
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 16. No 3 (2024). P. 21-39.

doi:10.13108/2024-16-3-21

ESTIMATES FOR TORSIONAL RIGIDITY OF CONVEX
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Abstract. We introduce new geometric characteristics of a convex domain with finite
boundary length and provide an algorithm for calculating them. A series of isoperimetric
inequalities between new functionals and known integral characteristics of the domain are
proved. Some of the inequalities have a wide class of extremal domains. We consider
applications of new characteristics to the problem on estimating the torsional rigidity of a
convex domain.
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1. Introduction

Let 𝐺 be a simply connected domain in the plane. One of its important characteristics is the
functional

P(𝐺) := 2

∫︁
𝐺

u(𝑥,𝐺)dA, (1.1)

where u(𝑥,𝐺) is the stress function, which is the solution of problem{︃
△𝑢 = −2, 𝑥 ∈ 𝐺,

𝑢 = 0, 𝑥 ∈ 𝜕𝐺,

while dA denotes the differential area element. It is well–known that the stress function is well
and uniquely defined (see, for instance, [1], [2]).
The first experimental results of calculations with a torsion balance were made in 1784

by Coulomb. He discovered that the force required to twist a homogeneous rod is directly
proportional to its length 𝑙, the angle 𝜃 by which it should be twisted, some physical constant
𝜅 depending on the material from which the rod is made, and some characteristic 𝑃 depending
only on the shape of the cross–section of the homogeneous rod

𝐹 = 𝜅𝑙𝜃𝑃.

The quantity 𝑃 was later called the torsional rigidity. We note that 𝑃 is proportional to the
functional (1.1). The functional P(𝐺) is called the torsional rigidity of the domain 𝐺. Although
the definition (1.1) was not known to Coulomb, he proposed the formula

𝑃 =
𝜋𝑟4

2
for calculating the torsional rigidity with a circular cross–section, where 𝑟 is the cross-section ra-
dius. It is well–known that the constant 2 in the definition (1.1) appeared due to the Coulomb’s
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formula. It turned out that the functional (1.1) is an important physical characteristic of a
domain not only in torsion theory, but also in hydrodynamics.
One of the classical problems of mathematical physics is the calculation of P(𝐺) for specific

cross–sections and the study of its properties. Exact formulas for calculating torsional rigid-
ity turned out to be a difficult problem [2], so the natural problem is to estimate torsional
rigidity through simpler characteristics of the domain. This line of research turned out to be
closely related to the isoperimetric inequalities in mathematical physics. Hundreds of papers
were written in this direction [3], among which are the works of O. Cauchy, V. Saint–Venant,
G. Polya, G. Szegö, E. Makai, L.E. Payne, F.G. Avkhadiev.
In 1951, Pólya and Szegö [1] showed that for each convex domain the inequality

1

2
A(𝐺)𝜌(𝐺)2 ⩽ P(𝐺), (1.2)

holds, where 𝜌(𝐺) is the radius of the maximal circle contained in 𝐺 and A(𝐺) is the area of
the domain 𝐺. The identity in (1.2) is attained for the circle.
Later Makai showed [4] that for each convex domain the inequality

P(𝐺) < 4

∫︁
𝐺

𝜌(𝑥,𝐺)2dA, (1.3)

holds, where 𝜌(𝑥,𝐺) is the function of distance from the point 𝑥 to the boundary 𝐺. The
constant 4 in the inequality (1.3) is the best possible and is attained at the limit on the
sequence of rectangles Q𝑛 = [0, 1] × [0, 1/𝑛] as 𝑛 → +∞. As a corollary of this inequality he
obtained the estimate

P(𝐺) <
4

3
A(𝐺)𝜌(𝐺)2, (1.4)

The constant 4/3 is best possible and is attained as the domain degenerates.
In the second half of the 90s of the 20th century Avkhadiev defined the integral geometric

functional

I𝑝(𝐺) =

∫︁
𝐺

𝜌(𝑥,𝐺)𝑝dA, (1.5)

which is called the Euclidean moment of the domain with respect to the boundary of order
𝑝. As 𝑝 = 2, the functional is naturally called the Euclidean intertia moment of domain [5],
while as 𝑝 = 1, the stationary Euclidean moment of domain. Avkhadiev demonstrated [5] an
important role of the Euclidean moment of inertia in the torsion theory of homogeneous rod
with a simply connected cross–section. Namely, Avkhadiev established that P(𝐺) and I2(𝐺)
are equivalent quantities in the sense of Pólya and Szegö [1].
In this paper, we introduce new easily computable geometric functionals of the domain and

provide new upper bounds for the torsional rigidity of a convex domain will be given, as well
as new lower bounds for P(𝐺).
The main research tool is the evaluation of the functionals of the domain on the level sets of

the domain function.

2. Functionals K(𝐺) and 𝑑(𝜌(𝐺)) and their properties

By

𝐺(𝜇) := {𝑧 ∈ 𝐺 | 𝜌(𝑧,𝐺) ⩾ 𝜇}, a(𝜇) := A(𝐺(𝜇)) :=

∫︁
𝐺(𝜇)

dA
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Figure 1. Circle and its stretching.

we denote the level set of the distance function 𝜌(𝑥,𝐺) and the measure of the level set 𝐺(𝜇),
respectively. By L(𝐺) we denote the length of the boundary of domain 𝐺. Let

l(𝜇,𝐺) := L(𝐺(𝜇)), l(𝜌(𝐺)) := lim
𝜇→𝜌(𝐺)

l(𝜇,𝐺). (2.1)

If just a single domain is considered, we briefly denote the functional l(𝜇,𝐺) by l(𝜇).
A convex domain 𝐺 is called a stretching of a convex domain 𝐺0 if 𝐺0 can be obtained

from 𝐺 by cutting out a rectangular fragment and connecting the remaining parts by parallel
translation so that 𝜌(𝐺0) = 𝜌(𝐺). On the other hand, it is natural to call 𝐺0 a contraction of
𝐺. Note that not all domains can be stretched. Indeed, it is easy to see that a triangle and a
regular polygon with an odd number of sides are examples of non–stretchable domains. If 𝐺
is non–stretchable, then we let 𝐺0 ≡ 𝐺. On the other hand, if l(𝜌(𝐺)) ̸≡ 0, then the convex
domain 𝐺 is both stretchable and contractible [6]. For example, a stretching of a circle is a
Bonnesen–type domain consisting of two semicircles of radius 𝑟 and a rectangle with sides 𝑑
and 2𝑟, see Figure 1. Such domains form a two–parameter family of convex domains depending
on the parameters 𝑑 and 𝑟.
As in [7], we denote by Γ the subset of convex domains containing polygons circumscribed

about some circle, as well as circular polygons obtained from the circumscribed polygons by
replacing some sides or parts of them with arcs of a circle inscribed in the polygon. We
complete the formation of the set Γ by adding domains, which are stretchings of elements from
Γ. Despite the specific construction of the domains in the class Γ, in what follows we shortly
call the elements from the class Γ the polygons, although they form a subclass of convex circular
polygons.
For the domains 𝐷 in Γ we introduce the functional

K(𝐷) := sup
𝜇

(−l ′(𝜇)) , (2.2)

where l ′(𝜇) is the derivative of the function l(𝜇). It is known (see, for instance, [8]) that for
convex polygonal domains the function l(𝜇) is piece–wise linear, decreasing and concave, while
for the class Γ the function l(𝜇) is linear and

K(𝐷) = − lim
𝜇→𝜌(𝐷)

l ′(𝜇).

The domain 𝐷 in the set Γ is characterized by the set of parameters 𝛼𝑖, 𝛽𝑗, 𝛾𝑙. At the same

time 𝛾𝑙 = 𝜋 for all 𝑙 and
𝑛∑︀

𝑖=1

𝛼𝑖 −
𝑚∑︀
𝑗=1

𝛽𝑗 = 𝜋(𝑛−𝑚− 2). On Figure 2 we demonstrate the role

of the parameters 𝛼𝑖, 𝛽𝑗, 𝛾𝑙 for a domain in the class Γ.
It is easy to see that

L(𝐷)𝜌(𝐺) = 2𝜌(𝐷)
𝑛∑︁

𝑖=1

cot(𝛼𝑖/2) + 𝜌(𝐷)
𝑚∑︁
𝑗=1

𝛽𝑗,
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Figure 2. Example of domain in the class Γ.

and hence

K(𝐷) = 2
𝑛∑︁

𝑖=1

cot(𝛼𝑖/2) +
𝑚∑︁
𝑗=1

𝛽𝑗. (2.3)

Since 𝛼𝑖 ∈ (0, 𝜋), it follows from (2.3) that the functional K(𝐺) takes finite values and can
grows unboundedly if at least one of its angles 𝛼𝑖 → 0. For instance, this is seen at the example
of the triangle. We note that the value of the functional K(𝐷) is independent of the angles 𝛾𝑙.
Thus, for a non–stretchable domain 𝐷 ∈ Γ we have

K(𝐷) =
L(𝐷)

𝜌(𝐷)
.

If 𝐷 is a non–stretchable domain in the class Γ, we then obviously obtain

K(𝐷) =
L(𝐷)− l(𝜌(𝐷))

𝜌(𝐷)
. (2.4)

Our next aim is to construct an analog of the functional K(𝐷) for an arbitrary convex
bounded domain. To this end, we give an example of a domain not belonging to the class Γ,
which is, in a sense, disappointing. Let 𝐺 be a semicircle of radius 𝑟 (see Figure 3). For the
domain 𝐺 we have 𝜌(𝐺) = 𝑟/2 and

l(𝜇) = 2
√︀
𝑟2 − 2𝑟𝜇+ (𝑟 − 𝜇)

(︂
𝜋 − 2arcsin

𝜇

𝑟 − 𝜇

)︂
.

We then obtain easily
sup
𝜇

(−l ′(𝜇)) = lim
𝜇→𝑟/2

(−l ′(𝜇)) = +∞.

This simple example shows that extending the definition of (2.2) (or (2.3)) to a wider subclass
of convex domains is difficult and ineffective, since for a “good” domain, a semicircle, this
functional is not finite. In fact, this example is not the only one. Despite this, below we shall
provide a class of domains for which this is possible. In fact, the semicircle example is the key
one, and for a correct generalization of the definition of K(𝐷) to arbitrary convex domains, a
criterion for the finiteness of the limit

lim
𝜇→𝜌(𝐺)

(−l ′(𝜇)) (2.5)

is needed.
Let 𝐺 be an arbitrary convex domain. With 𝐺 we associate a domain 𝐷 ∈ Γ, which contains

𝐺, has the same radius of the maximal circle, and the smallest length of the domain boundary.
In the following statements we provide an algorithm for constructing the domain 𝐷.

Lemma 2.1. For each domain 𝐺 ∈ Γ and sector Sec(𝛽) of an opening 𝛽 with the vertex at
the center of the maximal inscribed in the domain 𝐺 circle the inequalities hold

inf
𝐺∈Γ

L(𝜕𝐺 ∩ Sec(𝛽)) ⩾ 𝛽𝜌(𝐺), inf
𝐺∈Γ

A(𝐺 ∩ Sec(𝛽)) ⩾
𝛽𝜌(𝐺)2

2
,
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Figure 3. Example of domain not belonging to the class Γ.

where 𝜕𝐺 is the boundary of the domain 𝐺.

This statement is implied by the definition of the class Γ and it states that the smallest
length and area of a domain 𝐺 ∈ Γ are possessed by a domain, the boundary of which contains
an arc of sector of opening 𝛽.

Lemma 2.2. Let 𝐺 be a convex domain of finite area and l(𝜌(𝐺)) = 0. Then there exists a
domain 𝐷 ∈ Γ such that

L(𝐷) := min{L(𝑄) : 𝑄 ⊃ 𝐺,𝜌(𝑄) = 𝜌(𝐺), 𝑄 ∈ Γ}.

At the same time,

1) if a part of boundary of 𝐺 coincides with an arc of the sector of maximal inscribed circle,
then this circle belongs completely to 𝐷;

2) if the boundary of 𝐺 strictly contains the arc of sector of maximal inscribed circle, then a
part of the boundary 𝐷 is formed by tangent lines to the domain 𝐺. Moreover, a part of
the domain 𝐷 contains a part of the domain 𝐺 and the considered sector (see Figure 4).

Proof. Let 𝐺 be a convex domain. We consider the maximal circle in 𝐺 and the set of tangent
points of the inscribed circle and the boundary of 𝐺. We draw tangent lines to 𝐺 at all such
points, excluding tangent lines drawn at interior points of arcs of the inscribed circle that are
boundary points of 𝐺 if such an arc or arcs exist. Note that there are tangent lines to 𝐺 at
the ends of these arcs, since otherwise the arc is not an arc of the inscribed circle in 𝐺, or
the convexity condition is not satisfied. This is why the drawn tangent lines and arcs of the
inscribed circle form a polygon from the class Γ. We shall show that the constructed domain
can be taken as the domain 𝐷.
We denote by 𝑆(𝑂𝐴𝑖𝐴𝑖+1) the circular sector of opening 𝛽 < 𝜋, while 𝐺(𝑂𝐴𝑖𝐴𝑖+1) is the

curvilinear sector of the opening 𝛽 < 𝜋, where 𝐴𝑖, 𝐴𝑖+1 are adjacent points of tangency of the
inscribed circle and boundary of domain 𝐺. We first consider the case when 𝑆(𝑂𝐴𝑖𝐴𝑖+1) =
𝐺(𝑂𝐴𝑖𝐴𝑖+1). According to Lemma 2.1, the arc of the circle 𝐴𝑖𝐴𝑖+1 is optimal, that is, this arc
is a part of the boundary of sought polygon 𝐷 (see Figure 4).
Let 𝑆(𝑂𝐴𝑗𝐴𝑗+1) ⊂ 𝐺(𝑂𝐴𝑗𝐴𝑗+1), but these sectors not coincide. Under the introduced

restrictions, it is impossible to reduce the length of the constructed polygon 𝐷: the broken line
𝐴𝑗𝐴𝐴𝑗+1 (see Figure 4) cannot be replaced by an arc 𝐴𝑗𝐴𝑖+1 of the inscribed circle (since then
𝐺 ̸⊂ 𝐷), or by an arbitrary segment connecting the sides of the broken line 𝐴𝑗𝐴𝐴𝑗+1 (since
then the constructed domain is a polygon from Γ).
Thus, the boundary of domain 𝐷 consists of angles of type 𝐴𝑖𝐴𝐴𝑖+1 and arcs of the inscribed

circle, which are optimal. This completes the construction of the domain 𝐷 and the proof.

In the next lemma we consider remaining variants of constructing the domain 𝐷.

Lemma 2.3. Let 𝐺 be a convex domain of finite area. Then there exists a polygon 𝐷 ∈ Γ
such that

L(𝐷) := min{L(𝑄) : 𝑄 ⊃ 𝐺,𝜌(𝑄) = 𝜌(𝐺), 𝑄 ∈ Γ}.
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Figure 4. Convex domain with l(𝜌(𝐺)) = 0.

Figure 5. Convex domain with a single circumference

Proof. We present an algorithm for constructing a domainn 𝐷 with a minimal boundary length
for a convex domain 𝐺 based on the location of various tangent lines drawn at the touching
points of the maximal inscribed circle and the boundary of domain 𝐺.
Let 𝐺 be a convex domain. In 𝐺 we inscribe the maximal circle or arcs of a circle. We

consider tangent lines only at the ends of arcs common to the circle and the boundary of 𝐺 if
such arcs are present, and also at other touching points of the inscribed circle and the boundary
of 𝐺 that are not connected with arcs.
The construction of the domain 𝐷 splits into two cases:

1) the set of tangent lines contains no parallel ones or there exist more than one pair of
parallel tangent lines and l(𝜌(𝐺)) = 0;

2) among all tangent lines, there is one pair of parallel ones and l(𝜌(𝐺)) = 0 or there are
more than one pair of such tangent lines and l(𝜌(𝐺)) ̸= 0.

In the first case it is obvious that the inscribed circle is unique (see Figures 5, 6). Then the
tangent lines and arcs of a circle from 𝐺 (𝐷) form a domain from the class Γ. According to
Lemmas 2.1 and 2.2, the constructed domain is the domain 𝐷.
The second case is more interesting. Let there be parallel tangent lines among the drawn

ones. Then the inscribed circle may be unique (a semicircle, an ellipse), or there may be
infinitely many of them (any contractible domain).
Assume that 𝐺 is contractible (see Figure 7), i.e. l(𝜌(𝐺)) ̸= 0. We draw tangential lines to

the domain 𝐺 parallel to the set 𝐺(𝜌(𝐺)), which is a segment, and obtain a strip containing
𝐺. Then we construct a rectangle 𝑃 containing 𝐺 so that all its sides touch the boundary of
domain 𝐺, or the rectangle has common points with 𝐺. Moreover, the two constructed sides of
the rectangle may be either tangent lines to the domain 𝐺 or not (see Figure 7). We inscribe
a Bonnesen–type domain 𝐵 in the resulting rectangle 𝑃 (see [9]).
We draw tangent lines to 𝐺 through the common points of the boundary of 𝐺 and the

boundary of 𝐵, and if the boundary of 𝐺 contains an arc of the boundary of 𝐵, then through
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Figure 6. Convex domain with a single circumference

Figure 7. Construction of the domain 𝐷 from the class Γ

the points at the ends of the arcs. The boundary of 𝑃 contains extreme points of the convex
domain 𝐺 (see [13]), then through these points we also draw tangent lines to 𝐵 (on Figure 8
this situation corresponds to the tangent passing through the points 𝐴𝑖, 𝐴𝑖−1). Note that this
tangent line is not tangent to the boundary of 𝐺. The drawn tangent lines, the sides of 𝑃 and
the arcs of the boundary of 𝐵 form a certain polygon 𝐷′ ∈ Γ containing 𝐺 (see Figure 7), since
𝐵 is a stretching of a circle.
Since we need to find a polygon with the smallest boundary length, 𝐷′ should be optimized.

First of all we observe that the rectilinear sides of 𝐵 are part of 𝐷. Indeed, these sides or parts
of them cannot be replaced by arcs of the inscribed circle since otherwise the convexity of the
polygon is violated. Therefore we obtain a domain that is not from the class Γ (see Figure 8).
Similarly, by replacing part of the sides with segments of shorter length, for example, tangent
lines to 𝐺, we are also led to a domain that is not from the set Γ. Next, consider the set of
common points of the boundary of 𝐵 and 𝐷′ and denote these points by 𝐴𝑖. If the boundaries
of 𝐵 and 𝐷′ have common straight line segments or common arcs, then among these points we
consider only ones coinciding with the ends of the segments or arcs. For each pair of adjacent
points, we apply Lemmas 2.1 and 2.2 and replace parts of the boundaries of the polygon 𝐷′

with arcs or sides of shorter length (Figure 8). This completes the construction of the domain
𝐷 ∈ Γ for the case of a contractible domain.
In the case when among the considered tangent lines drawn to the non–contractible domain

𝐺, there is one pair of parallel ones, the construction of the domain 𝐷 is made similarly to the
previous case.
This completes the construction of the domain 𝐷 ∈ Γ and the proof.

Let 𝐺 be an arbitrary convex domain and 𝐷 be the domain corresponding to 𝐺. We define
a new functional,

K(𝐺) := K(𝐷). (2.6)
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Figure 8. Construction of the domain 𝐷 from the class Γ

As we shall see below, the functional K(𝐺) is not enough for obtaining the estimates for the
torsional rigidity. We define one more functional

d(𝜌(𝐺)) := l(𝜌(𝐷)). (2.7)

The definition implies that

d(𝜌(𝐺)) ⩾ l(𝜌(𝐺)) (2.8)

for each convex domain 𝐺. In contrast to l(𝜌(𝐺)), this functional describes more precisely how
the domain 𝐺 is stretched. For instance, for the ellipse with the semi–axes 𝑎 and 𝑏 we have
d(𝜌(𝐺)) = 4(𝑎 − 𝑏) and l(𝜌(𝐺)) = 0. This corresponds to our perception of the ellipse as a
stretched domain.
Let us provide one more example of applying Lemmas 2.1, 2.2, 2.3 for finding the domain 𝐷

with the minimal length of the boundary for a convex domain 𝐺. We consider a semicircle 𝐺 of
radius 𝑟 (see Figure 9). In order to construct the domain 𝐷 ∈ Γ, we describe a rectangle around
the semicircle. Using Lemma 2.3, we replace parts of the sides of the rectangle with an arc of a
circle inscribed in 𝐺. As the domain 𝐷, we obtain a rectangle with two corners cut off by the
arc of the maximal inscribed circle. For the semicircle, l(𝜌(𝐺)) = 0, d(𝜌(𝐺)) = l(𝜌(𝐷)) = 2𝑟,
K(𝐺) = K(𝐷) = 4 + 𝜋.

Figure 9. Example of the domain 𝐷.

Theorem 2.1. Let 𝐺 be a bounded convex domain. Then

lim
𝜇→𝜌(𝐺)

(−l ′(𝜇)) = +∞

if and only if 𝐺 ̸∈ Γ and d(𝜌(𝐺)) > 0.

Proof. Sufficiency. Let 𝐺 ̸∈ Γ and d(𝜌(𝐺)) > 0. Then there are two parallel to the segment
𝐷(𝜌(𝐺)) (the set 𝐺(𝜌(𝐺)) is possibly a point) tangent lines to the domain 𝐺 at the touching
points of the domain 𝐺 and the maximal inscribed circle. Let 𝐻 be a circular lune. Due to the
convexity of the domain 𝐺, there are either exactly two or infinitely many touching points of
the inscribed circle and the boundary of domain 𝐺. In the first case, we can take a symmetric
circular lune, while in the second case a lune bounded by a chord. Since for 𝜇 close to 𝜌(𝐺)
the set 𝐺(𝜇) contains the circular lune 𝐻(𝜇) (see Figure 10), we obtain

l(𝜇,𝐺) ⩾ l(𝜇,𝐻).
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Figure 10. Convex domain with the circular lune

At the same, the inequality

l(𝜇,𝐺)− l(𝜌(𝐺)) ⩾ l(𝜇,𝐻)− l(𝜌(𝐺))

holds. We divide the latter inequality by 𝜇− 𝜌(𝐺) for 0 ⩽ 𝜇 ⩽ 𝜌(𝐺). Multiplying by (−1), we
get

− l(𝜇,𝐺)− l(𝜌(𝐺))

𝜇− 𝜌(𝐺)
⩾ − l(𝜇,𝐻)− l(𝜌(𝐺))

𝜇− 𝜌(𝐺)
.

Passing to the limit as 𝜇 → 𝜌(𝐺), it is easy to see that

lim
𝜇→𝜌(𝐺)

(−l ′(𝜇,𝐺)) ⩾ lim
𝜇→𝜌(𝐺)

(−l ′(𝜇,𝐻)) .

The above considered example implies

lim
𝜇→𝜌(𝐺)

(−l ′(𝜇,𝐻)) = +∞.

This proves the sufficiency.
Necessity. Let 𝐺 be a convex domain and 𝐺 ̸∈ Γ be such that

lim
𝜇→𝜌(𝐺)

(−l ′(𝜇)) = +∞.

If d(𝜌(𝐺)) = 0, then l(𝜌(𝐺)) = 0. Moreover, by Lemma 2.3 there exists a domain 𝐷 ∈ Γ such
that 𝐷 ⊃ 𝐺, 𝜌(𝐷) = 𝜌(𝐺), l(𝜇,𝐷) ⩾ l(𝜇,𝐺). Therefore,

lim
𝜇→𝜌(𝐺)

(−l ′(𝜇,𝐷)) ⩾ lim
𝜇→𝜌(𝐺)

(−l ′(𝜇,𝐺)) .

This estimate yields K(𝐷) = +∞, while by the definition the functional K(𝐷) has finite values
on each convex domain from the class Γ. This contradiction completes the proof.

A corollary of Theorem 2.1 and Definition (2.7) is a partition of convex domains into two
subclasses. The first subclass consists of domains 𝐺, for which d(𝜌(𝐺)) > 0, while for the
second class we have d(𝜌(𝐺)) = 0. The second subclass contains domains close to a circle.
We note that the class of domains close to a circle was selected and studied in detail in the
monograph by Pólya and Szegö [1, Ch. 6]. Thus, on the class of domains with d(𝜌(𝐺)) = 0 we
can define the functional K(𝐺) by the formula (2.2), but the study of this case is beyond the
scope of this paper. We also note that Lemma 2.2 concerns the class of convex domains with
d(𝜌(𝐺)) = 0, while Lemma 2.3 does the case d(𝜌(𝐺)) > 0.
Let us mention some main properties of the introduced functional K(𝐺).

1. Let 𝐺1 and 𝐺2 be similar convex domains, then K(𝐺1) = K(𝐺2).

For domains from the class Γ, the area and the length of the boundary depend only on
the angles, and the similarity transformation preserves the angles between the curves. This
immediately implies the stated property. In particular, it implies that the functional K(𝐺) is
not monotone as a function of the domain. For example, for the domains shown on Figure 11
we have 𝐷1 ⊂ 𝐷2 ⊂ 𝐷3, but

K(𝐷1) = K(𝐷3) = 2𝜋 ⩽ K(𝐷2) = 8.
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Figure 11. Examples of domains from the class Γ

2. Let 𝐺 be a contractible convex domain and 𝐺0 be the contraction of 𝐺, then K(𝐺) =
K(𝐺0).

This statement follows from the definition of K(𝐺).

3. For each domain 𝐷 ∈ Γ the identity

l(𝜇) = K(𝐷)(𝜌(𝐷)− 𝜇) + l(𝜌(𝐷)), 0 ⩽ 𝜇 ⩽ 𝜌(𝐷)

holds.

We consider the identity

l(𝜇) = −
𝜌(𝐷)∫︁
𝜇

l ′(𝑡)d𝑡+ l(𝜌(𝐷)). (2.9)

The needed property is obtained by applying the identity

−l ′(𝑡) = 2
𝑛∑︁

𝑖=1

cot(𝛼𝑖/2) +
𝑚∑︁
𝑗=1

𝛽𝑗,

which is valid for 𝐷 ∈ Γ, and by integrating (2.9).

4. If 𝐺 is a convex domain and 𝐷 is the minimal domain in Γ, 𝜌(𝐷) = 𝜌(𝐺) and 𝐺 ⊂ 𝐷,
then

l(𝜇,𝐺) ⩽ K(𝐺)(𝜌(𝐺)− 𝜇) + d(𝜌(𝐺)). (2.10)

The identity is attained for domains in the class Γ for each 𝜇 ∈ [0,𝜌(𝐺)].

Since 𝐺(𝜇) ⊂ 𝐷(𝜇), (0 ⩽ 𝜇 ⩽ 𝜌(𝐺)), we have l(𝜇,𝐺) ⩽ l(𝜇,𝐷) and in view of Property 3
we get

l(𝜇,𝐺) ⩽ K(𝐷)(𝜌(𝐷)− 𝜇) + l(𝜌(𝐷)) = K(𝐺)(𝜌(𝐺)− 𝜇) + d(𝜌(𝐺)).

In particular, the inequality

L(𝐺) ⩽ K(𝐺)𝜌(𝐺) + d(𝜌(𝐺)) (2.11)

holds.

In Table 1 we provide approximate values of quotient of the left and right hand sides in (2.11)
for the ellipse. We see that these values are between numbers, which are close to 1. A corollary
of this example is the impossibility of replacing d(𝜌(𝐺)) by l(𝜌(𝐺)) in (2.10).
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Ellipse with semi–axes 𝑎, 𝑏
L(𝐺)

K(𝐺)𝜌(𝐺) + d(𝜌(𝐺))
𝑎/𝑏 = 1 1
𝑎/𝑏 = 6/5 0.977779
𝑎/𝑏 = 4/3 0.967349
𝑎/𝑏 = 3/2 0.95769
𝑎/𝑏 = 7/4 0.948036
𝑎/𝑏 = 2 0.942164
𝑎/𝑏 = 3 0.935708
𝑎/𝑏 = 4 0.938395
𝑎/𝑏 = 7 0.951491
𝑎/𝑏 = 12 0.965792
𝑎/𝑏 = 100 0.994597
𝑎/𝑏 → ∞ 1

Table 1. Demonstration of the inequality (2.11) for the ellipse.

As a remark to this property, we note that there exist convex domains whose level sets,
starting from some 𝜇, are domains from the class Γ. It is easy to provide an example of such
domains. We consider a trapezoid, one side of which does not touch the inscribed circle. Let 𝑏
be the intersection point of the bisectors closest to the boundary of the domain. Then for each
𝜇 ∈ [0, 𝜌(𝑏,𝐺)] the level set is a trapezoid 𝐺(𝜇) similar to 𝐺, for 𝜇 ∈ [𝜌(𝑏,𝐺),𝜌(𝐺)] the level
set of the trapezoid is a triangle, i.e. a domain from the class Γ (see Figure 12).

Figure 12. Construction of the domain Γ(𝜇)

5. Among all 𝑛–polygons 𝐷𝑛 circumscribed about a given circle, the smallest value K(𝐷𝑛)
is attained at the regular 𝑛–gon 𝐷′

𝑛,

K(𝐷𝑛) ⩾ K(𝐷′
𝑛).

The statement follows from property 1 and extremal properties of regular polygons [13]

K(𝐷𝑛) =
L(𝐷𝑛)

𝜌(𝐷𝑛)
⩾

L(𝐷′
𝑛)

𝜌(𝐷′
𝑛)

= K(𝐷′
𝑛).

6. If 𝐷1 and 𝐷2 are non–contractible domains in the class Γ and 𝜌(𝐷1) = 𝜌(𝐷2) and
𝐷1 ⊂ 𝐷2, then K(𝐷1) < K(𝐷2).

Indeed, since 𝐷1 ∈ Γ and 𝐷2 ∈ Γ, we have

K(𝐷1) =
L(𝐷1)

𝜌(𝐷1)
=

L(𝐷1)

𝜌(𝐷2)
<

L(𝐷2)

𝜌(𝐷2)
= K(𝐷2).

Property 6 implies that if 𝐷𝑛 and 𝐷𝑛+1 are circumscribed about a given circle 𝑛– and (𝑛+1)–
gons such that 𝐷𝑛+1 ⊂ 𝐷𝑛, then the smallest value K(𝐷𝑛) is attained at the polygon with the
maximal number of sides 𝑛:

K(𝐷𝑛+1) ⩽ K(𝐷𝑛).



32 L.I. GAFIYATULLINA, R.G. SALAKHUDINOV

Since the values of the functional K(𝐷) for the stretching of a domain from the class Γ
and its contraction are equal, it follows that Property 6 is not satisfied for domains, which are
stretching the elements from the class Γ. For example, in Figure 13 we demonstrate domains
such that 𝐷1 ⊂ 𝐷2 ⊂ 𝐷3, but K(𝐷1) = K(𝐷3) ⩽ K(𝐷2).

Figure 13. Examples of domains from the class Γ

Lemma 2.4. Let 𝐺1 and 𝐺2 be convex domains such that 𝐺1 ⊂ 𝐺2, 𝜌(𝐺1) = 𝜌(𝐺2) and
l(𝜌(𝐺1)) = l(𝜌(𝐺2)) = 0. Let 𝑛1, 𝑛2 be the number of touching points of the inscribed circum-
ference and the boundary of the domains 𝐺1 and 𝐺2, respectively. If 𝑛1 ⩾ 𝑛2 > 2, then

K(𝐺1) ⩽ K(𝐺2).

Proof. Let 𝐺1 ⊂ 𝐺2, 𝜌(𝐺1) = 𝜌(𝐺2) and 𝑛1 = 𝑛2 > 2, then the maximal inscribed circumfer-
ences in 𝐺1 and 𝐺2 are unique and coincide. The touching points 𝑁1, 𝑁2, 𝑁3 of the maximal
inscribed circumference and the boundary of the domains𝐺1 and𝐺2 coincide as well. Therefore,
while associating the domains from the class Γ with the minimal length of the boundary with
the domains 𝐺1 and 𝐺2, we get the same polygon, see Figure 14. This is why K(𝐺1) = K(𝐺2).

Figure 14. Domain from the class Γ

Let 𝐺1 ⊂ 𝐺2, 𝜌(𝐺1) = 𝜌(𝐺2) and 𝑛1 > 𝑛2 > 2, then the maximal inscribed circles in 𝐺1 and
𝐺2 are unique and coincide. To illustrate this case, we present separate figure of the domains
for 𝐺1 and 𝐺2, in fact, the general case is obtained by overlaying the figures so that all touching
points of the maximal inscribed circle and the boundary of 𝐺2 coincide with the touching points
of the maximal inscribed circle and the boundary of 𝐺1, but 𝐺1 has other touching points as
well (see Figure 15).
While associating the domains in the class Γ with the minimal length of boundary with

the domains 𝐺1 and 𝐺2 we obtain the polygon 𝐷1 associated with 𝐺1 and the polygon 𝐷2

associated with 𝐺2 are circumscribed about the same circle. Since 𝐷1 has more sides than 𝐷2,
by Property 6 we obtain that K(𝐺1) < K(𝐺2). This completes the proof.

Theorem 2.2. Let 𝐺 be a convex domain, then the functional

𝑠l(𝜇) =
l(𝜇)− l(𝜌(𝐺))

𝜌(𝐺)− 𝜇

increases on the segment [0;𝜌(𝐺)].
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Figure 15. Domain from the class Γ

We observe that the function 𝑠l(𝜇) is almost everywhere differentiable and

𝑠′l(𝜇) =
l ′(𝜇)(𝜌(𝐺)− 𝜇) + l(𝜇)− l(𝜌(𝐺))

(𝜌(𝐺)− 𝜇)2
.

On the other hand, l(𝜇) is a convex upwards function. Therefore, l ′(𝜇) decreases monotonically
almost everywhere. Then, using identity (2.9) valid for all convex domains, we arrive at the
statement of the lemma.
Theorem 2.2 implies the inequality

𝑠l(𝜇) ⩾ 0,

which is equivalent to the inequality

l(𝜇) ⩾
L(𝐺)

𝜌(𝐺)
(𝜌(𝐺)− 𝜇) + 𝜇

l(𝜌(𝐺))

𝜌(𝐺)
, 0 ⩽ 𝜇 ⩽ 𝜌(𝐺). (2.12)

We note that inequality (2.12) can be easily proved without applying Theorem 2.2. As we
have mentioned above, l(𝜇) is convex upwards, the functional in the right hand side (2.12) is
linear and coincides with l(𝜇) at the ends of the segment [0,𝜌(𝐺)].
In Table 2 we provide examples of calculating the values of the functionalsK(𝐺) and d(𝜌(𝐺))

for domains considered in the classical monograph by Pólya and Szegö.

Domain K(𝐺) d(𝜌(𝐺))
Circle of radius 𝑎 2𝜋 0
Ellipse with semi–axes 𝑎 and 𝑏 2𝜋 4(𝑎− 𝑏)
Square with side 𝑎 8 0
Rectangle with sides 𝑎, 𝑏, 𝑎 ⩾ 𝑏 8 2(𝑎− 𝑏)
Semicircle of radius 𝑎 4 + 𝜋 2a
Sector of radius 𝑎 and opening 𝛾 =
2𝜋𝜆, 0 ⩽ 𝜆 ⩽ 1

2

2
(︀
cot 𝛾

2
+ 2 cot 𝜋−𝛾

2

)︀
0

Equilateral triangle with side 𝑎 6
√
3 0

Triangle with angles 45∘, 45∘, 90∘ 11.6569 0
Triangle with angles 30∘, 60∘, 90∘ 12.9282 0

Table 2. Values of the functionals K(𝐺) and d(𝜌(𝐺)).

3. Formulations of main results

Further estimates for the torsional rigidity are based on the following theorem.

Theorem 3.1. Let 𝐺 be a convex domain of a finite area in the plane. Then for 𝑝 > 1 the
inequality holds

L(𝐺)(𝑝+ 2) + l(𝜌(𝐺))(𝑝+ 1) ⩽
(𝑝+ 1)(𝑝+ 2)I𝑝(𝐺)

𝜌(𝐺)𝑝+1
⩽ K(𝐺)𝜌(𝐺) + (𝑝+ 2)d(𝜌(𝐺)).

The identity in these inequalities is attained if and only if 𝐺 ∈ Γ.
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In construction of new estimates for the torsional rigidity an important role is played by the
functions [11]

f𝑝(𝜇) := I𝑝(𝐺(𝜇)), (3.1)

where 0 ⩽ 𝜇 ⩽ 𝜌(𝐺), 𝑝 is a real parameter and the representation

f𝑝(𝜇) =

𝜌(𝐺)∫︁
𝜇

(𝑠− 𝜇)𝑝𝑙(𝑠)d𝑠 (3.2)

holds for 𝑝 > −1.
Theorem 3.1 is a corollary of the theorem on two–sided estimates for f𝑝(𝜇).

Theorem 3.2. Let 𝐺 be a bounded convex domain. Then for 𝑝 ⩾ 0 the inequalities

f𝑝(𝜇) ⩾
𝜌(𝐺)𝑝+1

(𝑝+ 1)(𝑝+ 2)

(︂
L(𝐺) +

l(𝜌(𝐺))((𝑝+ 1)𝜌(𝐺) + 𝜇)

(𝜌(𝐺)− 𝜇)

)︂(︂
1− 𝜇

𝜌(𝐺)

)︂𝑝+2

, (3.3)

f𝑝(𝜇) ⩽
𝜌(𝐺)𝑝+2

𝑝+ 1

(︂
K(𝐺)

𝑝+ 2
+

d(𝜌(𝐺))

𝜌(𝐺)− 𝜇

)︂(︂
1− 𝜇

𝜌(𝐺)

)︂𝑝+2

(3.4)

hold. For each 𝜇 ∈ [0,𝜌(𝐺)] the identities in these inequalities is attained at the domains in
the class Γ.

We mention two corollaries from Theorem 3.2

Corollary 3.1. Let 𝐺 be a convex domain with a finite Euclidean moment of order 𝑝 ⩾ 1.
Then

f ′𝑝(𝜇) ⩽ − 1

𝑝+ 1

(︂
L(𝐺)

𝜌(𝐺)
+

l(𝜌(𝐺))(𝑝𝜌(𝐺) + 𝜇)

𝜌(𝐺)(𝜌(𝐺)− 𝜇)

)︂
(𝜌(𝐺)− 𝜇)𝑝+1 , (3.5)

f ′𝑝(𝜇) ⩾ − 1

𝑝+ 1

(︂
K(𝐺) +

(𝑝+ 1)d(𝜌(𝐺))

𝜌(𝐺)− 𝜇

)︂
(𝜌(𝐺)− 𝜇)𝑝+1 . (3.6)

Corollary 3.2. Let 𝐺 be a convex domain with a finite Euclidean moment of order 𝑝 ⩾ 1.
Then

f
′′

𝑝 (𝜇) ⩾

(︂
L(𝐺)

𝜌(𝐺)
+

l(𝜌(𝐺))((𝑝− 1)𝜌(𝐺) + 𝜇)

𝜌(𝐺)(𝜌(𝐺)− 𝜇)

)︂
(𝜌(𝐺)− 𝜇)𝑝 , (3.7)

f
′′

𝑝 (𝜇) ⩽

(︂
K(𝐺) +

𝑝d(𝜌(𝐺))

𝜌(𝐺)− 𝜇

)︂
(𝜌(𝐺)− 𝜇)𝑝 . (3.8)

By inequality (3.5) we conclude that the functional f𝑝(𝜇) decreases monotonically on [0,𝜌(𝐺)],
while (3.8) implies that f𝑝(𝜇) is convex downwards on [0,𝜌(𝐺)].
On the base of the functional

H(𝐺; 𝑝) :=
(𝑝+ 1)(𝑝+ 2)

𝜌(𝐺)𝑝+1

(︂
I𝑝(𝐺)− l(𝜌(𝐺))𝜌(𝐺)𝑝+1

𝑝+ 1

)︂
, 𝑝 > −1,

introduced in [7] we consider the functional

H𝑝(𝜇) :=
1

𝜌(𝐺(𝜇))𝑝+2

(︂
f𝑝(𝜇)−

l(𝜌(𝐺))(𝜌(𝐺)− 𝜇)𝑝+1

𝑝+ 1

)︂
, (3.9)

where 0 ⩽ 𝜇 ⩽ 𝜌(𝐺).
We are in position to formulate theorems providing lower and upper bounds for the torsional

rigidity of a convex domain.
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Theorem 3.3. Let 𝐺 be a convex domain of finite area in the plane. Then

P(𝐺) ⩽
2𝜌(𝐺)3

3
(K(𝐺)𝜌(𝐺) + 2d(𝜌(𝐺))− 𝜋𝜌(𝐺)) . (3.10)

The identity is attained at the limit, for instance, on the sequence of rectangles Q𝑛 = [0, 1] ×
[0, 1/𝑛] as 𝑛 → +∞.

Table 3 demonstrates that the Makai inequality (1.3) provides a sharper estimate for the
torsional rigidity in comparison with (3.10). The advantage of the obtained inequality (3.10)
for the torsional rigidity is that P(𝐺) is estimated via easily calculated characteristics of the
domain 𝐺.
By Pólya — Szegö inequality (1.2) we easily estimate the torsional rigidity via the length of

the boundary of domain

P(𝐺) ⩾
A(𝐺)𝜌(𝐺)2

2
⩾

𝜌(𝐺)3

4
(L(𝐺) + l(𝜌(𝐺))) ,

and the identities are attained, for instance, for the circle.

Theorem 3.4. Let 𝐺 be a convex domain of finite area in the plane. Then for 𝑞 > 0 the
inequality holds

P(𝐺) ⩾
𝜌(𝐺)3

2(2 + 𝑞)
(L(𝐺) + l(𝜌(𝐺))(𝑞 + 1) + 𝜋𝑞𝜌(𝐺)) . (3.11)

For 𝑞 = 0, the identity in (3.11) is attained for the circle.

The results obtained in Theorems 3.3 and 3.4 are interesting since the torsional rigidity of a
convex domain 𝐺 is estimated via easier calculable geometric characteristics of the domain 𝐺.

4. Proof of main results

Proof of Theorem 3.2. Let us obtain the lower bound for f𝑝(𝜇). We apply the identity (3.2)
and the inequality (2.12) and integrate it. Then we have

f𝑝(𝜇) =

𝜌(𝐺)∫︁
𝜇

(𝑠− 𝜇)𝑝𝑙(𝑠)d𝑠 ⩾

𝜌(𝐺)∫︁
𝜇

(𝑠− 𝜇)𝑝
(︂
L(𝐺)

𝜌(𝐺)
(𝜌(𝐺)− 𝑠) + 𝑠

l(𝜌(𝐺))

𝜌(𝐺)

)︂
d𝑠

=
𝜌(𝐺)𝑝+2

(𝑝+ 1)(𝑝+ 2)

(︂
1− 𝜇

𝜌(𝐺)

)︂𝑝+2 (︂
L(𝐺)

𝜌(𝐺)
+

l(𝜌(𝐺))((𝑝+ 1)𝜌(𝐺) + 𝜇)

𝜌(𝐺)(𝜌(𝐺)− 𝜇)

)︂
.

We proceed to the upper bound. In order to do this, we are going to establish that the
functional H𝑝(𝜇) is monotonically increasing in 𝑝 ⩾ 0 for an arbitrary convex domain with a
bounded Euclidean moment of order 𝑝.
As it is known [7], the following inequality holds

(𝑝+ 1)(𝑝+ 2)H𝑝(𝜇) ⩾ 𝑝(𝑝+ 1)H𝑝−1(𝜇).

Applying this inequality on the level sets 𝐺(𝜇) and taking into consideration the properties of
the function f𝑝(𝜇) (3.1), we obtain the inequality

𝑝+ 2

(𝜌(𝐺)− 𝜇)

(︂
f𝑝(𝜇)−

l(𝜌(𝐺(𝜇)))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)

)︂
⩾ −f ′𝑝(𝜇)− l(𝜌(𝐺(𝜇)))(𝜌(𝐺)− 𝜇)𝑝.

We multiply this inequality by a positive on the segment [0,𝜌(𝐺)] function 1/(𝜌(𝐺)− 𝜇)𝑝+2:

(𝑝+ 2)f𝑝(𝜇)

(𝜌(𝐺)− 𝜇)𝑝+3
+

f ′𝑝(𝜇)

(𝜌(𝐺)− 𝜇)𝑝+2
− (𝑝+ 2)𝑙(𝜌(𝐺(𝜇)))

(𝑝+ 1)(𝜌(𝐺)− 𝜇)2
+

𝑙(𝜌(𝐺(𝜇)))

(𝜌(𝐺)− 𝜇)2
⩾ 0.



36 L.I. GAFIYATULLINA, R.G. SALAKHUDINOV

Domain
3P(𝐺)

2𝜌(𝐺)3 (2d(𝜌(𝐺)) +K(𝐺)𝜌(𝐺)− 𝜋𝜌(𝐺))

P(𝐺)

4I2(𝐺)
Circle of radius 𝑟 0, 75 0, 75
Ellipse, 𝑎/𝑏 = 6/5 0.703834 0.767925
Ellipse, 𝑎/𝑏 = 4/3 0.692329 0.787693
Ellipse, 𝑎/𝑏 = 3/2 0.685232 0.812711
Ellipse, 𝑎/𝑏 = 7/4 0.68005 0.845916
Ellipse, 𝑎/𝑏 = 2 0.676727 0.87273
Ellipse, 𝑎/𝑏 = 3 0.664704 0.934614
Ellipse, 𝑎/𝑏 = 7 0.6447 0.974535
Ellipse, 𝑎/𝑏 = 12 0.61617 0.995411
Ellipse, 𝑎/𝑏 = 100 0.592589 0.99993
Ellipse, 𝑎/𝑏 → ∞ 0.58905 1
Square with side 𝑎 0.694435 0.843462
Rectangle, 𝑎/𝑏 = 2 0.853665 0.914729
Rectangle, 𝑎/𝑏 = 3 0.908926 0.947939
Rectangle, 𝑎/𝑏 = 4 0.934152 0.962788
Rectangle, 𝑎/𝑏 = 5 0.948443 0.971053
Rectangle, 𝑎/𝑏 = 6 0.957634 0.976324
Rectangle, 𝑎/𝑏 = 7 0.964041 0.97996
Rectangle, 𝑎/𝑏 = 8 0.968776 0.982637
Rectangle, 𝑎/𝑏 = 10 0.975277 0.986291
Rectangle, 𝑎/𝑏 = 12 0.979537 0.98867
Rectangle, 𝑎/𝑏 = 100 0.997616 0.998692
Rectangle, 𝑎/𝑏 = ∞ 1 1
Semicircle of radius 𝑎 0.595121 0.885363
Sector of radius 𝑟 and opening
𝛾 = 2𝜋𝜆, 𝜆 = 1/12

0.596293 0.91068

Sector of radius 𝑟 and opening
𝛾 = 2𝜋𝜆, 𝜆 = 1/10

0.602724 0.900422

Sector of radius 𝑟 and opening
𝛾 = 2𝜋𝜆, 𝜆 = 1/8

0.603784 0.888036

Sector of radius 𝑟 and opening
𝛾 = 2𝜋𝜆, 𝜆 = 1/6

0.584973 0.873561

Sector of radius 𝑟 and opening
𝛾 = 2𝜋𝜆, 𝜆 = 1/4

0.492653 0.860148

Sector of radius 𝑟 and opening
𝛾 = 2𝜋𝜆, 𝜆 = 1/3

0.360299 0.859949

Sector of radius 𝑟 and opening
𝛾 = 2𝜋𝜆, 𝜆 = 5/12

0.200915 0.868803

Narrow sector 𝑟 = 1, 𝛾 = 2𝜋𝜆 →
0

0.5 1

Equilateral triangle, side 𝑎 0.644978 0.900001
Triangle with angles 45∘, 45∘, 90∘ 0.624461 0.912417
Triangle with angles 30∘, 60∘, 90∘ 0.608295 0.920522
Regular hexagon 0.729602 0.797505

Table. Illustration of Theorem 3.3 in comparison with Makai inequality (1.3).
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Then (︂
f𝑝(𝜇)

(𝜌(𝐺)− 𝜇)𝑝+2

)︂′

⩾
𝑙(𝜌(𝐺(𝜇)))

(𝑝+ 1)(𝜌(𝐺)− 𝜇)2
.

This inequality is equivalent to the estimate

𝑑

𝑑𝜇

(︂
(𝑝+ 1)f𝑝(𝜇)− l(𝜌(𝐺(𝜇)))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)(𝜌(𝐺)− 𝜇)𝑝+2

)︂
⩾ 0.

Applying the definition of the functional H𝑝(𝜇) and the inequality H𝑝(𝜌(𝐺)) ⩾ H𝑝(𝜇),
𝜇 ∈ [0,𝜌(𝐺)], we find

lim
𝜇→𝜌(𝐺)

(︂
(𝑝+ 1)f𝑝(𝜇)− l(𝜌(𝐺))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)(𝜌(𝐺)− 𝜇)𝑝+2

)︂
⩾

f𝑝(𝜇)

(𝜌(𝐺)− 𝜇)𝑝+2
− 𝑙(𝜌(𝐺))

(𝑝+ 1)(𝜌(𝐺)− 𝜇)
. (4.1)

Since H𝑝(𝜇) is an increasing function as 𝑝 ⩾ 0, the functional in the left hand side in (4.1)
increases monotonically. Then inequality (4.1) holds also for d(𝜌(𝐺)):

lim
𝜇→𝜌(𝐺)

(︂
(𝑝+ 1)f𝑝(𝜇)− d(𝜌(𝐺))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)(𝜌(𝐺)− 𝜇)𝑝+2

)︂
⩾

f𝑝(𝜇)

(𝜌(𝐺)− 𝜇)𝑝+2
− d(𝜌(𝐺))

(𝑝+ 1)(𝜌(𝐺)− 𝜇)
. (4.2)

We consider the quotient in the left hand side of inequality (4.1) and transform it by applying
identities (3.2) and Property 4 of the functional K(𝐺)

(𝑝+ 1)f𝑝(𝜇)− d(𝜌(𝐺))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)(𝜌(𝐺)− 𝜇)𝑝+2

=

(𝑝+ 1)

𝜌(𝐺)∫︁
𝜇

(𝑠− 𝜇)𝑝𝑙(𝑠,𝐺)d𝑠− d(𝜌(𝐺))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)(𝜌(𝐺)− 𝜇)𝑝+2

⩽

(𝑝+ 1)

𝜌(𝐺)∫︁
𝜇

(𝑠− 𝜇)𝑝𝑙(𝑠,𝐷)d𝑠− d(𝜌(𝐺))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)(𝜌(𝐺)− 𝜇)𝑝+2

⩽

(𝑝+ 1)

⎛⎝ 𝜌(𝐺)∫︁
𝜇

(𝑠− 𝜇)𝑝 (K(𝐺)(𝜌(𝐺)− 𝑠) + d(𝜌(𝐺))) d𝑠

⎞⎠− d(𝜌(𝐺))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)(𝜌(𝐺)− 𝜇)𝑝+2

⩽
K(𝐺)

(𝑝+ 1)(𝑝+ 2)
.

Thus, the left hand side in the inequality (4.1) is bounded from above. Therefore,

lim
𝜇→𝜌(𝐺)

(︂
(𝑝+ 1)f𝑝(𝜇)− d(𝜌(𝐺))(𝜌(𝐺)− 𝜇)𝑝+1

(𝑝+ 1)(𝜌(𝐺)− 𝜇)𝑝+2

)︂
⩽

K(𝐺)

(𝑝+ 1)(𝑝+ 2)
.

This implies

K(𝐺)

(𝑝+ 1)(𝑝+ 2)
⩾

f𝑝(𝜇)

(𝜌(𝐺)− 𝜇)𝑝+2
− d(𝜌(𝐺))

(𝑝+ 1)(𝜌(𝐺)− 𝜇)
.

This inequality is equivalent to the inequality (3.4). All inequalities in Theorem 3.2 become
identities for the domain in the class Γ. This completes the proof.
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Proof of Theorem 3.1. We define the functional considered in [10]; for each simply connected
domain 𝐺 for 𝑝 ⩾ 𝑝0 > 0 we let

i𝑝(𝜇) := 𝑝

∫︁ 𝜌(𝐺)

𝜇

𝑡𝑝−1a(𝑡)d𝑡. (4.3)

For 𝜇 = 0 this is the Euclidean moment of the domain 𝐺 with respect to the boundary, that
is, i𝑝(0) = I𝑝(𝐺). The following identities are known for the derivatives [11]:

f ′2(𝜇) = −2i1(𝜇), f
′′

2 (𝜇) = 2a(𝜇). (4.4)

It is known [12] that

I𝑝(𝐺) = 𝑝(𝑝− 1)

𝜌(𝐺)∫︁
0

𝜇𝑝−2i1(𝜇)d𝜇.

We take into consideration that i1(𝜇) = f1(𝜇) [12] and applying Theorem 3.2, we obtain

I𝑝(𝐺) ⩾ 𝑝(𝑝− 1)

𝜌(𝐺)∫︁
0

𝜇𝑝−2 (𝜌(𝐺)− 𝜇)3

6

(︂
L(𝐺)

𝜌(𝐺)
+

l(𝜌(𝐺))(2𝜌(𝐺) + 𝜇)

𝜌(𝐺)(𝜌(𝐺)− 𝜇)

)︂
d𝜇

=
𝜌(𝐺)𝑝+2

(𝑝+ 1)(𝑝+ 2)

(︂
L(𝐺)

𝜌(𝐺)
+

l(𝜌(𝐺))(𝑝+ 1)

𝜌(𝐺)

)︂
, 𝑝 > 1.

Applying the inequality (3.4) in Theorem 3.2, we get the upper bound for I𝑝(𝐺)

I𝑝(𝐺) = 𝑝(𝑝− 1)

𝜌(𝐺)∫︁
0

𝜇𝑝−2f1(𝜇)d𝜇

⩽ 𝑝(𝑝− 1)

𝜌(𝐺)∫︁
0

𝜇𝑝−2

2

(︂
d(𝜌(𝐺))

(𝜌(𝐺)− 𝜇)
+

K(𝐺)

3

)︂
(𝜌(𝐺)− 𝜇)3d𝜇

=
𝜌(𝐺)𝑝+1

(𝑝+ 1)(𝑝+ 2)
(K(𝐺)𝜌(𝐺) + d(𝜌(𝐺))(𝑝+ 2)) .

Proof of Theorem 3.3. Let 𝑝 ⩾ 𝑞 and 0 ⩽ 𝑞 ⩽ 2. Then the torsional rigidity satisfies the
following inequality [6]:

P(𝐺) ⩽
4

3(𝑞 + 2)

(︂
(𝑝+ 1)(𝑝+ 2)

𝜌(𝐺)𝑝−2
I𝑝(𝐺)− (𝑝− 𝑞)l(𝜌(𝐺))𝜌(𝐺)3

)︂
− 2𝜋(2− 𝑞)𝜌(𝐺)4

3(𝑞 + 2)
.

Applying Theorem 3.1 valid for 𝑝 > 1 to the functional I𝑝(𝐺), we get

P(𝐺) ⩽
4𝜌(𝐺)3

3(𝑞 + 2)

(︂
d(𝜌(𝐺)))(𝑞 + 2) +K(𝐺)𝜌(𝐺)− 𝜋(2− 𝑞)𝜌(𝐺)

2(𝑞 + 1)

)︂
.

Letting 𝑞 = 0, we arrive at the statement of the theorem.

Proof of Theorem 3.4. Let 𝑞 > 0 and 0 ⩽ 𝑝 ⩽ 𝑞, then the inequality holds [6]:

P(𝐺) ⩾
1

2(𝑞 + 2)

[︂
(𝑝+ 1)(𝑝+ 2)

𝜌(𝐺)𝑝−2
I𝑝(𝐺) + (𝑞 − 𝑝)l(𝜌(𝐺))𝜌(𝐺)3

]︂
+

𝜋𝑞𝜌(𝐺)4

2(𝑞 + 2)
.

This inequality and Theorem 3.1 with 𝑝 > 1 give

P(𝐺) ⩾
𝜌(𝐺)4

2(2 + 𝑞)

(︂
L(𝐺)

𝜌(𝐺)
+

l(𝜌(𝐺))(𝑞 + 1)

𝜌(𝐺)
+ 𝜋𝑞

)︂
.
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The proof is complete.
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