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DUAL CONSTRUCTION AND EXISTENCE OF

(PLURI)SUBHARMONIC MINORANT

E.G. KUDASHEVA, E.B. MENSHIKOVA, B.N. KHABIBULLIN

Abstract. We study the existence and construction of subharmonic or plurisubharmonic
function enveloping from below a function on a subset in finite–dimensional real or complex
space. These problems naturally arise in theories of uniform algebras, potential and com-
plex potential, which was reflected in works by D.A. Edwards, T.V. Gamelin, E.A. Poletsky,
S. Bu and W. Schachermayer, B.J. Cole and T.J. Ransford, F. Lárusson and S. Sigurdsson
and many others. In works in 1990s and recently we showed that these problems play a key
role in studying nontriviality of weighted spaces of holomorphic functions, in description
of zero sets and subsets of functions from such spaces, in representations of meromorphic
functions as a quotient of holomorphic functions with growth restrictions, in studying the
approximation by exponential systems in functional spaces, etc. The main results of the
paper on existence of subharmonic or plurisubharmonic function–minorant are derived from
our general theoretical functional scheme, which allows us to provide a dual definition of
the lower envelope with respect to a convex cone in the projective limit of vector lattices.
We develop this scheme during last years and it is based on an abstract form of balayage.
The ideology of the abstract balayage goes back to H. Poincaré and M.V. Keldysh in the
framework of balayage of measures and subharmonic functions in the potential theory. It is
widely used in the probability theory, for instance, in the known monograph by P. Meyer,
and it is also reflected, often implicitly, in monographs by G.P. Akilov, S.S. Kutateladze,
A.M. Rubinov and others related with the theory of ordered vector spaces and lattices.
Our paper is adapted for convex subcones of the cone of all subharmonic or plurisubhar-
monic functions. This allows us to obtain new criterion for existence of a subharmonic or
plurisubharmonic minorant for functions on a domain.

Keywords: subharmonic function, plurisubharmonic function, lower envelope, vector lat-
tice, projective limit, balayage.
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1. Introduction. Formulation and discussion of results

1.1. Origination and formulation of problem. Let 𝐻 be some class consisting of sub-
harmonic or plurisubharmonic functions on a domain 𝐷 of a finite–dimensional real or complex
Euclidean space. The main considered problem is under which relations between 𝐻 and an ex-
tended real function 𝑓 on 𝐷 with values in the extension R∪{±∞} of the field of real numbers
R there exists a function ℎ ∈ 𝐻 such that −∞ ≠ ℎ ⩽ 𝑓 on 𝐷? A natural condition for 𝐻 is its
convexity. Here we consider the case, when 𝐻 is a convex cone. The dual solution of the prob-
lem when 𝐻 are cones of all (pluri)subharmonic functions on the domain 𝐷 naturally follows
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from the dual description of the lower (pluri)subharmonic envelope for extended real functions
on 𝐷 provided under certain restrictions for the function 𝑓 in works by Bu and Schachermayer
[1], by Poletsky [2], Cole and Ransford [3], as well as our works [4]–[13] and many others pub-
lished in 1990–2020. The interest to such problems is motivated by their numerous applications
in the theories of uniform algebras, (pluri)potential [2], in issues on nontriviality of weighted
spaces of holomorphic functions, description of distribution of zero sets and uniqueness sets
for such spaces, representation of meromorphic functions as a quotient of the functions from
these spaces [5]–[7], [9]–[12]. In the paper we present a further development of our approach to
problems of such kind. This approach is based on the general dual description of the envelopes
for the vectors in the projective limits of vector lattices and the notion of balayage.
In [10], [11] a rather detailed formulation on the considered problems was provided as well

as their history with a wide bibliography up to recent years including the applications to the
theory of functions and approximations. We note once again that other authors working in this
field considered only envelopes of particular cones of all (pluri)subharmonic functions. In our
paper the convex subcones can be rather general and they are essentially narrower than the
cones of all (pluri)subharmonic functions. Moreover, the function 𝑓 was supposed to be locally
bounded from above, for instance, a semi–continuous from above on 𝐷. This did not allow to
cover all cases of the functions 𝑓 from the difference 𝐻 − 𝐻, while exactly this case is of the
highest interest due to the applications proposed in [6]–[11]. These restrictions were recently
omitted by the third author in the paper [13], but only for the case of the convex cone 𝐻 of all
subharmonic functions on the domain. Our paper can be regarded as an essential development
of this result [13, Thm. 1], which extends it to wide classes of convex subcones in the cone of
all subharmonic functions on the domain and extended real functions 𝑓 on 𝐷. Thus, the main
advances in the present paper in comparison with previous ones are, first, the dual construction
of the minorant or lower envelope from the wide class of various convex subcones of the cone
of subharmonic or plurisubharmonic functions on the domain 𝐷, and second, the omitting of
the condition of local boundedness from above for the function 𝑓 , for which the minorant or
lower envelope from the convex cone 𝐻 is constructed. We proceed to rigorous definitions and
formulations.

1.2. Definitions, notation, conventions. The sets N := {1, 2, . . . }, R, C are respectively
ones of natural, real and complex numbers, N0 := {0}∪N and R := R∪{±∞} is the extended
real line, where −∞ := inf R = sup ∅, +∞ := supR = inf ∅ for the empty set ∅. These sets are
considered with their natural algebraic, geometric and topological structures. The Euclidean
space R𝑑 of a dimension 𝑑 ∈ N is considered with the Euclidean norm |𝑥| :=

√︀
𝑥2
1 + · · ·+ 𝑥2

𝑑

for (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 and with the 𝑑–dimensional Lebesgue measure m𝑑. As usually, C is the
field of all complex number (complex plane). In the present paper it is convenient to identify
the 𝑑–dimensional complex space C𝑑 = R𝑑+ 𝑖R𝑑 with the 2𝑑–dimensional space R𝑑×R𝑑 = R2𝑑

with the Lebesgue measure m2𝑑.
For a pair of extended real functions 𝑓 : 𝑋 → R and 𝑔 : 𝑋 → R we write 𝑓 ⩽ 𝑔 on 𝐷 if

𝑓(𝑥) ⩽ 𝑔(𝑥) for each point 𝑥 ∈ 𝑋.
By 𝐶(𝑋) we denote the vector space over R of continuous functions on a topological space

𝑋 with values in R.
Hereafter by the symbol 𝐷 ⊂ R𝑑 we denote a domain, that is, a connected open subset in

R𝑑, and 𝐵𝑜(𝑟) :=
{︀
𝑥 ∈ R𝑑

⃒⃒
|𝑥− 𝑜| ⩽ 𝑟

}︀
is the ball of radius 𝑟 > 0 centered at 𝑜 ∈ R𝑑.

A subset 𝐻 of a vector space over the field R is called cone if

𝑡𝐻 :=
{︀
𝑡ℎ

⃒⃒
ℎ ∈ 𝐻

}︀
⊂ 𝐻 for all 0 < 𝑡 ∈ R.
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If the cone 𝐻 contains a zero vector, that is, 𝑡𝐻 ⊂ 𝐻 for all 0 ⩽ 𝑡 ∈ R, then 𝐻 is a cone with
the vertex at zero. The cone 𝐻 is convex if 𝐻 is a convex set. Thus, 𝐻 is a convex cone with
the vertex at zero if and only if

𝑡𝐻 + 𝑡𝐻 :=
{︀
𝑡ℎ1 + 𝑡ℎ2

⃒⃒
ℎ1 ∈ 𝐻, ℎ2 ∈ 𝐻

}︀
⊂ 𝐻 for all 0 ⩽ 𝑡 ∈ R.

By Meas+0 (𝐷) we denote a convex cone with the vertex at zero of all positive Borel measures
with compact supports in 𝐷, sbh(𝐷) is a convex cone with the vertex at zero of all subharmonic
on 𝐷 functions, which includes the function equalling identically to −∞ on 𝐷. While consid-
ering a domain 𝐷 ⊂ C𝑑, by psbh(𝐷) ⊂ sbh(𝐷) we denote a convex cone with the vertex at zero
of all (pluri)subharmonic functions on 𝐷. All facts about subharmonic and (pluri)subharmonic
functions can be found in [14], [15].
As in monograph [16], if the integral of the function with respect to the measure 𝜇 exists

and takes value in R, this function is called integrable with respect to the measure 𝜇, or 𝜇–
integrable, and if this integral is finite, that is, takes a value in R, then this function is called
integrable with respect to the measure 𝜇, or 𝜇–measurable. Thus, an extended real function
𝑓 : 𝐷 → R is locally integrable over 𝐷 with respect to the measure 𝜇, or locally 𝜇–integrable
on 𝐷 if the integral ∫︁

𝐾

𝑓 d𝜇 ∈ R for each compact set 𝐾 ⊂ 𝐷, (1.1)

is well–defined. If all integrals in (1.1) are finite, that is, they take values in R, then the function
𝑓 is locally summable over 𝐷 with respect to the measure 𝜇, or locally 𝜇–summable over 𝐷.
Below, the notion of summability or integrability of integrals, as well as of the identities

a.e.
=

and inequalities ⩽a.e. almost everywhere (a.e.) without indicating the measure concerns exactly
the measure m𝑑.
Each constant 𝑐 ∈ R is often treated as a function identically equal to the quantity 𝑐. Thus,

for a function 𝑢 : 𝐷 → R the writing 𝑢 ̸= −∞ means that the function 𝑢 is not identically −∞
on 𝐷. By

sbh*(𝐷) :=
{︀
𝑢 ∈ sbh(𝐷)

⃒⃒
𝑢 ̸= −∞

}︀
,

psbh*(𝐷) :=
{︀
𝑢 ∈ psbh(𝐷)

⃒⃒
𝑢 ̸= −∞

}︀
⊂ sbh*(𝐷)

(1.2)

we denote convex cones with the vertex at zero of respectively subharmonic 𝐷 ⊂ R𝑑 and
(pluri)subharmonic on 𝐷 ⊂ C𝑑 functions not identically equalling to −∞. Each function
𝑢 ∈ sbh*(𝐷) is locally summable on 𝐷.
For an extended real function 𝑓 : 𝐷 → R its upper–semi–continuous regularization 𝑓 * : 𝐷 →

R is defined as 𝑓 *(𝑥) := lim sup
𝑥′→𝑥

𝑓(𝑥′) at each point 𝑥 ∈ 𝐷. The function 𝑓 : 𝐷 → R is locally

bounded from above on 𝐷 if sup
𝑥∈𝐾

𝑓(𝑥) < +∞ for each compact set 𝐾 ⊂ 𝐷.

Our work is based on functional analytic results from [10] and [11], where also the history
of the issue with a wide bibliography were provided; we do not dwell on this here. Then these
results are applied for the dual description of the lower envelope 𝑥 ↦−→

𝑥∈𝐷
sup

{︀
ℎ(𝑥)

⃒⃒
𝐻 ∋ ℎ ⩽ 𝑓

}︀
of the functions 𝑓 : 𝐷 → R with respect to convex subcones 𝐻 ⊂ sbh(𝐷) as well as for the dual

description of the conditions, under which for a pair of functions 𝑣 ∈ 𝐻*
(1.2)
:= 𝐻 ∖ {−∞} and

𝑀 ∈ 𝐻* and for a continuous function 𝑚 ∈ 𝐶(𝐷) there exists a function ℎ ∈ 𝐻* such that
𝑣+ℎ ⩽ 𝑀+𝑚 on 𝐷. Our main results can be treated as solutions in partial cases of formulated
in [10, Sect. 2.3, Prbs. 1–3], [11, Sect. 1.2, Subsect. 1.2.3, Prbs. 1–3] general problems on the
existence of the envelope from the convex cones or sets.
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Theorem 1.1. Let a convex cone 𝐻 ⊂ sbh(𝐷) with a vertex at zero contains a constant
−1 and for each locally bounded from above on 𝐷 sequence (ℎ𝑘)𝑘∈N of functions ℎ𝑘 ∈ 𝐻 the
upper–semi–continuous regularization ℎ* of the pointwise upper limit

ℎ : 𝑥 ↦−→
𝑥∈𝐷

lim sup
𝑘→∞

ℎ𝑘(𝑥) := inf
𝑛∈N

sup
𝑘≥𝑛

ℎ𝑘(𝑥) (1.3)

of this sequence (ℎ𝑘)𝑘∈N belong to this cone 𝐻.
Then for function 𝑓 defined a.e. on 𝐷 and equalling a.e. to some function 𝐶(𝐷) +𝐻 −𝐻

also defined a.e. the identity

sup

{︂ ∫︁
𝐵𝑜(𝑟)

ℎ dm𝑑

⃒⃒⃒⃒
−∞ ≠ ℎ ∈ 𝐻, ℎ ⩽a.e. 𝑓 on 𝐷

}︂
= inf

𝜇∈J𝑟𝑜(𝐷;𝐻)

∫︁
𝐷

𝑓 d𝜇, (1.4)

where

J𝑟𝑜(𝐷;𝐻) :=

{︂
𝜇 ∈ Meas+0 (𝐷)

⃒⃒⃒⃒ ∫︁
𝐵𝑜(𝑟)

ℎ dm𝑑 ⩽
∫︁
𝐷

ℎ d𝜇 for all ℎ ∈ 𝐻

}︂
(1.5)

is the class of all linear balayages [8]–[12] of the restriction of m𝑑 to 𝐵𝑜(𝑟) with respect to 𝐻,
holds for each choice of the closed ball 𝐵𝑜(𝑟) ⊂ 𝐷.

Corollary 1.1. Under the assumptions of Theorem 1.1 the following three statements are
equivalent:

1) there exists a function ℎ ∈ 𝐻, for which −∞ ≠ ℎ⩽a.e.𝑓 on 𝐷;
2) for each closed ball 𝐵𝑜(𝑟) ⊂ 𝐷

(i) the infimum inf in (1.4) over all measures 𝜇 ∈ J𝑟𝑜(𝐷;𝐻) is not equal to −∞;
3) there exists a closed ball 𝐵𝑜(𝑟) ⊂ 𝐷, for which Statement (i) is true.

The examples of cones 𝐻 obeying the assumptions of Theorem 1.1 are convex cones sbh(𝐷)
for 𝐷 ⊂ R𝑑 and psbh(𝐷) ⊂ sbh(𝐷) for 𝐷 ⊂ C𝑑. The most important in Theorem 1.1 is a wide
possibility to choose 𝑓 in 𝐻 −𝐻 +𝐶(𝐷). Earlier the case 𝑓 ∈ 𝐶(𝐷) was completely studied in
[10, Cor. 8.1], [11, Cor. 3.2.1], [9, Thm. 7.2]. For 𝐻 := psbh(𝐷) in identities of the form (1.4)
in [1]–[3] the function 𝑓 was always supposed to be locally bounded from above on 𝐷. But for
a very important for further applications option 𝑓 ∈ 𝐻 −𝐻 the local boundedness from above
is likely not obeying since the functions from −𝐻 can be unbounded from above even on each
non–empty open subset in 𝐷.
Let us provide one more corollary for the cone psbh(𝐷), which, generally speaking, can not be

obtained from the main results of [1]–[3] and others. In the case of the convex cone 𝐻 = sbh(𝐷)
of all subharmonic functions on the domain 𝐷 ⊂ R𝑑, a similar statement is the main result
of our recent paper [13, Thm. 1]. In particular, for the dimension 𝑑 = 2 while identifying the
complex plane C with R2 below given Corollary 1.2 and [13, Thm. 1] almost coincide.

Corollary 1.2. For plurisubharmonic functions 𝑣 ̸= −∞ and 𝑀 ̸= −∞ on the domain
𝐷 ⊂ C𝑑 and a continuous function 𝑚 : 𝐷 → R the following three statements are equivalent:

1) there exists a plurisubharmonic on 𝐷 function ℎ ̸= −∞, for which

𝑣(𝑧) + ℎ(𝑧) ⩽ 𝑀(𝑧) +𝑚(𝑧) at each point 𝑧 ∈ 𝐷; (1.6)

2) for each closed ball 𝐵𝑜(𝑟) ⊂ 𝐷 there exists a number 𝐶 ∈ R such that∫︁
𝐷

𝑣 d𝜇 ⩽
∫︁
𝐷

(𝑀 +𝑚) d𝜇+ 𝐶 for all 𝜇 ∈ J𝑟𝑜
(︀
𝐷; psbh(𝐷)

)︀
; (1.7)

3) there exists a closed ball 𝐵𝑜(𝑟) ⊂ 𝐷 and 𝐶 ∈ R, for which (1.7) holds.
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2. Envelopes in projective limits of vector lattices

The arguing in this section will serve as a base for the proof of Theorem 1.1.
An ordered vector space (𝑋,⩽) over R with an order relation is called vector lattice, if for

each finite 𝐹 ⊂ 𝑋 there exists a supremum in 𝑋 denoted in what follows as 𝑋- sup𝐹 ∈ 𝑋 [18],
[19].
The set of all functions 𝑓 : 𝑋 → 𝑌 defined on entire 𝑋 with values in 𝑌 is denoted by 𝑌 𝑋 .

For a pair of vector lattices 𝑋 and 𝑌 by lin+𝑌 𝑋 we denote a convex cone with the vertex at
zero of linear positive functions 𝑙 : 𝑋 → 𝑌 .
Let (𝑋𝑛)𝑛∈N0 be a sequence of vector lattices 𝑋𝑛 with order relations ⩽𝑛, respectively, that

is, the sequence of all pairs (𝑋𝑛,⩽𝑛), 𝑛 ∈ N0. By this sequence (𝑋𝑛,⩽𝑛) we can construct the
product ∏︁

𝑋𝑛 :=
∞∏︁
𝑛=0

𝑋𝑛, (2.1)

in which for 𝑥 = (𝑥𝑛)𝑛∈N0 ∈
∏︀

𝑋𝑛 we let pr𝑛𝑥 = 𝑥𝑛 ∈ 𝑋𝑛 to be the projection of the vector
𝑥 ∈

∏︀
𝑋𝑛 onto the space 𝑋𝑛. On the product (2.1) we can introduce the order relation ⩽, for

which by definition 𝑥 ⩽ 𝑥′ in
∏︀

𝑋𝑛 if pr𝑛𝑥 ⩽𝑛 pr𝑛𝑥
′ for each 𝑛 ∈ N0.

Let (𝑝𝑛)𝑛∈N0 be a sequence of linear positive functions 𝑝𝑛 ∈ lin+𝑋𝑋𝑛+1
𝑛 from 𝑋𝑛+1 into 𝑋𝑛,

𝑛 ∈ N0, for which we suppose the preserving of the supremum for finite subsets, namely,

𝑋𝑛- sup 𝑝𝑛(𝐹𝑛+1) = 𝑝𝑛
(︀
𝑋𝑛+1- sup𝐹𝑛+1

)︀
for each finite 𝐹𝑛+1 ⊂ 𝑋𝑛+1.

Then the following subspace in the product (2.1) denoted by

𝑋 := proj lim𝑋𝑛𝑝𝑛 :=
{︁
𝑥 ∈

∏︁
𝑋𝑛

⃒⃒⃒
pr𝑛𝑥 = 𝑝𝑛(pr𝑛+1𝑥) for all 𝑛 ∈ N0

}︁
,

with the same order relation ⩽ as on
∏︀

𝑋𝑛 is the vector lattice called projective limit of the
sequence (𝑋𝑛)𝑛∈N0 of vector lattices over (𝑝𝑛)𝑛∈N0 . Without loss of generality we can suppose
[10, Prop. 3.1], [11, Prop. 2.1.1] that

pr𝑛𝑋 :=
{︀
pr𝑛𝑥

⃒⃒
𝑥 ∈ 𝑋

}︀
= 𝑋𝑛 for each 𝑛 ∈ N0,

that is, the projections pr𝑛 in the projective limit 𝑋 = proj lim𝑋𝑛𝑝𝑛 onto 𝑋𝑛 are surjective.
A subset 𝐵 ⊂ 𝑋 is bounded from below (above) in 𝑋 if there exists a vector 𝑥 in 𝑋, for

which 𝑥 ⩽ 𝑏 (respectively, 𝑏 ⩽ 𝑥) for all 𝑏 ∈ 𝐵. A subset 𝐵 ⊂ 𝑋 is bounded in 𝑋 if 𝐵 is
bounded from above and below in 𝑋.

Theorem 2.1 ([10, Thm. 2, Cors. 6.1, 3.1], [11, Thm. 2.4.1, Cors. 2.4.1, 2.1.1]). Let 𝐻* ⊂
𝑋 := proj lim𝑋𝑛𝑝𝑛 be a convex cone with the vertex at zero, and for each bounded in 𝑋 sequence(︀
ℎ(𝑘)

)︀
𝑘∈N of vectors ℎ(𝑘) ∈ 𝐻* there exists the upper limit

lim sup
𝑘→∞

ℎ(𝑘) := inf
𝑛∈N

sup
𝑘⩾𝑛

ℎ(𝑘) ∈ 𝐻*. (2.2)

Let 𝑆 ⊂ 𝑋 be a vector subspace containing a cone 𝐻* and for each 𝑛 ∈ N0 and each 𝑠𝑛 ∈ pr𝑛𝑆
there exists a vector ℎ𝑛 ∈ pr𝑛𝐻* such that ℎ𝑛 ⩽𝑛 𝑠𝑛.

Let 𝑞0 ∈ lin+R𝑋0 be a linear positive function on 𝑋0. Suppose that for the superposition

𝑞 := 𝑞0 ∘ pr0 ∈ lin+R𝑋 (2.3)

for each decaying in 𝑋 sequence (ℎ(𝑘))𝑘∈N of vectors ℎ(𝑘) ∈ 𝐻*, under the finitness of the
infimum

inf
𝑘∈N

𝑞(ℎ(𝑘))
(2.3)
= inf

𝑘∈N
𝑞0
(︀
pr0ℎ

(𝑘)
)︀
∈ R, (2.4)
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this sequence (ℎ(𝑘))𝑘∈N is bounded from below in 𝑋 and

𝑞
(︀
inf
𝑘∈N

ℎ(𝑘)
)︀
⩾ inf

𝑘∈N
𝑞(ℎ(𝑘)). (2.5)

Then for each vector 𝑠 ∈ 𝑆 the quantity

sup
{︀
𝑞(ℎ)

⃒⃒
𝐻* ∋ ℎ ⩽ 𝑠

}︀
∈ R (2.6)

is equal to

inf
{︁
(𝑙𝑛 ∘ pr𝑛)(𝑠)

⃒⃒⃒
𝑛 ∈ N0, 𝑙𝑛 ∈ lin+Rpr𝑛𝑆, 𝑞(ℎ) ⩽ (𝑙𝑛 ∘ pr𝑛)(ℎ) for all ℎ ∈ 𝐻*

}︁
∈ R. (2.7)

3. Proofs of main results

Proof of Theorem 1.1. For a domain 𝐷 ⊂ R𝑑 we choose the exhaustion by a sequence (𝐷𝑛)𝑛∈N0

of domains 𝐷𝑛 ⊂ R𝑑, for which 𝐵𝑜(𝑟) ⊂ 𝐷0, the closure clos𝐷𝑛 of the domain 𝐷𝑛 is contained
in the domain 𝐷𝑛+1 for each 𝑛 ∈ N0 and 𝐷 =

⋃︀
𝑛∈N0

𝐷𝑛. For 𝑛 ∈ N0 we consider the space

𝑋𝑛 := 𝐿1(clos𝐷𝑛) of summable on clos𝐷𝑛 functions with the pointwise preorder relation ⩽a.e.
𝑛 ,

the factorization of which with respect to
a.e.
= is denoted by 𝑋𝑛, where ⩽a.e.

𝑛 is the order relation.
As linear positive functions 𝑝𝑛 ∈ lin+𝑋𝑋𝑛+1

𝑛 we choose restrictions of functions from 𝑋𝑛+1

onto clos𝐷𝑛+1, which become vectors in 𝑋𝑛. In this case the projective limit proj lim𝑋𝑛𝑝𝑛 is
the space of locally summable on 𝐷 functions factorized with respect to the relation

a.e.
= with

the order relation ⩽a.e.; this space is denoted by 𝐿1
loc(𝐷). Removing the function equalling

identically −∞ from the convex cone 𝐻 ⊂ sbh(𝐷), we let

𝐻* := 𝐻 ∖ {−∞}
(1.2)
⊂ sbh*(𝐷)

(1.2)
:= sbh(𝐷) ∖ {−∞} ⊂ 𝐿1

loc(𝐷).

The upper–semi–continuous regularization of the upper limit of a sequence of plurisubharmonic
functions on the domain, if this upper limit is not equal to −∞, gives, on one hand, a subhar-
monic function, and on the other hand differs from the upper limit at most on a set of zero
m𝑑–measure, and even on a smaller polar one. This is why the cone 𝐻* obeys the condition
completed by the relation (2.2).
We let 𝑆 := 𝐶(𝐷) + 𝐻* − 𝐻* ⊂ 𝐿1

loc(𝐷). It is obvious that 𝐻* ⊂ 𝑆. Let 𝑠𝑛 ∈ 𝑆, that is,
𝑠𝑛 = 𝑔𝑛 + ℎ𝑛 − ℎ′

𝑛, where 𝑔𝑛 ∈ 𝐶(clos𝐷𝑛), and ℎ𝑛 ∈ pr𝑛𝐻* and ℎ′
𝑛 ∈ pr𝑛𝐻* are the restrictions

to clos𝐷𝑛 of functions from 𝐻*. Then there exist positive numbers 𝑐 and 𝑐′, for which 𝑔𝑛 ⩾ −𝑐
on clos𝐷𝑛 and ℎ′

𝑛 ⩽𝑛 𝑐′ on clos𝐷𝑛. Therefore, ℎ𝑛 − 𝑐 − 𝑐′ ⩽𝑛 𝑠𝑛, where ℎ𝑛 ∈ pr𝑛𝐻*, and
the negative constant −𝑐 − 𝑐′ = (𝑐 + 𝑐′)(−1) belongs to pr𝑛𝐻* since by the condition we have
−1 ∈ 𝐻*. Thus, the assumptions of the theorem concerning the subspace 𝑆 are satisfied.
As 𝑞0 in Theorem 2.1 we consider a restriction of the measure m𝑑 to 𝐵𝑜(𝑟) in the sense that

𝑞0(𝑓0) :=

∫︁
𝐵𝑜(𝑟)

𝑓0 dm𝑑 ∈ R for all 𝑓0 ∈ 𝑋0 = pr0𝐿
1
loc(𝐷). (3.1)

The function 𝑢 : 𝐷 → R is almost subharmonic on 𝐷 if it coincides a.e. with a subharmonic
function [20]. For an arbitrary a.e. decaying sequence (ℎ(𝑘))𝑘∈N of almost subharmonic on 𝐷
functions ℎ(𝑘) the condition inf

𝑘∈N
𝑞(ℎ(𝑘)) ∈ R means that

inf
𝑘∈N

∫︁
𝐵𝑜(𝑟)

ℎ(𝑘) dm𝑑 > −∞. (3.2)

Hence, the limit of this sequence is an almost subharmonic function on 𝐷. Then this is true
for the decaying sequence (ℎ(𝑘))𝑘∈N from the cone 𝐻* contained in ⊂ sbh(𝐷) ∖ {−∞}. The
upper limit (2.2) of the decaying sequence is the infimum of this sequence. This is why by
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the assumptions of Theorem 1.1 for the sequence (ℎ(𝑘))𝑘∈N under the conditon (3.2) we obtain
−∞ ≠ inf

𝑘∈N
ℎ(𝑘) ∈ 𝐻. In particular, under (3.2) the decaying sequence (ℎ(𝑘))𝑘∈N in 𝐻*, which is

obviously bounded from above by the function ℎ(1), is also bounded from below by the function
inf
𝑘∈N

ℎ(𝑘) ∈ 𝐻*. At the same time we can suppose that all the functions ℎ(𝑘) are upper–semi–

continuous. For a decaying sequence of such functions, inf
𝑘∈N

can be moved under the integral

inf
𝑘∈N

∫︁
𝐵𝑜(𝑟)

ℎ(𝑘) dm𝑑 =

∫︁
𝐵𝑜(𝑟)

inf
𝑘∈N

ℎ(𝑘) dm𝑑.

This means that the needed in (2.4), (2.5) inequality

𝑞
(︀
inf
𝑘∈N

ℎ(𝑘)
)︀
⩾ inf

𝑘∈N
𝑞(ℎ(𝑘)) for 𝑞 := 𝑞0 ∘ pr0

holds.
Thus, the assumptions of Theorem 1.1 imply ones of Theorem 2.1. It is easy to see that

sup
{︀
𝑞(ℎ)

⃒⃒
𝐻* ∋ ℎ ⩽ 𝑠

}︀
∈ R

is exactly the left hand side of the identity (1.4).
Now we are going to verify that in the considered situation (2.7) is the right hand side in

(1.4).
As in (2.7), we let 𝑙𝑛 ∈ lin+Rpr𝑛𝑆, where 𝑆 = 𝐶(𝐷) +𝐻* −𝐻*. Then

𝑙𝑛 ∈ lin+Rpr𝑛𝐶(𝐷) = lin+R𝐶(clos𝐷𝑛),

which by the Riesz theorem implies that a linear positive function 𝑙𝑛 on 𝐶(clos𝐷𝑛) is realized
as some positive finite Borel measure 𝜇 on 𝐷 with a compact support in clos𝐷𝑛, and it is
uniquely continued to all upper–semi–continuous functions on clos𝐷𝑛 with possible values on
R. In particular, the measure 𝜇 is uniquely continued also to subharmonic functions in 𝐻* due
to the upper–semi–continuity. Thus, the condition 𝑞(ℎ) ⩽ (𝑙𝑛 ∘ pr𝑛)(ℎ) for all ℎ ∈ 𝐻* in (2.7)
for 𝑞 = 𝑞0 ∘ pr0 in accordance with (3.1) can be written in terms of the measure 𝜇 as∫︁

𝐷

ℎ dm𝑑 ⩽
∫︁
𝐷

ℎ d𝜇 for all ℎ ∈ 𝐻*.

The latter implies the finiteness of the integrals∫︁
𝐷

ℎ d𝜇 ∈ R for all ℎ ∈ 𝐻*.

Therefore, the obtained in this way measures 𝜇 ∈ Meas+0 (𝐷) are well–defined on 𝑆 = 𝐶(𝐷) +
𝐻*−𝐻* and run exactly over 𝐽𝑟

𝑜 (𝐷;𝐻*) = 𝐽𝑟
𝑜 (𝐷;𝐻*) in (1.5) since the removing of the constant

−∞ from 𝐻 in (1.4)–(1.5) changes nothing. Thus, the identity (1.4) is established and this
completes the proof of Theorem 1.1.

Proof of Corollary 1.1. Statement 1) is equivalent to the fact that the left hand side of (1.4) is
not equal to −∞ for each ball 𝐵𝑜(𝑟) ⊂ 𝐷. By the identity (1.4) in Theorem 1.1 this equivalent
to the fact the right hand side of the identity (1.4) is not equal to −∞ for such choices of the
ball 𝐵𝑜(𝑟) ⊂ 𝐷. This yields the equivalence of Statement 1)–3) of Corollary 1.1 and completes
the proof.
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Proof of Corollary 1.2. As it has already been mentioned, the convex cone 𝐻 := psbh(𝐷) with
the vertex at zero obeys the assumptions of Theorem 1.1, and hence, of Corollary 1.1. Under
such choice

𝑓
(1.2)
:= 𝑚+𝑀 − 𝑣 ∈ 𝐶(𝐷) + psbh*(𝐷)− psbh*(𝐷) (3.3)

by Corollary 1.1 we obtain the equivalence of Statements 1)–3) of Corollary 1.1. According to
the choice (3.3) of the function 𝑓 this can be written as the equivalence of the following three
statements

a) there exists a function ℎ ∈ 𝐻, for which −∞ ≠ ℎ⩽a.e.𝑚+𝑀 − 𝑣 on 𝐷;
b) for each closed ball 𝐵𝑜(𝑟) ⊂ 𝐷 the relation

inf
𝜇∈J𝑟𝑜(𝐷;psbh(𝐷))

∫︁
𝐷

(𝑚+𝑀 − 𝑣) d𝜇 > −∞ (3.4)

holds;
c) there exists a closed ball 𝐵𝑜(𝑟) ⊂ 𝐷, for which (3.4) holds.

Here (3.4) is exactly the same as in (1.7). This is why to complete the proof of the corollary,
it is sufficient to establish that the inequality 𝑣 + ℎ⩽a.e.𝑚 +𝑀 on 𝐷 in Statement a) yields a
stronger inequality (1.6) in Statement 1) of Corollary 1.2. In order to do this, we denote by

𝑣∙𝑟(𝑧) :=
1

m2𝑑(𝐵𝑧(𝑟))

∫︁
𝐵𝑧(𝑟)

𝑣 dm2𝑑

the integral means of the function 𝑣 over the balls 𝐵𝑧(𝑟) ⊂ 𝐷. By the subharmonicity of
plurisubharmonic functions in the inequality 𝑣 + ℎ⩽a.e.𝑚+𝑀 on 𝐷 we obtain

𝑣(𝑧) + ℎ(𝑧) ⩽ 𝑣∙𝑟(𝑧) + ℎ∙𝑟(𝑧) ⩽ 𝑚∙𝑟(𝑧) +𝑀∙𝑟(𝑧) for each 𝑧 ∈ 𝐷

for all sufficiently small 𝑟 > 0. Each point in the domain 𝐷 is a Lebesgue point for the functions
𝑚 and𝑀 , and hence, letting 𝑟 to tend to zero in the right hand side, we obtain (1.6) everywhere
on the domain 𝐷. This completes the proof.
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15. L. Hörmander. Notions of Convexity. Birkhäser, Basel (1994).
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