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INTERPOLATION AND FUNDAMENTAL PRINCIPLE

A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA

Abstract. In this work we study the spaces of functions analytic in convex domains in the
complex plane. We consider subspaces of such spaces, which are invariant with respect to
the differentiation operator. We study the fundamental principle problem for an invariant
subspace, that is, the problem on representing all its elements by a series of eigenfunctions
and generalized eigenfunctions of the differentiation operator in this subspace, which are
the exponentials and exponential monomials. We provide a complete description of the
space of sequences of the coefficients of the series, by which we represent the functions from
the invariant subspace. We also study the multiple interpolation problem in the spaces
of entire functions of exponential type. We consider the duality of interpolation problem
and fundamental principle. This duality problem is completely solved. We established the
duality of the fundamental principle problem and interpolation problem for an arbitrary
convex domain with no restrictions.
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1. Introduction

Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 be a sequence of different complex numbers 𝜆𝑘 and their multiplicities
𝑛𝑘. We suppose that |𝜆𝑘| does not decrease and |𝜆𝑘| → ∞, 𝑘 → ∞. Let 𝐷 ⊂ C be a convex
domain and 𝐻(𝐷) be the space of functions analytic in the domain 𝐷 with the topology of
uniform convergence on compact subsets in 𝐷. We note that 𝐻(𝐷) is a Fréchet — Schwarz
space [1, Ch. I, Thm. 4.6]. The symbol 𝑊 (Λ, 𝐷) stands for the closure of the linear span of
system

ℰ(Λ) = {𝑧𝑛 exp(𝜆𝑘𝑧)}∞,𝑛𝑘−1
𝑘=1,𝑛=0

in the space 𝐻(𝐷).
If the system ℰ(Λ) is incomplete in the space 𝐻(𝐷), then 𝑊 (Λ, 𝐷) is a non–trivial ( ̸= 𝐻(𝐷),

{0}) closed subspace in 𝐻(𝐷). It follows from the definition of 𝑊 (Λ, 𝐷) that it is invariant
with respect to the differentiation operator. At the same time the system ℰ(Λ) is the set of
eigenfunctions and generalized eigenfunctions of the differentiation operator in 𝑊 (Λ, 𝐷) and Λ
is its multiple spectrum.
Let 𝑊 ⊂ 𝐻(𝐷) be a nontrivial closed subspace invariant with respect to the differentiation

operator and Λ = {𝜆𝑘, 𝑛𝑘} is its multiple spectrum. This is an at most countable set with
the only accumulation point ∞ [2, Ch. II, Sect. 7]. In the case, when the spectrum 𝑊 is
finite, it coincides with the space of solutions to homogeneous linear differential equation of
finite order with constant coefficients. As a more general example of the invariant space, the
set of solutions to the convolution equation 𝜇(𝑔(𝑧 + 𝑤)) ≡ 0 (or system of such equations)
serves, where 𝜇 ∈ 𝐻*(𝐷) and 𝐻*(𝐷) is the space of linear continuous functionals on the
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space 𝐻(𝐷). Particular cases of the convolution equation are linear differential, difference,
differential–difference equations with constant coefficients of finite and infinite orders, as well
as some types of integral equations.
The main problem in the theory of invariant subspace is the representation of all its functions

by means of eigenfunctions and generalized eigenfunctions 𝑧𝑛𝑒𝜆𝑘𝑧 of the differentiation operator.
If 𝑊 is the space of solutions to a linear differential equations with constant coefficients of finite
order, then it coincides with the linear span of the system ℰ(Λ). This result is known as the
Euler fundamental principle. In this connection the problem of representation of functions
𝑔 ∈ 𝑊 by means of series over the elements in the system ℰ(Λ), that is, by the series

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑑𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, (1.1)

(which converge in the topology of the space 𝐻(𝐷)) is called the fundamental principle problem
for an invariant subspace. A first step to the representation (1.1) is to solve the spectral synthesis
problem, that is, to find out the conditions, under which the system ℰ(Λ) is complete in the
subspace 𝑊 (in other words, when 𝑊 = 𝑊 (Λ, 𝐷)). It is natural to consider the fundamental
principle problem only for invariant subspaces admitting the spectral synthesis, that is, for the
subspaces of form 𝑊 (Λ, 𝐷).
By the end of 40s in the last century a close relation was observed between the fundamental

principle problem and the interpolation problem in the spaces of entire functions of exponential
type. They turned out to be dual. A.F. Leontiev seems to be first who employed the solvability
of the interpolation problem for expansions of solutions of convolution equations into the expo-
nential series. After him this relation was used systematically. The interpolation problem in the
space of entire functions is of an independent interest and has a rich history. The studies of the
mentioned dual problems conducted first independently have a rich history. Its main milestones
are reflected in the works [3] and [4]. In the latter work there was obtained the most general
present result on the duality of fundamental principle problem and interpolation problem for
an arbitrary convex domain 𝐷 ⊂ C under a single restriction for the relative multiplicity Λ :

𝑛𝑘(𝑝)/|𝜆𝑘(𝑝)| → 0

for each sequence {𝜆𝑘(𝑝)} such that

𝜆𝑘(𝑝)/|𝜆𝑘(𝑝)| → 𝑒−𝑖𝜙 and 𝐻(𝜙,𝐷) < +∞,

where

𝐻(𝜙,𝐷) = sup
𝑧∈𝐷

Re(𝑧𝑒−𝑖𝜙)

is the support function of the domain 𝐷.
In the present work the mentioned duality problem is completely solved. We establish the

duality of fundamental principle problem and interpolation problem for an arbitrary convex
domain 𝐷 ⊂ C with not restrictions.

2. Fundamental principle

Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain and 𝑊 (Λ, 𝐷) be a nontrivial subspace in the space
𝐻(𝐷). By the Hahn — Banach theorem the latter is equivalent to the existence of a nonzero
functional 𝜇 ∈ 𝐻*(𝐷), which vanishes on 𝑊 (Λ, 𝐷).
By ̂︀𝜇 we denote the Laplace transform of the functional 𝜇 ∈ 𝐻*(𝐷): ̂︀𝜇(𝜆) = 𝜇(𝑒𝜆𝑧). The

function ̂︀𝜇 is entire and has an exponential type, that is, for some 𝐴, 𝐵 > 0 the inequality
|̂︀𝜇(𝜆)| ⩽ 𝐴 exp(𝐵|𝜆|), 𝜆 ∈ C, holds. It is known [1, Ch. III, Sect. 12, Thm. 12.3] that the



56 A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA

Laplace transform is an algebraic and topological isomorphism between the spaces 𝐻*(𝐷) and
𝑃𝐷, where 𝑃𝐷 is the inductive limit of Banach spaces

𝑃𝑠 =

{︂
𝑓 ∈ 𝐻(C) : ‖𝑓‖𝑠 = sup

𝑟𝑒𝑖𝜙∈C
|𝑓(𝑟𝑒𝑖𝜙)| exp(−𝑟𝐻(−𝜙,𝐾𝑠)) < ∞

}︂
,

𝒦(𝐷) = {𝐾𝑠}∞𝑠=1 is the sequence of compact sets exhausting the domain 𝐷, that is, 𝐾𝑠 ⊂
int𝐾𝑠+1, 𝑠 ⩾ 1, (int denotes the interior of a set), and 𝐷 = ∪∞

𝑠=1𝐾𝑠. The definition of 𝒦(𝐷)
implies that there exist numbers 𝛼𝑠 > 0, 𝑠 ⩾ 1 such that

𝐻(𝜙,𝐾𝑠) + 𝛼𝑠 ⩽ 𝐻(𝜙,𝐾𝑠+1), 𝜙 ∈ [0, 2𝜋]. (2.1)

We note that

𝑃1 ⊂ 𝑃2 ⊂ · · · ⊂ 𝑃𝑠 ⊂ (2.2)

and the set 𝑃𝐷 consists of the union of sets 𝑃𝑠, 𝑠 ⩾ 1. The space 𝑃𝐷 is a so–called 𝐿𝑁* space,
that is, it is the union of the sequence of Banach spaces, for which the embeddings (2.2) are true
and completely continuous (this is impled by the estimate (2.1)). Therefore, 𝑃𝐷 is separable
and complete [1, Ch. I, Sect. 2, Thm. 2.4].
Since 𝑊 (Λ, 𝐷) is nontrivial, there exists a nonzero functional 𝜇 ∈ 𝐻*(𝐷), which vanishes

on all functions in the system ℰ(Λ). Then its Laplace transform ̂︀𝜇 = 𝑓 ∈ 𝑃𝐷 vanishes at the
points 𝜆𝑘 with the multiplicity at least 𝑛𝑘.
Let 𝐾 be the adjoint diagram of a function 𝑓 [2, Ch. I, Sect. 5]. By Pólya theorem [2, Ch.

I, Sect. 5, Thm. 5.4] the identity

ℎ𝑓 (𝜙) = 𝐻(−𝜙,𝐾), 𝜙 ∈ [0, 2𝜋],

is true, where ℎ𝑓 is the (upper) indicator of the function 𝑓

ℎ𝑓 (𝜙) = lim
𝑟→+∞

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟

.

The inclusion 𝑓 ∈ 𝑃𝐷 means that

𝐻(−𝜙,𝐾) = ℎ𝑓 (𝜙) ⩽ 𝐻(−𝜙,𝐾𝑠) < 𝐻(−𝜙,𝐷), 𝜙 ∈ [0, 2𝜋], (2.3)

for some 𝑠 ⩾ 1. This implies the inclusion 𝐾 ⊂ 𝐷.
The existence of the function 𝑓 with the mentioned properties implies [5, Ch. IV, Sect. 1,

Subsect. 2] the existence of a biorthogonal to ℰ(Λ) system of functionals

Ξ(Λ, 𝐷) = {𝜇𝑘,𝑛}∞,𝑛𝑘−1
𝑘=1,𝑛=0 ⊂ 𝐻*(𝐷)

such that

𝜇𝑘,𝑛(𝑧
𝑙𝑒𝜆𝑗𝑧) = 1 for 𝑗 = 𝑘, 𝑙 = 𝑛, 𝜇𝑘,𝑛(𝑧

𝑙𝑒𝜆𝑗𝑧) = 0 otherwise.

It is constructed by means of the function 𝑓 . Since there are infinitely many functions 𝑓 with
the mentioned properties, the system Ξ(Λ, 𝐷) is not uniquely determined.
Suppose that the series (1.1) converges uniformly to a function 𝑔 on compact subsets of

the domain 𝐷. Using the continuity and linearity of the functionals 𝜇𝑘,𝑛, we then obtain
𝑑𝑘,𝑛 = 𝜇𝑘,𝑛(𝑔), 𝑘 ⩾ 1, 𝑛 = 0, 𝑛𝑘 − 1. Hence, the following statement is true.

Lemma 2.1. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain 𝑊 (Λ, 𝐷) be a nontrivial subspace in
the space 𝐻(𝐷). If a function 𝑔 ∈ 𝑊 (Λ, 𝐷) is represented by the series (1.1) converging in the
topology of 𝐻(𝐷), then the representation is unique and its coefficients can be calculated by the
formula 𝑑𝑘,𝑛 = 𝜇𝑘,𝑛(𝑔), where Ξ(Λ, 𝐷) = {𝜇𝑘,𝑛} is an arbitrary biorthogonal sequence to the
system ℰ(Λ).
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Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝜆𝑘 = 𝑟𝑘𝑒
𝑖𝜙𝑘 , 𝑘 ⩾ 1, and 𝐷 be a convex domain. We are going to describe

the sequence of the coefficients {𝑑𝑘,𝑛}∞,𝑛𝑘−1
𝑘=1,𝑛=0, for which the series (1.1) converges in the domain

𝐷. For each 𝑠 ⩾ 1 we introduce the Banach space

𝑄𝑠(Λ) = {𝑑 = {𝑑𝑘,𝑛} : ‖𝑑‖𝑠 = sup
𝑘,𝑛

|𝑑𝑘,𝑛|𝑠𝑛 exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑠)) < ∞}.

By (2.1) the inequalities

‖𝑑‖1 ⩽ ‖𝑑‖2 ⩽ · · · ⩽ ‖𝑑‖𝑠 ⩽ · · · , 𝑑 ∈ 𝑄(𝐷,Λ), (2.4)

hold. Therefore, the chain of embeddings

𝑄1(Λ) ⊃ 𝑄2(Λ) ⊃ · · · ⊃ 𝑄𝑠(Λ) ⊃ · · · (2.5)

holds. We let

𝑄(𝐷,Λ) =
∞⋂︁
𝑠=1

𝑄𝑠(Λ).

In the space 𝑄(𝐷,Λ) we introduce the metric

𝜌(𝑑, 𝑏) =
∞∑︁
𝑠=1

2−𝑠 ‖𝑑− 𝑏‖𝑠
1 + ‖𝑑− 𝑏‖𝑠

.

With this metric, 𝑄(𝐷,Λ) becomes the Fréchet space. It is easy to observe that for a convex
domain 𝐷1 ⊃ 𝐷 the embedding 𝑄(𝐷1,Λ) ⊂ 𝑄(𝐷,Λ) is true. We let Λ = {𝜆𝑘, 𝑛𝑘} and

𝑚(Λ) = lim
𝑘→∞

𝑛𝑘

|𝜆𝑘|
, 𝑛(Λ) = lim

𝑗→∞

𝑗

|𝜉𝑗|
, 𝜎(Λ) = lim

𝑗→∞

ln 𝑗

|𝜉𝑗|
,

where {𝜉𝑗} is a non–decreasing in the modulus sequence formed by the points 𝜆𝑘, and each 𝜆𝑘

appears in this sequence exactly 𝑛𝑘 times.

Lemma 2.2. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘} and ℰ(Λ) be incomplete in 𝐻(𝐷).
Then for each 𝑠 ⩾ 1 there exist 𝐶𝑠 > 0 and an index 𝑚(𝑠) such that

∞,𝑚𝑘−1∑︁
𝑘=1,𝑛=0

|𝑑𝑘,𝑛| sup
𝑧∈𝐾𝑠

|𝑧𝑛𝑒𝑧𝜆𝑘 | ⩽ 𝐶𝑠‖𝑑‖𝑚(𝑠), 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ). (2.6)

Proof. Since the system ℰ(Λ) is incomplete in the space 𝐻(𝐷), there exists an entire function
vanishing at the points 𝜆𝑘 with multiplicities at least 𝑛𝑘. Then by the Lindelöf theorem [6,
Ch. I, Thm. 15] we have 𝑛(Λ) < ∞. This implies that 𝜎(Λ) = 0. Thus, all assumptions of
Lemma 2.6 from the work [7] are satisfied. The statement of the cited lemma coincides with
the statement of this lemma. The proof is complete.

We are going to show that under some natural conditions the space 𝑄(𝐷,Λ) coincides with
the space of the coefficients converging in the domain 𝐷 series of the form (1.1).
Let 𝜆 be the complex conjugate of 𝜆. By Θ(Λ) we denote the set of the limits of all converging

sequences of form {𝜆𝑘𝑗/|𝜆𝑘𝑗 |}∞𝑗=1. It is obvious that Θ(Λ) is a closed subset of the circumference
𝑆(0, 1) = {𝑧 ∈ C : |𝑧| = 1}. We let

𝑚(Λ, 𝜇) = sup lim
𝑗→∞

𝑛𝑘𝑗

𝜆𝑘𝑗

,

where the supremum is taken over the subsequences {𝜆𝑘𝑗} such that 𝜆𝑘𝑗/|𝜆𝑘𝑗 | → 𝜇. If 𝜇 /∈ Θ(Λ),
then the identity 𝑚(Λ, 𝜇) = 0 is obviously true.
Let 𝐷 be a convex domain. We let

𝐽(𝐷) = {𝑒𝑖𝜙 ∈ 𝑆(0, 1) : 𝐻(𝜙,𝐷) = +∞}.
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By 𝐽(𝐷) we denote the closure of the set 𝐽(𝐷).

Lemma 2.3. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, ℰ(Λ) be incomplete in 𝐻(𝐷) and

𝑚(Λ, 𝜇) = 0, 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐷). (2.7)

Then the following statements are equivalent.

1) The series (1.1) converges in the domain 𝐷.

2) The inclusion 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ) holds.

Proof. As in Lemma 2.2, the inequality 𝑛(Λ) < ∞ holds. This implies that 𝑚(Λ) < ∞ and
𝜎(Λ) = 0. Hence, all assumptions of Theorem 2.1 in the work [7] are satisfied. The statement
of this theorem coincides with the statement of this theorem. The proof is complete.

Remark 2.1. According to Lemmas 2.2 and 2.3, under the assumptions of Lemma 2.3 the
pointwise convergence of the series (1.1) in the domain 𝐷 is equivalent to its absolute and
uniform convergence on the compact subsets in this domain.

The condition (2.7) is a natural restriction for the sequence Λ. It was proved in [8, Thm. 4.2]
that this condition is necessary for the validity of the fundamental principle in the invariant
subspace 𝑊 (Λ, 𝐷). We formulate this result in a convenient for us form.

Lemma 2.4. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, ℰ(Λ) be incomplete in 𝐻(𝐷). As-
sume that each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is expanded into the series (1.1), which converges uni-
formly on compact subsets in the domain 𝐷. Then (2.7) holds.

Let E be an operator, which maps the element 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ) into the sum of series
(1.1).

Lemma 2.5. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, ℰ(Λ) be incomplete in 𝐻(𝐷). Then
the operator E is defined on the entire space 𝑄(𝐷,Λ), E(𝑄(𝐷,Λ)) ⊆ 𝑊 (Λ, 𝐷), the operator E is
injective and continuous. If, in addition, the operator E is surjective, then it is an isomorphism
of linear topological spaces 𝑄(𝐷,Λ) and 𝑊 (Λ, 𝐷).

Proof. By (2.6), for each element 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ), the series (1.1) converges uniformly
on compact subsets in the domain 𝐷. Therefore, the operator E is defined on the entire space
𝑄(𝐷,Λ) and E(𝑑) = 𝑔 ∈ 𝐻(𝐷). Moreover, since the function 𝑔 is represented by the series
(1.1), we have 𝑔 ∈ 𝑊 (Λ, 𝐷). By (2.6) for each 𝑠 ⩾ 1 we have

sup
𝑧∈𝐾𝑠

|E(𝑑)| ⩽ 𝐶𝑠‖𝑑‖𝑚(𝑠), 𝑑 ∈ 𝑄(𝐷,Λ).

This means that E : 𝑄(𝐷,Λ) → 𝑊 (Λ, 𝐷) is a continuous operator. According to Lemma 2.1,
the operator E is injective. Assume that E is surjective. Then by the theorem on open mapping
for Fréchet spaces [9, Ch. VI, Sect.3, Thm. 8] the operator E is an isomorphism of linear
topological spaces 𝑄(𝐷,Λ) and 𝑊 (Λ, 𝐷). The proof is complete.

Theorem 2.1. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, ℰ(Λ) be incomplete in 𝐻(𝐷). Then
the following statements are equivalent.

1) The fundamental principle holds in the space 𝑊 (Λ, 𝐷).
2) The operator E : 𝑄(𝐷,Λ) → 𝑊 (Λ, 𝐷) is an isomorphism.

Proof. Suppose that Assertion 1) holds true, that is, each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is expanded
into the series (1.1), which converges uniformly on compact subsets in the domain 𝐷. Then by
Lemma 2.4 the identity (2.7) holds. This is why in accordance with Lemma 2.3 each function
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𝑔 ∈ 𝑊 (Λ, 𝐷) is expanded into the series (1.1) with coefficients {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ). This means
that E is surjective. Therefore, by Lemma 2.5 Assertion 2) is true.
Suppose that Assertion 2) is true. Then E is surjective, that is, each function 𝑔 ∈ 𝑊 (Λ, 𝐷)

is expanded into the series (1.1) with the coefficients {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ). By (2.6) this series
converges uniformly on the compact sets in the domain 𝐷. Then Assertion 1) is true. The
proof is complete.

3. Interpolation

By means of the Laplace transform the fundamental principle problem is reduced to the
multiple interpolation problem in the space of entire functions of exponential type. We are
going to study this problem.
Let 𝑓 ∈ 𝑃𝐷. Then there exists an index 𝑠 such that the indicator ℎ𝑓 satisfies the inequality

(2.3). We note one more property of the indicator [6, Ch. I, Sect. 18, Thm. 28]: for each 𝜀 > 0
there exists 𝑅(𝜀) > 0 such that

ln |𝑓(𝑟𝑒𝑖𝜙)| ⩽ (ℎ𝑓 (𝜙) + 𝜀)𝑟, 𝜙 ∈ [0, 2𝜋], 𝑟 ⩾ 𝑅(𝜀). (3.1)

By (2.1) this implies that the inequality (2.3) yields the inclusion 𝑓 ∈ 𝑃𝐷. Thus, 𝑓 ∈ 𝑃𝐷 if and
only if (2.3) is satisfied. In other words, 𝑓 ∈ 𝑃𝐷 if and only if its adjoint diagram 𝐾 lies in the
domain 𝐷.
We also introduce the spaces of complex sequences

ℛ𝑠(Λ) = {𝑏 = {𝑏𝑘,𝑛} : ‖𝑏‖𝑠 = sup
𝑘,𝑛

|𝑏𝑘,𝑛|𝑠−𝑛 exp(−𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑠)) < ∞}, 𝑠 ⩾ 1,

where 𝑟𝑘𝑒
𝑖𝜙𝑘 = 𝜆𝑘 and {𝐾𝑠} = 𝒦(𝐷). Let ℛ(𝐷,Λ) be the inductive limit of the Banach spaces

ℛ𝑠(Λ). Then

ℛ(𝐷,Λ) =
∞⋃︁
𝑠=1

ℛ𝑠(Λ).

The space ℛ(𝐷,Λ) is 𝐿𝑁* space.
We consider the multiple interpolation problem

𝑓 (𝑛)(𝜆𝑘) = 𝑏𝑘,𝑛, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 ⩾ 1. (3.2)

First of all, let us find natural estimates for the complex sequence {𝑏𝑘,𝑛} under the assumption
𝑓 ∈ 𝑃𝐷.
On the space 𝑃𝐷 we define a linear operator Σ so that it maps each function 𝑓 into the

sequence 𝑏 = {𝑏𝑘,𝑛} = {𝑓 (𝑛)(𝜆𝑘)}.

Lemma 3.1. Let 𝐷 be a convex domain and Λ = {𝜆𝑘, 𝑛𝑘}. Then for each function 𝑓 ∈ 𝑃𝐷

the sequence 𝑏 = Σ(𝑓) belongs to the space ℛ(𝐷,Λ). The operator Σ : 𝑃𝐷 → 𝑅(𝐷,Λ) is
continuous.

Proof. Let 𝑓 ∈ 𝑃𝑠 ⊂ 𝑃𝐷. The definitions of the indicator ℎ𝑓 and space 𝑃𝑠 imply (2.3). This
means that the adjoint diagram 𝐾 of the function 𝑓 lies in the compact set 𝐾𝑠. Then the
contour 𝜕𝐾𝑠+1 envelops, by (2.1), the compact set 𝐾𝑠, as well as the adjoint diagram 𝐾. This
is why we have the integral representation for an entire function of exponential type [2, Ch. I,
Sect. 5, Thm. 5.2]

𝑓(𝜆) =
1

2𝜋𝑖

∫︁
𝜕𝐾𝑠+1

𝑒𝑧𝜆𝛾(𝑧)𝑑𝑧,
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where 𝛾 is the Borel associated function for 𝑓 . We recall that the adjoint diagram is a convex
hull of the set of singular points of the function 𝛾. Differentiating under the integral sign, for
all 𝑘 ⩾ 1 and 𝑛 = 0, 𝑛𝑘 − 1 we get

|𝑓 (𝑛)(𝜆𝑘)| ⩽
1

2𝜋𝑖
sup

𝑧∈𝐾𝑠+1

|𝑧𝑛𝑒𝑧𝜆𝑘 | sup
𝑧∈𝐾𝑠+1

|𝛾(𝑧)|𝑙𝑠+1, (3.3)

where 𝑙𝑠+1 is the length of the contour 𝜕𝐾𝑠+1. We choose an index 𝑚(𝑠) ⩾ 𝑠+ 1 such that

max
𝑧∈𝐾𝑠+1

|𝑧| ⩽ 𝑚(𝑠). (3.4)

Then by (3.3) we get the inclusion Σ(𝑓) ∈ ℛ𝑚(𝑠)(Λ) ⊂ ℛ(𝐷,Λ).
Let us prove the continuity of Σ. In order to do this, we need to estimate 𝛾 at all points of

the contour 𝜕𝐾𝑠+1. Let 𝑧0 ∈ 𝜕𝐾𝑠+1. For each boundary point of the compact set 𝐾𝑠+1, there
is at least one support line, which passes this point. In other words, there exists 𝜙 ∈ [0, 2𝜋]
such that 𝐻(𝜙,𝐾𝑠+1) = Re(𝑧0𝑒

−𝑖𝜙). In the half–plane

{𝑧 : Re(𝑧𝑒−𝑖𝜙) > 𝐻(𝜙,𝐾)}

we have the integral representation for the function 𝛾 [2, Ch.I, Sect. 5, Thm. 5.3]:

𝛾(𝑧) =

+∞∫︁
0

𝜇𝑓(𝑡𝜇)𝑒−𝑧𝑡𝜇𝑑𝑡, 𝜇 = 𝑒−𝑖𝜙.

Since by (2.1) and (2.3)

Re(𝑧0𝑒
−𝑖𝜙) = 𝐻(𝜙,𝐾𝑠+1) > 𝐻(𝜙,𝐾𝑠) ⩾ 𝐻(𝜙,𝐾) = ℎ𝑓 (−𝜙),

the representation holds at the point 𝑧0. Then in view of the inclusion 𝑓 ∈ 𝑃𝑠, the choice of 𝜙
and (2.1) we find

|𝛾(𝑧0)| ⩽
+∞∫︁
0

|𝑓(𝑡𝜇)|𝑒−Re(𝑧0𝑡𝜇)𝑑𝑡 ⩽‖𝑓‖𝑠

+∞∫︁
0

exp (𝑡𝐻(𝜙,𝐾𝑠)− 𝑡𝐻(𝜙,𝐾𝑠+1)) 𝑑𝑡

⩽‖𝑓‖𝑠

+∞∫︁
0

exp(−𝑡𝛼𝑠)𝑑𝑡 =
‖𝑓‖𝑠
𝛼𝑠

.

By (3.3) and (3.4) this implies⃒⃒
𝑓 (𝑛)(𝜆𝑘)

⃒⃒
⩽

𝑙𝑠+1‖𝑓‖𝑠
2𝜋𝛼𝑠

(𝑚(𝑠))𝑛 exp (𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑠+1)) , 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 ⩾ 1.

Since 𝑚(𝑠) ⩾ 𝑠+ 1, by (2.1)

𝐻(−𝜙𝑘, 𝐾𝑠+1) ⩽ 𝐻(−𝜙𝑘, 𝐾𝑚(𝑠)), 𝑘 ⩾ 1.

This is why in accordance with the previous inequality we have

‖Σ(𝑓)‖𝑚(𝑠) ⩽
𝑙𝑠+1‖𝑓‖𝑠
2𝜋𝛼𝑠

.

The operator Σ is continuous on the inductive limit 𝑃𝐷 if its restriction on each 𝑃𝑠 is continuous
[9, Ch. V, Sect. 2, Prop. 5]. Since Σ maps the space 𝑃𝑠 into ℛ𝑚(𝑠)(Λ), the continuity of Σ :
𝑃𝐷 → ℛ(𝐷,Λ) follows from the continuity of the mapping Σ : 𝑃𝑠 → ℛ𝑚(𝑠)(Λ), which holds by
the latter inequality. The proof is complete.
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Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, the system ℰ(Λ) be incomplete in 𝐻(𝐷) and
𝐼(Λ, 𝐷) be the kernel of the operator Σ : 𝑃𝐷 → ℛ(𝐷,Λ). This is a closed subspace in 𝑃𝐷.
Since ℰ(Λ) is incomplete in 𝐻(𝐷), this subspace is nontrivial. The subspace 𝐼(Λ, 𝐷) ⊂ 𝑃𝐷

consists exactly of the functions, which vanish (at least) at the points 𝜆𝑘 with the multiplicities
at least 𝑛𝑘.
The quotient space 𝑃𝐷/𝐼(Λ, 𝐷), as 𝑃𝐷, is 𝐿𝑁* space and is the union of an increasing

sequence of Banach spaces 𝑃𝑠,0. An element [𝑓 ] ∈ 𝑃𝐷/𝐼(Λ, 𝐷) belongs to 𝑃𝑠,0 if and only if
some representative 𝑔 ∈ 𝑃𝐷 of the equivalency class [𝑓 ] belongs to 𝑃𝑠. At the same time, the
norm ‖[𝑓 ]‖𝑠 is equal to the infimum of the norms ‖𝑔‖𝑠 over all representatives 𝑔 ∈ 𝑃𝑠 in the
class [𝑓 ]. In the usual way the operator Σ generates the operator Σ0 acting from 𝑃𝐷/𝐼(Λ, 𝐷)
into ℛ(𝐷,Λ). The mapping

Σ0 : 𝑃𝐷/𝐼(Λ, 𝐷) → ℛ(𝐷,Λ) (3.5)

is injective and also continuous by Lemma 3.1 and the definition of the quotient topology. Thus,
the following statement holds.

Lemma 3.2. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, and the system ℰ(Λ) be incomplete
in 𝐻(𝐷). The operator (3.5) is continuous and injective.

Lemma 3.3. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, and the system ℰ(Λ) be incomplete
in 𝐻(𝐷). Suppse that the operator (3.5) is surjective. Then Σ0 is an isomorphism between the
linear topological spaces 𝑃𝐷/𝐼(Λ, 𝐷) and ℛ(𝐷,Λ).

Proof. By Lemma 3.2, the operator (3.5) is continuous and injective. If it is also surjective,
then by the theorem on open mapping [9, App. 1, Thm. 2] for separable spaces covered by a
countable family of its Fréchet subspaces (𝐿𝑁* spaces are obviously among these subspaces)
the operator Σ0 is an isomorphism of linear topological space. The proof is complete.

Remark 3.1. The surjectivity of the operator Σ0 (or equivalently of the operator Σ) means
that the interpolation problem (3.2) is solvable in the space 𝑃𝐷 for each right hand side 𝑏 =
{𝑏𝑘,𝑛} ∈ ℛ(𝐷,Λ).

Remark 3.2. Let ort𝑊 (Λ, 𝐷) be the family of functionals 𝜐 ∈ 𝐻*(𝐷) annihilating the
subspace 𝑊 (Λ, 𝐷). The system ℰ(Λ) is complete in 𝑊 (Λ, 𝐷) and hence, 𝜐 ∈ ort𝑊 (Λ, 𝐷) if
and only if

𝜐(𝑧𝑛𝑒𝜆𝑘𝑧) = 0, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 ⩾ 1.

Thus, in view of the definition of Laplace transform we find that the subspace 𝐼(Λ, 𝐷) is the
set of Laplace transforms of the functionals 𝜐 ∈ ort𝑊 (Λ, 𝐷).

4. Duality

Theorem 4.1. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, and the system ℰ(Λ) be incomplete
in 𝐻(𝐷). The following statements are equivalent.

1) The fundamental principle holds in the subspace 𝑊 (Λ, 𝐷).

2) The interpolation problem (3.2) is solvable in the space 𝑃𝐷 for each right hand side 𝑏 =
{𝑏𝑘,𝑛} ∈ ℛ(𝐷,Λ).

Proof. Assume that Assertion 1) holds and 𝑏 = {𝑏𝑘,𝑛} ∈ ℛ(𝐷,Λ). We choose an index 𝑠 ⩾ 1
such that 𝑏 ∈ ℛ𝑠(Λ). Then

|𝑏𝑘,𝑛| ⩽ ‖𝑏‖𝑠𝑠𝑛 exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑠)), 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 ⩾ 1. (4.1)
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By Theorem 2.1 and Lemma 2.1 each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is represented by the series (1.1),
where 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ). In particular, 𝑑 ∈ 𝑄𝑠+1(Λ), that is,

|𝑑𝑘,𝑛| ⩽ ‖𝑑‖𝑠+1(𝑠+ 1)−𝑛 exp (−𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑠+1)) , 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 ⩾ 1.

By (4.1) and (2.1) this implies

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

|𝑑𝑘,𝑛‖𝑏𝑘,𝑛| ⩽ ‖𝑑‖𝑠+1‖𝑏‖𝑠
∞∑︁
𝑘=1

𝑛𝑘 exp (𝑟𝑘(𝐻(−𝜙𝑘, 𝐾𝑠)−𝐻(−𝜙𝑘, 𝐾𝑠+1)))

⩽ ‖𝑑‖𝑠+1‖𝑏‖𝑠
∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑛𝑘𝑒
−𝑟𝑘𝛼𝑠 .

As in Lemma 2.3, the identity 𝜎(Λ) = 0 holds. This is why by [10, Lm. 2.1] the latter series
converges. Therefore,

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

|𝑑𝑘,𝑛‖𝑏𝑘,𝑛| ⩽ 𝐶𝑠‖𝑑‖𝑠+1‖𝑏‖𝑠, 𝑏 ∈ ℛ𝑠(Λ), 𝑑 ∈ 𝑄(𝐷,Λ).

Thus, in view of Theorem 2.1, the linear continuous functional

𝜐(𝑔) =

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑑𝑘,𝑛𝑏𝑘,𝑛

is well–defined on the subspace 𝑊 (Λ, 𝐷). By the Hahn — Banach theorem, it can be continued
to a linear continuous functional on the entire space 𝐻(𝐷). Let 𝑓 ∈ 𝑃𝐷 be the Laplace
transform of the functional 𝜐 ∈ 𝐻*(𝐷). It follows from the definitions of the Laplace transform
and functional 𝜐 that

𝑓 (𝑛)(𝜆𝑘) = 𝜐(𝑧𝑛𝑒𝜆𝑘𝑧) = 𝑏𝑘,𝑛, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 ⩾ 1.

This means that Assertion 2) is true.
Let Assertion 2) be true. Since 𝐻(𝐷) is a Fréchet — Schwarz space, in view of Remark 3.2

on Lemma 3.3 the isomorphisms hold [11]:

𝑊 (Λ, 𝐷) ∼= (𝐻*(𝐷)/ ort𝑊 (Λ, 𝐷))* ∼= (𝑃𝐷/𝐼(Λ, 𝐷))*.

Let 𝑔 be an arbitrary function in the subspace 𝑊 (Λ, 𝐷) and functionals 𝜃 ∈
(𝐻*(𝐷)/ ort𝑊 (Λ, 𝐷))* and 𝜔 ∈ (𝑃𝐷/𝐼(Λ, 𝐷))* are associated with this function under the
mentioned isomorphisms. We fix 𝑧 ∈ 𝐷. If 𝛿𝑧 is the Dirac functional concentrated at the point
𝑧, then

𝑔(𝑧) = 𝛿𝑧(𝑔) = [𝛿𝑧](𝑔) = 𝜃([𝛿𝑧]) = 𝜔([𝑓𝑧]),

where 𝑓𝑧 is the Laplace transform of the functional 𝛿𝑧 and [𝛿𝑧], [𝑓𝑧] are the equivalence classes re-
spectively from the spaces 𝐻*(𝐷)/ ort𝑊 (Λ, 𝐷), 𝑃𝐷/𝐼(Λ, 𝐷). It is easy to see that the function
𝑓𝑧(𝜆) coincides with 𝑒𝑧𝜆. Thus, the identity

𝑔(𝑧) = 𝜔([𝑒𝑧𝜆])

holds. According to Assertion 2), Lemma 3.3 and Remark 3.1, the space 𝑃𝐷/𝐼(Λ, 𝐷) is isomor-
phic to ℛ(𝐷,Λ). This is why the exists a functional ℎ ∈ (ℛ(𝐷,Λ))* such that

𝑔(𝑧) = 𝜔([𝑒𝑧𝜆]) = ℎ(Σ(𝑒𝑧𝜆)) = ℎ({𝑧𝑛𝑒𝜆𝑘𝑧}). (4.2)
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We choose a number 𝑠 such that 𝑏 = {𝑏𝑘,𝑛} = {𝑧𝑛𝑒𝜆𝑘𝑧} ∈ ℛ𝑠(Λ). The functional ℎ is
continuous on ℛ(𝐷,Λ). This is why its restriction on the Banach space ℛ𝑠+1(Λ) (as well as on
each other ℛ𝑚(Λ)) is continuous [9, Ch. V, Sect. 2, Prop. 5], that is,

|ℎ({𝑎𝑘,𝑛})| ⩽ 𝑐𝑠‖𝑎‖𝑠+1, 𝑎 = {𝑎𝑘,𝑛} ∈ ℛ𝑠+1(Λ). (4.3)

We consider the elements 𝑒𝑘,𝑛 = {𝑎𝑘,𝑛𝑙,𝑗 } ∈ ℛ𝑠+1(Λ), where 𝑎𝑘,𝑛𝑙,𝑗 = 1 if 𝑙 = 𝑘, 𝑗 = 𝑛, and

𝑎𝑘,𝑛𝑙,𝑗 = 0 otherwise. We let

𝑑𝑘,𝑛 = ℎ(𝑒𝑘,𝑛), 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 ⩾ 1, (4.4)

𝑏(𝑚, 𝑝) =

𝑚−1,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑏𝑘,𝑛𝑒
𝑘,𝑛 +

𝑝∑︁
𝑛=1

𝑏𝑚,𝑛𝑒
𝑚,𝑛, 𝑝 = 0, 𝑛𝑚 − 1.

Then by (4.2), (4.3), (2.1) we obtain⃒⃒⃒⃒
⃒𝑔(𝑧)−

𝑚−1,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑑𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧 −

𝑝∑︁
𝑛=1

𝑑𝑚,𝑛𝑧
𝑛𝑒𝜆𝑚𝑧

⃒⃒⃒⃒
⃒ = |ℎ(𝑏− 𝑏(𝑚, 𝑝))|

⩽ 𝑐 sup
𝑘⩾𝑚,𝑛=1,𝑛𝑘

|𝑏𝑘,𝑛|(𝑠+ 1)−𝑛 exp (−𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑠+1))

⩽ 𝑐𝑠 sup
𝑘⩾𝑚,𝑛=1,𝑛𝑘

|𝑏𝑘,𝑛|𝑠−𝑛 exp (−𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑠)) exp (−𝑟𝑘(𝐻(−𝜙𝑘, 𝐾𝑠+1)−𝐻(−𝜙𝑘, 𝐾𝑠)))

⩽ 𝑐𝑠‖𝑏‖𝑠 sup
𝑘⩾𝑚,𝑛=1,𝑛𝑘

𝑒−𝑟𝑘𝛼𝑠 → 0, 𝑚 → ∞.

Thus, at each point 𝑧 ∈ 𝐷 the representation

𝑔(𝑧) =

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑑𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧

holds. By (4.3) and (4.4) we have

|𝑑𝑘,𝑛| ⩽ 𝑐𝑠‖𝑒𝑘,𝑛‖𝑠+1 = 𝑐𝑠(𝑠+ 1)−𝑛 exp (−𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑠+1)) , 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 ⩾ 1.

Since the inclusion 𝑒𝑘,𝑛 ∈ ℛ𝑠+1(Λ) and inequality (4.3) are true for all 𝑠 ⩾ 0, this implies
𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ). Then by Lemma 2.2 the latter series converges uniformly on the
compact subsets in the domain 𝐷 and Assertion 1) holds. The proof is complete.

By Theorems 2.1, 4.1 and Lemma 3.3 we obtain the following result.

Theorem 4.2. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘}, and the system ℰ(Λ) be incomplete
in 𝐻(𝐷). The following statements are equivalent.

1) The fundamental principle holds in the space 𝑊 (Λ, 𝐷).

2) The operator E : 𝑄(𝐷,Λ) → 𝑊 (Λ, 𝐷) is isomorphism.

3) The operator Σ0 : 𝑃𝐷/𝐼(Λ, 𝐷) → ℛ(𝐷,Λ) is isomorphism.

4) The interpolation problem (3.2) is solvable in the space 𝑃𝐷 for each right hand side 𝑏 =
{𝑏𝑘,𝑛} ∈ ℛ(𝐷,Λ).
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