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INTERPOLATION SETS IN SPACES OF

FUNCTIONS OF FINITE ORDER IN HALF–PLANE

M.V. KABANKO, K.G. MALYUTIN

Abstract. We consider free interpolation problems, the study of which was initiated by
A.F. Leontiev. We obtain new criterions for the interpolation property of sets in the space
of analytic in the upper half–plane functions of finite order. We provide examples of in-
terpolation sets in the space of analytic in the upper half–plane functions of finite order.
These examples are similar to interpolation sets in the space of analytic and bounded in
the upper half–plane functions. In particular, we provide examples of sets satisfying the
Newman condition and uniform Frostman condition.
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1. Introduction

1.1. Notation and terminology. If an inequality (identity) holds for all sufficiently large
values of a variable, then it is called asymptotic inequality (identity). By 𝐾,𝑀, . . . , 𝜀, 𝛿, . . . we
denote positive constants, which can change in arguing. For instance, we can use the phrase
«if 𝑓(𝑟) < 3𝑀 , then 𝑓(𝑟) < 𝑀».
By N := {1, 2, . . . } we denote the set of (natural) numbers, C is the complex plane with the

real axis R and positive semi–axis R+ := {𝑥 ∈ R : 𝑥 ⩾ 0}, C+ := {𝑧 ∈ C : Im 𝑧 > 0} is the
upper half–plane. One–point sets are written without braces if this causes no ambiguity. For
instance, R := R ∪ ±∞ and R+ := R ∪ +∞ are respectively extended real axis and positive
semi–axis with usual modulus | · | as for C, and |±∞| := +∞, ∞ is the infinity in the complex
half–plane C+, that is, the sequence of points 𝑧𝑛 → ∞ as 𝑛 → ∞ if lim

𝑛→∞
|𝑧𝑛| = +∞, 𝑛1, 𝑛2 is

the set of integer numbers 𝑛 : 𝑛1 ⩽ 𝑛 ⩽ 𝑛2. The open circle of radius 𝑟 centered at a point 𝑎 is
denoted by 𝐶(𝑎, 𝑟), by 𝐵(𝑎, 𝑟) = 𝐶(𝑎, 𝑟) we denote a closed circle, 𝐺+ denotes the intersection
of the set 𝐺 with the half–plane C+, that is, 𝐺+ := 𝐺 ∩ C+, 𝐺 is the closure of the set 𝐺.
By 𝑎+ we denote (|𝑎| + 𝑎)/2, in particular, ln+ 0 := 0. By [ · ] we denote the integer part of

a number, 𝐴 = {𝑎𝑛}∞𝑛=1 ⊂ C+ is a sequence of points without repetitions with limiting points
only on the real axis and at ∞. Hereinafter, unless otherwise stated, we suppose 𝑟𝑛 = |𝑎𝑛|,
𝜃𝑛 = arg 𝑎𝑛, 𝑟 = |𝑧|, 𝜃 = arg 𝑧, where 0 ⩽ arg 𝑧 ⩽ 𝜋 for 𝑧 ∈ C+, 𝑛

+
𝐴(𝐺) := 𝑛+(𝐺) =

∑︀
𝑎𝑛∈𝐺

sin 𝜃𝑛,

in particular, 𝑛+
𝐴(𝑅) := 𝑛+(𝐶(0, 𝑅)).
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1.2. Definition of order of analytic in upper half–plane function. Let 𝜌 (𝑟 ∈ R+) be
the proximate order in the Valiron sense, lim

𝑟→∞
𝜌(𝑟) = 𝜚 > 0. We denote 𝑉 (𝑟) = 𝑟𝜌(𝑟). Let 𝑓 be

a holomorphic function in C+. The proximate order 𝜌 is called semi–formal order of a function
𝑓 if there exists a constant 𝑀 > 0 (depending on 𝑓 and independent of 𝑧) such that for all
𝑧 ∈ C+ the inequality

ln |𝑓(𝑧)| < 𝑀𝑉 (|𝑧|)
holds and Levin condition is satisfied: there exist numbers 𝑞 ∈ (0, 1) and 𝛿 ∈ (0, 𝜋/2) such that
in each domain

𝐷(𝑅, 𝑞, 𝛿) = {𝑧 : 𝑞𝑅 < |𝑧| < 𝑅/𝑞, 𝛿 < arg 𝑧 < 𝜋 − 𝛿}
there exist a point 𝑧, at which the inequality ln |𝑓(𝑧)| > −𝑀𝑉 (|𝑧|) holds.
The definition of semi–formal order of function is due to A.F. Grishin (see, for instance, [1]).

We denote by [𝜌,∞)+ the space of functions, for which 𝜌 is the semi–formal order.

1.3. Interpolation problem in space [𝜌,∞)+. The problems we consider in this work are
free interpolation problems, the study of which was initiated by Leontiev [2]–[4]. A multiple
interpolation problem in the space [𝜌,∞)+, 𝜚 > 0, was solved in works [5], [6]. The formulation
of problem and theorem given below are its particular case, when the multiplicities of the
interpolation nodes are equal to one. The case 𝜚 = 0 (zero order) was considered in [7].
We give some notion and notation. We introduce the Nevanlinna canonical factor

𝐵𝑞(𝑢, 𝑣) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑣(𝑢− 𝑣)

𝑣(𝑢− 𝑣)
for 𝑞 = 0,

𝐵0(𝑢, 𝑣) exp

(︃
𝑞∑︁

𝑗=1

𝑢𝑗

𝑗

(︂
1

𝑣𝑗
− 1

𝑣𝑗

)︂)︃
for 𝑞 ∈ N.

Let 𝜌 be the proximate order in the Valiron sense, lim
𝑟→∞

𝜌(𝑟) = 𝜚 > 0, 𝑞 = [𝜚]. If a sequence

𝐴 such that
𝑛+
𝐴(𝑅) ⩽ 𝐾𝑉 (𝑅) (1.1)

for some 𝐾 > 0 (that is, it has a finite upper argument density) and 𝜚 is a non–integer number,
then the infinite product

𝐸(𝑧) := 𝐸𝐴(𝑧) =
∏︁
𝑟𝑛⩽1

𝐵0(𝑧, 𝑎𝑛)
∏︁
𝑟𝑛>1

𝐵𝑞(𝑧, 𝑎𝑛)

converges uniformly on compact sets in C+.
The function 𝐸(𝑧) is called the canonical function (canonical product) of sequence 𝐴.
The case of integer 𝜚 ⩾ 1 is more complicated. In this case for the uniform convergence of

the function 𝐸(𝑧) on compact sets in C+ a finite upper argument density is not enough, we
need some argument symmetry of the points 𝑎𝑛. For constructing the canonical product we
add a factor without zero, the total measure of which is concentrated on the real axis (see [6]).
Such function is called the adjoint function of the sequence 𝐴.
By a given sequence 𝐴 we define the families of functions

Φ+
𝐷(𝑧, 𝛼) =

𝑛+
𝐷(𝐶(𝑧, 𝛼|𝑧|) ∖ {𝑎𝑛})

𝑉 (|𝑧|)
,

where 𝑎𝑛 is the point in the support of the sequence 𝐴 closest to the point 𝑧 (if there are several
such points, we choose an arbitrary of them). We let

𝐼+𝐴 (𝑧, 𝛿) = sin 𝜃

𝛿∫︁
0

Φ+
𝐷(𝐶(𝑧, 𝛼) 𝑑𝛼

𝛼(𝛼 + sin 𝜃)2
, 𝜃 = arg 𝑧.
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Definition 1.1. The sequence 𝐴 = {𝑎𝑛}∞𝑛=1 ⊂ C+, all limiting points of which belong to
R∪∞, is called interpolating for the space [𝜌,∞)+ if for each sequence of complex numbers 𝑏𝑛,
𝑛 ∈ N, obeying the condition

sup
𝑛

ln+ |𝑏𝑛|
𝑉 (|𝑎𝑛|)

< ∞,

there exists a function 𝐹 ∈ [𝜌,∞)+ such that

𝐹 (𝑎𝑛) = 𝑏𝑛, 𝑛 ∈ N. (1.2)

Hereafter we suppose that the condition |𝑎𝑛| ⩾ 1 holds; this is a technical condition and it
can be easily omitted. Let us formulate the versions of the theorem from [5], [6] for the case of
simple interpolation.

Theorem 1.1. The following three statements are equivalent.

1) The sequence 𝐴 is interpolating for the space [𝜌,∞)+.

2) If 𝜚 = lim
𝑟→∞

𝜌(𝑟) is non–integer, then the canonical product of the sequence 𝐴 satisfies the

condition

sup
𝑛

1

𝑉 (|𝑎𝑛|)
ln

1

Im 𝑎𝑛|𝐸 ′(𝑎𝑛)|
< ∞. (1.3)

2’) If 𝜚 ⩾ 1 is integer, then it follows from 1) that the condition (1.3) is satisfied for each
adjoint function 𝐸(𝑧) of the sequence 𝐴. And vice versa, if (1.3) holds for at least one
adjoint function 𝐸(𝑧) of the sequence 𝐴, then 1) holds.

3) Condition (1.1) holds and for each 𝛿 > 0

sup
𝑧∈C+

𝐼+𝐴 (𝑧, 𝛿) < ∞.

Theorem 1.2. The following two statements are equivalent.

1) The sequence 𝐴 is an interpolating sequence for the space [𝜌,∞)+.

2) The condition (1.1) holds and for each 𝛿 > 0

ln

⃒⃒⃒⃒
𝑎𝑛 − �̄�𝑘
𝑎𝑛 − 𝑎𝑘

⃒⃒⃒⃒
⩽ 𝑉 (𝑟𝑛), 𝑛 ̸= 𝑘, (1.4)

Φ+
𝑧 (𝛼) ⩽ 𝛼,

sin 𝜃

2
⩽ 𝛼 ⩽ 𝛿 (𝜃 = arg 𝑧), (1.5)

Φ+
𝑧 (𝛼) ⩽

sin 𝜃

ln sin 𝜃
𝛼

, 0 ⩽ 𝛼 ⩽
sin 𝜃

2
. (1.6)

1.4. Interpolation condition in space [𝜌,∞)+. Let a sequence 𝐴 = {𝑎𝑛 = 𝑟𝑛𝑒
𝑖𝜃𝑛}∞𝑛=1

belong to the upper half–plane 𝐴 ∈ C+ and there exist 𝐾 > 0 such that conditions (1.1) are
satisfied and ∏︁

𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2
𝑘 ̸=𝑛

⃒⃒⃒⃒
𝑎𝑘 − 𝑎𝑛
𝑎𝑘 − �̄�𝑛

⃒⃒⃒⃒
⩾ exp [−𝐾𝑉 (𝑟𝑛)] . (1.7)

In this case we say that the sequence 𝐴 satisfies the interpolation condition for the space
[𝜌,∞)+ (or, following [10], ℐ+(𝜌)–condition). The meaning of the condition (1.7) is that each
point in the sequence 𝐴 is located far enough from other points of this sequence. By Theo-
rem 1.1, if the sequence 𝐴 satisfies the interpolation condition (1.7), then it is interpolating for
the space [𝜌,∞)+.
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Interpreting the half–plane C+ as a model of the plane in the Lobachevskii geometry, by
𝜎(𝑧1, 𝑧2) we denote the non–Euclidean distance between aribtrary points 𝑧1 and 𝑧2 in the half–
plane C+:

𝜎(𝑧1, 𝑧2) =
1

2
ln

⃒⃒⃒⃒
1 + 𝑢

1− 𝑢

⃒⃒⃒⃒
, 𝑢 =

𝑧1 − 𝑧2
𝑧1 − 𝑧2

.

We can write the condition (1.7) as∏︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

𝑘 ̸=𝑛

tan (2𝜎(𝑎𝑘, 𝑎𝑛)) ⩾ exp [−𝐾𝑉 (𝑟𝑛)] .

Here is another writing of the condition (1.7):∑︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

𝑘 ̸=𝑛

𝐺(𝑎𝑘, 𝑎𝑛) ⩽ 𝐾𝑉 (𝑟𝑛),

where

𝐺(𝑧, 𝜁) = ln

⃒⃒⃒⃒
𝑧 − 𝜁𝑛
𝑧 − 𝜁

⃒⃒⃒⃒
is the Green function of the half–plane C+.

2. Other conditions

In this section 𝐴 = {𝑎𝑛 = 𝑟𝑛𝑒
𝑖𝜃𝑛} still denotes a sequence in the upper half–plane, 𝐴𝑛

def
=

𝐴 ∖ {𝑎𝑛}, 𝑎𝑛 ∈ 𝐴.

1) (Sparse conditions.) The sequence 𝐴 is called sparse (or 𝜌+–sparse) if there exists 𝐾 > 0
such that the inequality ⃒⃒⃒⃒

𝑎𝑘 − 𝑎𝑛
𝑎𝑘 − �̄�𝑛

⃒⃒⃒⃒
⩾ exp [−𝐾(𝑟𝑛)]

holds.
It is clear that an interpolating for the space [𝜌,∞)+ sequence 𝐴 is necessarily 𝜌+–sparse.

2) (Newman condition.) We renumerate the sequence 𝐴 so that⃒⃒⃒⃒
𝑎𝑛+1 − 𝑖

𝑎𝑛+1 + 𝑖

⃒⃒⃒⃒
>

⃒⃒⃒⃒
𝑎𝑛 − 𝑖

𝑎𝑛 + 𝑖

⃒⃒⃒⃒
.

Let 𝐴 satisfy the condition (1.1). Suppose that there exists 𝑐, 0 < 𝑐 < 1, such that the
sequence 𝐴 converges exponentially to the boundary, that is, the inequality

Im 𝑎𝑛+1

Im 𝑎𝑛
· 𝑟2𝑛
𝑟2𝑛+1

⩽ 𝑐

holds. Following [10], we say that the sequence 𝐴 satisfies the condition (N+(𝜌)).

3) (Frostman condition.) The sequence 𝐴 is said to satisfy the uniform Frostman condition
for order 𝜌 (following [10], condition ℱ+(𝜌)) if it satisfies the condition (1.1) and there
exists 𝐾 > 0 such that

sup
𝑡∈R

∑︁
𝑟𝑛/2⩽𝑟𝑘⩽3𝑟𝑛/2

Im 𝑎𝑘
|�̄�𝑘 − 𝑡|

⩽ 𝐾𝑉 (𝑟𝑛).
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3. Various reformulations of interpolation condition

Theorem 3.1. Let the sequence 𝐴 = {𝑎𝑛 = 𝑟𝑛𝑒
𝑖𝜃𝑛}∞𝑛=1 belong the half–plane C+. The

following statements are equivalent

1. The sequence 𝐴 is an interpolating sequence for the space [𝜌,∞)+.

2.1. The condition (1.1) holds.

2.2. There exists 𝐾 > 0 such that the inequality

𝜏𝑛(𝐴)
def
=

∑︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

𝑘 ̸=𝑛

ln

(︂
1 +

Im 𝑎𝑘 Im 𝑎𝑛
|𝑎𝑘 − 𝑎𝑛|2

)︂
⩽ 𝐾𝑉 (𝑟𝑛) (3.1)

holds.

3. The sequence 𝐴 satisfies the condition ℛ+(𝜌) and

3.1. The condition (1.1) is satisfied;

3.2. There exists 𝐾 > 0 such that the inequality

𝑆𝑛(𝐴)
def
=

∑︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

ln

(︂
1 +

Im 𝑎𝑘 Im 𝑎𝑛
|𝑎𝑘 − �̄�𝑛|2

)︂
⩽ 𝐾𝑉 (𝑟𝑛)

holds.
There exists 𝐾 > 0 such that the inequalitŷ︀𝑆𝑛(𝐴)

def
=

∑︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

Im 𝑎𝑘 Im 𝑎𝑛
|𝑎𝑘 − �̄�𝑛|2

⩽ 𝐾𝑉 (𝑟𝑛) (3.2)

holds.

Proof. We first of all mention two important simple identities⃒⃒⃒⃒
𝑎− 𝑏

�̄�− 𝑏

⃒⃒⃒⃒2
= 1− 4 Im 𝑎 Im 𝑏

|�̄�− 𝑏|2
, 𝑎, 𝑏 ∈ C+, (3.3)⃒⃒⃒⃒

�̄�− 𝑏

𝑎− 𝑏

⃒⃒⃒⃒2
= 1 +

4 Im 𝑎 Im 𝑏

|𝑎− 𝑏|2
, 𝑎, 𝑏 ∈ C+, 𝑎 ̸= 𝑏. (3.4)

Indeed, ⃒⃒⃒⃒
𝑎− 𝑏

�̄�− 𝑏

⃒⃒⃒⃒2
= 1− |�̄�− 𝑏|2 − |𝑎− 𝑏|2

|�̄�− 𝑏|2
1− (�̄�− 𝑏)(𝑎− �̄�)− (𝑎− 𝑏)(�̄�− �̄�)

|�̄�− 𝑏|2

= 1− |𝑎|2 − 𝑏𝑎− �̄��̄�+ |𝑏|2 − |𝑎|2 + 𝑏�̄�+ 𝑎�̄�− |𝑏|2

|�̄�− 𝑏|2

= 1 +
(𝑎− �̄�)(𝑏− �̄�)

|�̄�− 𝑏|2
= 1− 4 Im 𝑎 Im 𝑏

|�̄�− 𝑏|2
.

Similarly, ⃒⃒⃒⃒
�̄�− 𝑏

𝑎− 𝑏

⃒⃒⃒⃒2
= 1− |𝑎− 𝑏|2 − |�̄�− 𝑏|2

|𝑎− 𝑏|2
= 1− (𝑎− �̄�)(𝑏− �̄�)

|�̄�− 𝑏|2
= 1 +

4 Im 𝑎 Im 𝑏

|�̄�− 𝑏|2
.

Let us prove the implication 1) =⇒ 2). It follows from the identity (3.4) and condition (1.4)
that ∏︁

𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2
𝑘 ̸=𝑛

(︂
1 +

4 Im 𝑎𝑘 Im 𝑎𝑛
|𝑎𝑘 − 𝑎𝑛|2

)︂
⩽ exp[𝐾𝑉 (𝑟𝑛)].
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Taking the logarithm, by this inequality we get (3.1).
We proceed to proving the implication 2) =⇒ 3). It follows from (3.1) and (3.4) that

2 ln

⃒⃒⃒⃒
�̄�𝑛 − 𝑎𝑘
𝑎𝑛 − 𝑎𝑘

⃒⃒⃒⃒
⩽ 𝜏𝑛(𝐴) ⩽ 𝐾𝑉 (𝑟𝑛)

for 𝑛 ̸= 𝑘. This implies the inequality⃒⃒⃒⃒
𝑎𝑛 − 𝑎𝑘
�̄�𝑛 − 𝑎𝑘

⃒⃒⃒⃒
⩾ exp

[︂
−𝐾

2
𝑉 (𝑟𝑛)

]︂
,

and this is why the sequence 𝐴 satisfies the condition ℛ+(𝜌). Moreover, 𝑆𝑛(𝐴) ⩽ 𝜏𝑛(𝐴), since
for 𝑎, 𝑏 ∈ C+ the inequality ⃒⃒⃒⃒

𝑎− 𝑏

�̄�− 𝑏

⃒⃒⃒⃒
⩽ 1

is true.
In order to prove the inequality (3.2), we observe that if the sequence 𝐴 obeys the inter-

polation condition, then by the identity (3.3) and the elementary inequality − ln(1 − 𝑥) ⩾ 𝑥
(0 ⩽ 𝑥 < 1) we have

𝐾𝑉 (𝑟𝑛) ⩾ − ln
∏︁

𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2
𝑘 ̸=𝑛

⃒⃒⃒⃒
𝑎𝑘 − 𝑎𝑛
𝑎𝑘 − �̄�𝑛

⃒⃒⃒⃒

= −
∑︁

𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

ln

(︂
1− Im 𝑎𝑘 Im 𝑎𝑛

|𝑎𝑘 − �̄�𝑛|2

)︂
⩾

∑︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

𝑘 ̸=𝑛

Im 𝑎𝑘 Im 𝑎𝑛
|𝑎𝑘 − �̄�𝑛|2

for each point 𝑎𝑛 ∈ 𝐴. This implies (3.2).
We are going to prove the implication 3) =⇒ 1). We note that the conditions (1.1) and (3.2)

imply the inequality

sup
𝑛

∞∑︁
𝑘=1

Im 𝑎𝑘 Im 𝑎𝑛

|𝑎𝑘 − �̄�𝑛|2𝑟𝜚+1
𝑘

< ∞. (3.5)

Indeed, the condition (1.1) implies the convergence of the series

𝐾1 =
∞∑︁
𝑘=1

sin 𝜃𝑘

𝑟𝜚+1
𝑘

< ∞. (3.6)

By (3.2) and (3.6) we obtain∑︁
𝑘 ̸=𝑛

Im 𝑎𝑘 Im 𝑎𝑛

|�̄�𝑘 − 𝑎𝑛|2𝑟𝜚+1
𝑘

=
∑︁

𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2
𝑘 ̸=𝑛

+
∑︁

|𝑎𝑘−𝑎𝑛|>𝑟𝑛/2

⩽ 2𝜚+2 ̂︀𝑆𝑛(𝐴) + 4𝐾1 sin 𝜃𝑛.

Since for 𝑘 = 𝑛 the corresponding summand in (3.5) is of the form 1/(4𝑟𝜚+1
𝑛 ), we obtain (3.5).

We note that the condition (3.5) played a main role in works [5], [6] (see also [7]–[9]) for
constructing a series, which solved the interpolation problem. The proof is complete.

4. Union of interpolating sequences

It is easy to understand that the union of two interpolating sequences not necessarily possesses
the interpolation property since the points of one set can closely approach the points of the
other set. However, the following lemma holds.

Lemma 4.1. The sequence 𝐴 obeying the condition ℛ+(𝜌), which is equal to the union of
several interpolating sequences, is an interpolating sequence for the space [𝜌,∞)+.
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Proof. Let 𝐴1, 𝐴1, . . . , 𝐴𝑞 be interpolating sequences. Then the measures 𝜇𝐴𝑗
(𝑗 = 1, 2, . . . , 𝑞)

satisfy the conditions (1.5) and (1.6). The sum of these measures obviously satisfies these

conditions and hence, the measure 𝜇𝐴 satisfies them as well, where 𝐴 =
𝑞⋃︀

𝑗=1

𝐴𝑗. If 𝐴 is a

sequence satisfying the conditionℛ+(𝜌), then it also satisfies the condition (1.4) of Theorem 1.2.
Therefore, by Theorem 1.2 the sequence 𝐴 is an interpolating sequence in the space.

5. Relations between conditions ℐ+(𝜌) and 𝑁+(𝜌)

Lemma 5.1. A sequence 𝐴 satisfying the condition 𝑁+(𝜌) is an interpolating sequence for
the space [𝜌,∞)+.

Proof. The condition 𝑁+(𝜌) and the elementary inequality

(|𝑎+ 𝑖| − |𝑎− 𝑖|)|𝑏+ 𝑖|
|𝑎+ 𝑖|(|𝑏+ 𝑖| − |𝑏− 𝑖|)

⩽ 8
Im 𝑎

Im 𝑏
· |𝑏|

2

|𝑎|2

imply
|𝑎𝑛+1 + 𝑖| − |𝑎𝑛+1 − 𝑖|

|𝑎𝑛+1 + 𝑖|
⩽ 𝑐

|𝑎𝑛 + 𝑖| − |𝑎𝑛 − 𝑖|
|𝑎𝑛 + 𝑖|

.

Since for all points 𝑎, 𝑏 in the upper half–plane C+⃒⃒⃒⃒
𝑎− 𝑏

𝑎− �̄�

⃒⃒⃒⃒
⩾

|𝑎− 𝑖||𝑏+ 𝑖| − |𝑎+ 𝑖||𝑏− 𝑖|
|𝑎+ 𝑖||𝑏+ 𝑖| − |𝑎− 𝑖||𝑏− 𝑖|

,

we have∏︁
𝑟𝑛/2<𝑟𝑗<3𝑟𝑛/2

𝑗 ̸=𝑛

⃒⃒⃒⃒
𝑎𝑗 − 𝑎𝑛
𝑎𝑗 − �̄�𝑛

⃒⃒⃒⃒
⩾

∏︁
𝑟𝑛/2<𝑟𝑗<3𝑟𝑛/2

𝑗>𝑛

|𝑎𝑗 − 𝑖||𝑎𝑛 + 𝑖| − |𝑎𝑗 + 𝑖||𝑎𝑛 − 𝑖|
|𝑎𝑗 + 𝑖||𝑎𝑛 + 𝑖| − |𝑎𝑗 − 𝑖||𝑎𝑛 − 𝑖|

·
∏︁

𝑟𝑛/2<𝑟𝑗<3𝑟𝑛/2
𝑗<𝑛

|𝑎𝑛 − 𝑖||𝑎𝑗 + 𝑖| − |𝑎𝑛 + 𝑖||𝑎𝑗 − 𝑖|
|𝑎𝑗 + 𝑖||𝑎𝑛 + 𝑖| − |𝑎𝑗 − 𝑖||𝑎𝑛 − 𝑖|

:=
∏︁
𝑗>𝑛

·
∏︁
𝑗<𝑛

.

(5.1)

If 𝑗 > 𝑛, then
|𝑎𝑗 + 𝑖| − |𝑎𝑗 − 𝑖|

|𝑎𝑗 + 𝑖|
⩽ 𝑐𝑗−𝑛 |𝑎𝑛 + 𝑖| − |𝑎𝑛 − 𝑖|

|𝑎𝑛 + 𝑖|
,

and thus,

|𝑎𝑗 − 𝑖||𝑎𝑛 + 𝑖| − |𝑎𝑗 + 𝑖||𝑎𝑛 − 𝑖| ⩾ (1− 𝑐𝑗−𝑛)|𝑎𝑗 + 𝑖|(|𝑎𝑛 + 𝑖| − |𝑎𝑛 − 𝑖|).
On the other hand,

|𝑎𝑗 + 𝑖||𝑎𝑛 + 𝑖| − |𝑎𝑗 − 𝑖||𝑎𝑛 − 𝑖| ⩽ (1 + 𝑐𝑗−𝑛)|𝑎𝑗 + 𝑖|(|𝑎𝑛 + 𝑖| − |𝑎𝑛 − 𝑖|).
Thus, ∏︁

𝑗>𝑛

⩾
∞∏︁
𝑗=1

1− 𝑐𝑗

1 + 𝑐𝑗
.

We then find

− ln
∏︁
𝑗>𝑛

= −
∞∑︁
𝑗=1

ln
1− 𝑐𝑗

1 + 𝑐𝑗
⩽ 2

∞∑︁
𝑗=1

𝑐𝑗

1 + 𝑐𝑗
.

By elementary calculations we obtain

ln
∏︁
𝑗>𝑛

⩾ 2
∞∑︁
𝑗=1

𝑐𝑗

1 + 𝑐𝑗
=

2

ln 𝑐 · ln(1 + 𝑐)
. (5.2)
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If 𝑗 < 𝑛, then
|𝑎𝑛 + 𝑖| − |𝑎𝑛 − 𝑖|

|𝑎𝑛 + 𝑖|
⩽ 𝑐𝑛−𝑗 |𝑎𝑗 + 𝑖| − |𝑎𝑗 − 𝑖|

|𝑎𝑗 + 𝑖|
.

Thus,

|𝑎𝑛 − 𝑖||𝑎𝑗 + 𝑖| − |𝑎𝑛 + 𝑖||𝑎𝑗 − 𝑖| ⩾ (1− 𝑐𝑛−𝑗)|𝑎𝑛 + 𝑖|(|𝑎𝑗 + 𝑖| − |𝑎𝑗 − 𝑖|),
|𝑎𝑛 + 𝑖||𝑎𝑗 + 𝑖| − |𝑎𝑗 − 𝑖||𝑎𝑛 − 𝑖| ⩽ (1 + 𝑐𝑛−𝑗)|𝑎𝑛 + 𝑖|(|𝑎𝑗 + 𝑖| − |𝑎𝑗 − 𝑖|).

Hence, ∏︁
𝑗<𝑛

⩾
∞∏︁
𝑗=1

1− 𝑐𝑛−𝑗

1 + 𝑐𝑛−𝑗
,

and

ln
∏︁
𝑗<𝑛

⩾
2

ln 𝑐 · ln(1 + 𝑐)
. (5.3)

It follows from (5.2) and (5.3) that the sequence 𝐴 obeys the condition (ℐ+(𝜌)).

Corollary 5.1. Each sequence, the limiting points of which are located on the real axis and
at infinity, contains an interpolating for the space [𝜌,∞)+ subsequence.

Corollary 5.2. Let a sequence 𝐴 satisfy the condition (ℐ+(𝜌)) and all its points are on the
imaginary axis. Then the necessary condition for 𝐴 being interpolating for the space [𝜌,∞)+ is

𝑎𝑛
𝑎𝑛+1

⩽ exp[𝐾𝑉 (𝑟𝑛)]

for some 𝐾 > 0, and the sufficient condition is
𝑎𝑛
𝑎𝑛+1

⩽ 𝑐 < 1.

Proof. We have already shown that the interpolation is possible if 𝑎𝑛 tends to the boundary
(in the present case to infinity) with an exponential rate. And vice versa, if the interpolation
is possible, then there exists 𝐾 > 0 such that

exp[−𝐾𝑉 (𝑟𝑛)] ⩽
𝑎𝑛+1 − 𝑎𝑛
𝑎𝑛+1 − �̄�𝑛

=
𝑎𝑛+1 − 𝑎𝑛
𝑎𝑛+1 + 𝑎𝑛

⩽
𝑎𝑛+1

𝑎𝑛
.

6. Interpolation of sparse sequence obeying uniform Frostman condition

In this section 𝐴 = {𝑎𝑛 = 𝑟𝑛𝑒
𝑖𝜃𝑛} still denotes a sequence in the upper half–plane, 𝐴𝑛

def
=

𝐴 ∖ {𝑎𝑛}, 𝑎𝑛 ∈ 𝐴.

Lemma 6.1. A 𝜌+–sparse sequence 𝐴 satisfying the condition (ℱ+(𝜌)) is an interpolating
sequence.

Proof. Let 𝐴0 be a finite subsequence of the sequence 𝐴. The function

𝑓(𝑧) =
∑︁

𝑟𝑛/2⩽𝑟𝑘⩽3𝑟𝑛/2
𝑎𝑘∈𝐴0

Im 𝑎𝑘
|�̄�𝑘 − 𝑧|

is subharmonic in C+ and this is why∑︁
𝑟𝑛/2⩽𝑟𝑘⩽3𝑟𝑛/2

𝑎𝑘∈𝐴0

Im 𝑎𝑘
|�̄�𝑘 − 𝑧|

⩽ max
𝑡∈R

𝑓(𝑡) ⩽ sup
𝑡∈R

∑︁
𝑟𝑛/2⩽𝑟𝑘⩽3𝑟𝑛/2

Im 𝑎𝑘
|�̄�𝑘 − 𝑡|

.
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Hence, ∑︁
𝑟𝑛/2⩽𝑟𝑘⩽3𝑟𝑛/2

Im 𝑎𝑘
|�̄�𝑘 − 𝑎𝑛|

⩽ 𝐾𝑉 (𝑟𝑛)

for each point 𝑎𝑛 in the set 𝐴. At the same time

Im 𝑎𝑛
|�̄�𝑘 − 𝑎𝑛|

< 1, 𝑎𝑘, 𝑎𝑛 ∈ C+.

Therefore, ∑︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

Im 𝑎𝑘 Im 𝑎𝑛
|�̄�𝑘 − 𝑎𝑛|2

⩽ 𝐾𝑉 (𝑟𝑛).

Together with the condition of 𝜌+–sparseness this inequality implies the interpolation property
of the sequence 𝐴 (Theorem 3.1).

7. Sets close to interpolating ones

In what follows we are interesting in sets close to interpolating ones in the space [𝜌,∞)+,
that is, to the sets obeying the ℐ+(𝜌)–condition.
By Ω(𝑎, 𝑟) we denote the circle

Ω(𝑎, 𝑟)
def
=

{︂
𝑧 ∈ C :

⃒⃒⃒⃒
𝑧 − 𝑎

𝑧 − �̄�

⃒⃒⃒⃒
⩽ 𝑟

}︂
.

The set 𝐸 ′ is 𝐾–translated with respect to the set 𝐸 (𝐸 ⊂ C+) for proximate order 𝜌 if there
exists a mapping 𝜔 of the set 𝐸 onto the set 𝐸 ′ such that 𝜔(𝜉) ∈ Ω(𝜉, exp [−𝐾𝑉 (|𝜉|)]) for all
𝜉 ∈ 𝐸. In this case we say that the mapping 𝜔 is 𝐾–translation of the set 𝐸 for proximate
order 𝜌.
We being with proving some useful inequalities.

Lemma 7.1. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ C+,

𝑢 =
𝑎− 𝑏

�̄�− 𝑏
, 𝑣 =

𝑐− 𝑎

𝑐− 𝑎
, 𝑤 =

𝑐− 𝑑

𝑐− 𝑑
.

1) If
𝑏− 𝑐

𝑏− 𝑐
⩽

𝛿

4
, 𝑢 ⩾ 𝛿,

then 𝑣 ⩾ 𝛿𝛼, where

𝛼 =
ln(𝛿/2)

ln 𝛿
.

2) If
𝑏− 𝑐

𝑏− 𝑐
⩽

𝛿

4
,

𝑎− 𝑑

�̄�− 𝑑
⩽

𝛿

4
, 𝑢 ⩾ 𝛿,

then 𝑤 ⩾ 𝛿𝛼𝛽, where

𝛽 =
ln(𝛿/4)

ln 𝛿/2
.

Proof. We apply the conformal mapping

𝑤 =
𝑧 − 𝑖

𝑧 + 𝑖

of the half–plane C+ onto the unit circle 𝐶(0, 1) and similar lemma for the circle [10, Lm. 8]
and this completes the proof.
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Lemma 7.2. Let 𝑎, 𝑏 ∈ C+, |𝑎| ⩾ 1. If

𝑎− 𝑏

𝑏− �̄�
⩽ 𝜀, 0 < 𝜀 < 1,

then

1) the inequality holds

|𝑎− 𝑏| ⩽ 2𝜀 Im 𝑎

1− 𝜀
;

2) the inequality holds ⃒⃒⃒
arg

𝑎

𝑏

⃒⃒⃒
⩽

2𝜀 Im 𝑎

1− 𝜀
.

Proof. 1) We have
𝑏− �̄�

𝑎− 𝑏
⩾

1

𝜀
.

This yields ⃒⃒⃒⃒
1− 2𝜀 Im 𝑎

𝑎− 𝑏

⃒⃒⃒⃒
⩾

1

𝜀
.

This inequality implies

|𝑎− 𝑏|+ 2 Im 𝑎 ⩾
|𝑎− 𝑏|

𝜀
and hence, we obtain the inequality in Assertion 1).
2) The needed inequality follows from that in Assertion 1) since for |𝑎| > 1 and |𝑎−𝑏| ⩽ 𝑟 < 1,

we have | arg 𝑎− arg 𝑏| ⩽ 𝑟.
The proof is complete.

Lemma 7.3. Let a sequence 𝐴 = {𝑎𝑛}∞𝑛=1 ⊂ C+, 𝑎𝑛 = 𝑟𝑛𝑒
𝑖𝜃𝑛 , obeys the relation∑︁

𝑎𝑛∈𝐶(0,𝑟)

sin 𝜃𝑛 ⩽ 𝐶1𝑉 (𝑟) (7.1)

for some 𝐶1 > 0. Then for a given 𝐾 > 0 there exists 𝐶2 = 𝐶2(𝐾) > 0 such that each 𝐾–
translated sequence 𝐴′ = {𝑎′𝑛}∞𝑛=1 ⊂ C+, 𝑎

′
𝑛 = 𝑟′𝑛𝑒

𝑖𝜃′𝑛 , for proximate order 𝜌(𝑟) with respect to
the sequence 𝐴 satisfies the condition (7.1) with the constant 𝐶2.

Proof. Using Assertion 2 of Lemma 7.2, we obtain∑︁
𝑎′𝑛∈𝐶(0,𝑟)

sin 𝜃′𝑛 ⩽
∑︁

𝑎𝑛∈𝐶(0,2𝑟)

sin 𝜃𝑛 +
∑︁

𝑎′𝑛∈𝐶(0,𝑟)

| sin 𝜃′𝑛 − sin 𝜃𝑛|

⩽
∑︁

𝑎𝑛∈𝐶(0,2𝑟)

sin 𝜃𝑛 +
∑︁

𝑎𝑛∈𝐶(0,2𝑟)

sin 𝜃𝑛 exp(−𝐶2𝑉 (𝑟𝑛)), 𝐶2 > 0.
(7.2)

The series
∑︀

𝑎𝑛∈𝐶(0,2𝑟)

sin 𝜃𝑛 exp(−𝐶2𝑉 (𝑟𝑛)) converges. Now inequalities (7.1) and (7.2) imply the

statement of the lemma.

Theorem 7.1. Let a sequence 𝐴 obeys the ℐ+(𝜌)–condition. Then there exists a number
𝐾 > 0 such that the following statements hold:

1) If 𝑎𝑛 ∈ 𝐴, 𝜁 ∈ Ω (𝑎𝑛, exp [−𝐾𝑉 (𝑟𝑛)]) , then

|𝐸𝐴
𝑛 (𝜁)| :=

∏︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2

𝑎𝑘∈𝐴𝑛

⃒⃒⃒⃒
𝑎𝑘 − 𝜁

�̄�𝑘 − 𝜁

⃒⃒⃒⃒
⩾ exp [−𝐾𝑉 (𝑟𝑛)] .
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2) Each sequence 𝐴′, which is 𝐾–translated for proximate order 𝜌 with respect to 𝐴 satisfies
ℐ+(𝜌)–condition.

3) Each 𝐾–translation for proximate order 𝜌 of the sequence 𝐴 is a one–to–one correspon-
dence.

4) If 𝑎𝑘, 𝑎𝑛 ∈ 𝐴 and 𝑎𝑘 ̸= 𝑎𝑛, then

Ω (𝑎𝑘, exp [−𝐾𝑉 (𝑟𝑘)]) ∩ Ω (𝑎𝑛, exp [−𝐾𝑉 (𝑟𝑛)]) = ∅.

Proof. 1) Condition (5.1) implies the existence of a number 𝐾 > 0 such that for each 𝑎𝑛 ∈ 𝐴∏︁
𝑟𝑛/2<𝑟𝑘<3𝑟𝑛/2//𝜔∈𝐴𝑛

⃒⃒⃒⃒
𝑎𝑘 − 𝑎𝑛
𝑎𝑘 − �̄�𝑛

⃒⃒⃒⃒
⩾ exp [−𝐾𝑉 (𝑟𝑛)] .

This inequality yields ⃒⃒⃒⃒
𝑎𝑘 − 𝑎𝑛
𝑎𝑘 − �̄�𝑛

⃒⃒⃒⃒
⩾ exp [−𝐾𝑉 (𝑟𝑛)] .

We apply Assertion 1) in Lemma 7.1 with 𝛿 = exp [−𝐾𝑉 (𝑟𝑛)]. We let

𝑎 = 𝑎𝑘, 𝑏 = 𝑎𝑛, 𝜉, 𝜂 ∈ 𝐸, 𝜁 ∈ Ω

(︂
𝜂,

1

2
exp [−𝐾𝑉 (|𝜂|]

)︂
,

and we get ∏︁
|𝜉|/2<|𝜂|<3|𝜉|/2//𝜂∈𝐸𝜉

⃒⃒⃒⃒
𝜉 − 𝜁

𝜉 − 𝜁

⃒⃒⃒⃒
⩾ (𝛿)ln(𝛿/2)/ ln(𝛿) =

1

2
exp [−𝐾𝑉 (|𝜉|] .

2) Arguing as in the proof of Assertion 1), we get the existence of numbers 𝐶1, 𝐾 > 0 and a
proximate order 𝜌(𝑟), lim

𝑟→∞
𝜌(𝑟) = 𝜌, such that the condition (1.7) holds for each 𝜁 ∈ 𝐸∏︁
|𝜁|/2<|𝛾|<3|𝜁|/2

𝛾∈𝐸𝜁

⃒⃒⃒⃒
𝛾 − 𝜁

𝛾 − 𝜁

⃒⃒⃒⃒
⩾ exp [−𝐶1𝑉 (|𝜁|] .

This inequality yields ⃒⃒⃒⃒
𝛾 − 𝜁

𝛾 − 𝜁

⃒⃒⃒⃒
⩾ −𝐶1𝑉 (|𝜁|.

We let

𝐾 = 𝐶1, 𝜉, 𝜂 ∈ 𝐸 ′, 𝜂 ∈ 1

4
Ω (𝛾, exp [−𝐾𝑉 (|𝛾|]) , 𝜉 ∈ 1

4
Ω (𝜁, exp [−𝐾𝑉 (|𝜁|)]) .

Applying Assertion 2) of Lemma 7.1 with 𝛿 = exp [−𝐾𝑉 (|𝜉|], we get∏︁
|𝜉|/2<|𝜂|<3|𝜉|/2

𝜂∈𝐸𝜉

⃒⃒⃒⃒
𝜉 − 𝜂

𝜉 − 𝜂

⃒⃒⃒⃒
⩾ (𝛿)ln(𝛿/2)/ ln(𝛿)·ln(𝛿/4)/ ln(𝛿/2) =

1

4
exp [−𝐾𝑉 (|𝜉|] .

Assertions 3) and 4) follow from Assertion 2). Indeed, if

𝜉, 𝜂 ∈ 𝐸 ′, 𝜂 ∈ 1

4
Ω (𝛾, exp [−𝐾𝑉 (|𝛾|]) , 𝜉 ∈ 1

4
Ω (𝜁, exp [−𝐾𝑉 (|𝜁|]) ,

then ⃒⃒⃒⃒
𝜉 − 𝜂

𝜉 − 𝜂

⃒⃒⃒⃒
⩾ −𝐶1𝑉 (|𝜉| > 0,

that is, 𝜉 ̸= 𝜂.
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8. Weakly regular sets

In [11], weakly regular sets in the upper half–plane [𝜌(𝑟),∞)+ were studied. Their definition
is as follows.

Definition 8.1. A sequence of points 𝐴 = {𝑎𝑛}∞𝑛=1 in the upper half–plane C+ is called
weakly regular sequence with respect to the proximate order 𝜌 (or 𝑊𝑅+(𝜌)–set) if one of the
following conditions (C) or (C′) is satisfied:

(C+)–condition

1) there are no multiple points or points with the same absolute value in 𝐴;

2) 𝐴 ∩ 𝐶(0, 2) = ∅;

3) the condition holds

𝑛+(𝐶(0, 𝑟)) ⩽ 𝐾𝑉 (𝑟), 𝐾 > 0 ;

4) there exists a number 𝑑 > 0 such that for all points 𝑎𝑛, 𝑎𝑘 ∈ 𝐴 such that |𝑎𝑛| ⩾ |𝑎𝑘|
we have

|𝑎𝑛| ⩾ |𝑎𝑘|+ 𝑑 Im 𝑎𝑘/𝑉 (|𝑎𝑘|).

(C′
+)–condition

1) there are no multiple points or points with the same absolute value in 𝐴;

2) 𝐴 ∩ 𝐶(0, 2) = ∅;

3) the condition holds

𝑛+(𝐶(0, 𝑟)) ⩽ 𝐾𝑉 (𝑟), 𝐾 > 0 ;

4) there exists a number 𝑑 > 0 such that the circles of radii

𝑟𝑛 = 𝑑(sin(arg 𝑎𝑛))
1/2|𝑎𝑛|1−

𝜌(|𝑎𝑛|)
2

centered 𝑎𝑛 are disjoint.

The sets obeying (C+)–condition played an important role in [12], [13].
By using the geometric criterion of the interpolation property of sequence, the following

theorem was proved.

Theorem 8.1. Let a sequence 𝐴 = {𝑎𝑛}∞𝑛=1, 𝐴 ∈ C+, be a 𝑊𝑅+(𝜌)–set. Then 𝐴 is an
interpolating sequence in the space [𝜌,∞)+.

9. Interpolation problem for compactly supported sequences

We recall that a sequence of complex numbers {𝑏𝑛}∞𝑛=1 is called compactly supported if all
terms in this sequence vanish starting from some one, that is, 𝑏𝑛 = 0 for 𝑛 ⩾ 𝑛0 ⩾ 1.
Interpolation problems in spaces of entire functions take special place for compactly supported

sequences and are related with the distribution of zeroes of entire functions. In particular,
Bratishchev and Korobejnik [14] considered a problem on multiple interpolation in the space
[𝜌,∞) of entire functions of finite order (include zero order) and normal type for compactly
supported sequences. The obtained result can be formulated as follows.

Theorem 9.1 (Bratishchev, Korobejnik). The following three statements are equivalent.

1) The interpolation problem 1.2 in the space [𝜌,∞) is solvable for each compactly supported
sequence.
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2) The set of interpolation nodes {𝑎𝑛}𝑛=𝑛0∞ obeys the condition

lim sup
𝑟→∞

𝑛(𝑟)

𝑟𝑉 ′(𝑟)
< ∞,

where 𝑛(𝑟) is the number of points in the sequence {𝑎𝑛}∞𝑛=𝑛0
located in the circle |𝑧| < 𝑟.

3) The interpolation problem (1.2) in the space [𝜌,∞) is solvable for at least one non–zero
compactly supported sequence.

We consider problem on simple interpolation for compactly supported sequences in the space
[𝜌,∞)+.

Theorem 9.2. The following three statements are equivalent.

1) The interpolation problem (1.2) in the space [𝜌,∞)+ is solvable for each compactly sup-
ported sequence.

2) The condition (1.1) is satisfied.

3) The interpolation problem (1.2) in the space [𝜌,∞)+ is solvable for at least one non–zero
compactly supported sequence.

Proof. The implication 1) ⇒ 3) is trivial. Let us prove the implication 3) ⇒ 2). Suppose
that the interpolation problem (1.2) is solvable in the space [𝜌,∞)+ for a non–zero compactly
supported sequence {𝑏𝑛}∞𝑛=1, where 𝑏𝑛 = 0 for all 𝑛 > 𝑛0 and 𝑏𝑛0 ̸= 0. Let a function 𝐹 ∈ [𝜌,∞]+
be such that

𝐹 (𝑎𝑛) = 𝑏𝑛, 𝑛 = 1, 2, . . . , 𝑛0, 𝐹 (𝑎𝑛) = 0, 𝑛 = 𝑛0 + 1, . . . .

The zero set {𝑧𝑛} of the function contains the sequence {𝑎𝑛}∞𝑛=𝑛0
and by Theorem 1.2 it obeys

the condition (1.1). Since just finitely many terms in the sequence {𝑎𝑛}∞𝑛=1 does not belong to
the set {𝑧𝑛}, the sequence {𝑎𝑛}∞𝑛=1 also satisfies the condition (1.1). The proof of the implication
3) ⇒ 2) is complete.
We proceed to proving the implication 2) ⇒ 1). Suppose that the condition (1.1) is satisfied.

Then the canonical product 𝐸(𝑧) of the sequence {𝑎𝑛}∞𝑛=1 belongs to the space [𝜌,∞)+. Let
{𝑏𝑛}∞𝑛=1 be a compactly supported sequence. Since the series

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝐸(𝑧)𝑏𝑛
(𝑧 − 𝑎𝑛)𝐸 ′(𝑎𝑛)

contains just finitely many non–zero terms, the function 𝐹 (𝑧) belongs to the space [𝜌,∞)+.
The function 𝐹 (𝑧) solves the interpolation problem (1.2). The proof of the implication 2) ⇒ 1)
is complete.
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