧)|2(1− |𝑧|)𝛼 𝑑𝑣(𝑧)

⎫⎬⎭ ,

where 𝑑𝑣(𝑧) is the planar Lebesgue measure, 𝐵2(𝐷,𝛼) is an RKHS with the scalar product

(𝑓, 𝑔)𝐵2(𝐷,𝛼) =

∫︁
𝐷

𝑓(𝑧) · 𝑔(𝑧)(1− |𝑧|)𝛼 𝑑𝑣(𝑧) for all 𝑓, 𝑔 ∈ 𝐵2(𝐷,𝛼).

It is known that {𝑧𝑘}∞𝑘=0, 𝑧 ∈ 𝐷, forms an orthogonal basis in the space 𝐵2(𝐷,𝛼) (see, for
instance, [11]).
Then the system of functions {𝑧𝑘/‖𝑧𝑘‖𝐵2(𝐷,𝛼)}∞𝑘=0, 𝑧 ∈ 𝐷, is an orthonormal basis in the

space 𝐵2(𝐷,𝛼). It is easy to see that if 𝛼 ⩾ 0, then 𝐵2(𝐷) ⊂ 𝐵2(𝐷,𝛼), while if −1 < 𝛼 ⩽ 0,
then 𝐵2(𝐷,𝛼) ⊂ 𝐵2(𝐷). Indeed, it is easy to verify the inequalities

‖𝑓‖2𝐵2(𝐷,𝛼) =

∫︁
𝐷

|𝑓(𝑧)|2(1− |𝑧|)𝛼 𝑑𝑣(𝑧) ⩽
∫︁
𝐷

|𝑓(𝑧)|2 𝑑𝑣(𝑧) = ‖𝑓‖2𝐵2(𝐷),

𝛼 ⩾ 0 for all 𝑓 ∈ 𝐵2(𝐷);

‖𝑓‖2𝐵2(𝐷,𝛼) =

∫︁
𝐷

|𝑓(𝑧)|2(1− |𝑧|)𝛼 𝑑𝑣(𝑧) ⩾
∫︁
𝐷

|𝑓(𝑧)|2 𝑑𝑣(𝑧) = ‖𝑓‖2𝐵2(𝐷),

−1 < 𝛼 ⩽ 0 for all 𝑓 ∈ 𝐵2(𝐷).

We also have

(1− |𝑧|)𝛼 𝑑𝑣(𝑧) ⩽ 𝑑𝑣(𝑧), 𝛼 ⩾ 0;

(1− |𝑧|)𝛼 𝑑𝑣(𝑧) ⩾ 𝑑𝑣(𝑧), −1 < 𝛼 ⩽ 0.

In our notation

𝐻 = 𝑙2, {𝑒1( · , 𝜉)}𝜉∈𝐷 :=

{︃
𝜉𝑘

‖𝜉𝑘‖2𝐵2(𝐷,𝛼)

}︃
𝜉∈𝐷

, 𝑘 ∈ N0;

{𝑒2( · , 𝜉)}𝜉∈𝐷 :=

{︃
𝜉𝑘

‖𝜉𝑘‖2𝐵2(𝐷)

}︃
𝜉∈𝐷

, 𝑘 ∈ N0.

We also get ̂︀𝐻 = 𝐵2(𝐷), ̃︀𝐻 = 𝐵2(𝐷,𝛼).
The system of functions {𝑒1( · , 𝜉)}𝜉∈𝐷 is an orthosimilar expansion system with the measure

𝑑𝜇1(𝑧) := (1−|𝑧|)𝛼 𝑑𝑣(𝑧) in the space 𝑙2. The system of functions {𝑒2( · , 𝜉)}𝜉∈𝐷 is an orthosim-
ilar expansion system with the measure 𝑑𝜇2(𝑧) := 𝑑𝑣(𝑧) in the space 𝑙2. It is easy to verify that
the systems {𝑒𝑗( · , 𝜉)}𝜉∈𝐷, 𝑗 = 1, 2, satisfy the consistence condition

(𝑒1( · , 𝑧1), 𝑒2( · , 𝑧2))𝑙2 = (𝑒1( · , 𝑧2), 𝑖𝑑[𝑒2( · , 𝑧1)])𝑙2 for all 𝑧1, 𝑧2 ∈ 𝐷,

where 𝑖𝑑 stands for the identity mapping. If 𝛼 ⩾ 0, then 𝑑𝜇1 ⩽ 𝑑𝜇2; all assumptions of
Theorem 2.4 are satisfied and ̂︀𝐻 ⊂ ̃︀𝐻. If −1 < 𝛼 ⩽ 0, then 𝑑𝜇1 ⩾ 𝑑𝜇2; all assumptions of
Theorem 2.4 are satisfied and ̂︀𝐻 ⊃ ̃︀𝐻.
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