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UNIFORM ASYMPTOTICS FOR EIGENVALUES OF MODEL

SCHRÖDINGER OPERATOR WITH SMALL TRANSLATION

D.I. BORISOV, D.M. POLYAKOV

Abstract. We consider a model Schrödinger operator with a constant coefficient on the
unit segment and the Dirichlet and Neumann condition on opposite ends with a small
translation in the free term. The value of the translation is small parameter, which can be
both positive and negative. The main result is the spectral asymptotics for the eigenvalues
and eigenfunctions with an estimate for the error term, which is uniform in the small
parameter. For finitely many first eigenvalues and associated eigenfunctions we provide
asymptotics in the small parameter. We prove that each eigenvalue is simple, and the
system of eigenfunctions forms a basis in the space 𝐿2(0, 1).
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1. Introduction

Differential–difference equations are one of important examples of nonlocal operators, and
nowadays they are actively studied. An interest to studying these equations is due to the fact
that the corresponding boundary and initial boundary equations possess non–standard proper-
ties, which are absent in classical formulations. The qualitative theory of elliptic differential–
difference and functional–difference equations is actively developed, see [1]–[5] and the references
therein, but it is still far from being completed. We also mention works on qualitative theory
of evolutionary differential–difference equations, see [6], [7]. At the same time we know just a
single work [3], in which spectral properties of corresponding operators were studied.

The study of asymptotics of eigenvalues in an index for the Sturm–Liouville operator was
made in a huge number of books and papers. Not pretending for the completeness, we mention
only two classical monographs [8], [9], see also the references in these books. The known classical
works provide spectral asymptotics for many classes of elliptic operators. At the same time,
if one considers families of operators depending on a parameter, then the question on spectral
asymptotics becomes open. The reason is that in this case the entire asymptotics, including
the error term, become dependent on the parameter and such dependence can destroy the error
term. The classical perturbation turns out to be inappropriate here since the statements on
the convergence of the resolvent allow one to conclude only on the behavior of the spectra in
compact sets, that is, for finitely many eigenvalues and for the entire set.

Spectral asymptotics uniform in a small parameter were earlier known only for a series of
particular models. In [10], [11], there was studied a behavior of the eigenvalues for the spectral
problem on an interval (𝑎, 𝑏)

𝑖𝜀𝑢′′ + 𝑞𝑢 = 𝜆𝑢, 𝑢(𝑎) = 𝑢(𝑏) = 0,
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where 𝑞 is a given function and 𝜀 > 0 is a small parameter. Two types of functions were
considered in the mentioned papers, 𝑞(𝑥) = 𝑥 and 𝑞(𝑥) = (𝑥−𝑎)2. This problem is related with
the Orr–Sommerfeld equation, which is well–known in the hydrodynamics, while the function
𝑞 serves as the velocity of the stationary profile of the liquid in the channel 𝑎 ⩽ 𝑥 ⩽ 𝑏. It was
shown in work [10] that the eigenvalues localize along certain set, the shape of which resembles
a tie. Similar results were also obtained in [12]–[15]. A similar set appeared also in the second
case for 𝑞(𝑥) = (𝑥− 𝑎)2. For such problems, an asymptotics was established, in which the error
term is uniform both in the small parameter 𝜀 and the index. Later in papers [16]–[18] these
results were extended for other classes of the function 𝑞. We also note that the questions on
norm resolvent convergence of elliptic operators of order 2𝑚 with small variable translations in
lower order terms were considered in [19].

In the present work we study uniform spectral asymptotics for a model Schrödinger operator
with a constant complex potential perturbed by an operator of small translation. The quantity
of the translation is a small parameter, which can be both positive and negative. The domain
of this operator is defined by the Dirichlet and Neumann condition on the opposite ends. Our
main result is a uniform in the small parameter spectral asymptotics for the eigenvalues. We
calculate fourth leadings terms in the asymptotics as well as an error term in form 𝑂(𝑛−3).
The structure of the obtained uniform spectral asymptotics demonstrates a non–trivial high–
frequency phenomenon in the behavior of large eigenvalues. In the work we also find the
asymptotics for the associated eigenfunctions uniform in the small parameter. For the first
eigenvalues and associated eigenfunctions we write the asymptotics in the small parameter. We
show that all eigenvalues are simple and the associated eigenfunctions form a basis in 𝐿2(0, 1).

2. Formulation of problem and main results

On the interval (0, 1) we consider an operator with the differential expression

ℋ̂ := − 𝑑2

𝑑𝑥2

and the boundary conditions
𝑢(0) = 0, 𝑢′(1) = 0. (2.1)

We denote this operator by ℋ and treat it as an unbounded in the space 𝐿2(0, 1) on the domain

D(ℋ) :=
{︀
𝑢 ∈ 𝑊 2

2 (0, 1) : the boundary conditions (2.1) are satisfied
}︀
. (2.2)

The operator ℋ is obviously 𝑚–sectorial and has a compact resolvent. Its spectrum is pure
discrete and consists of the eigenvalues

𝜆𝑛 = 𝜅2𝑛, 𝜅𝑛 :=
𝜋

2
+ 𝜋𝑛, 𝑛 ∈ Z+. (2.3)

The main object of the study in the present work is the perturbation of the operator ℋ by
an operator of small translation. Namely, let ℒ be the operator of continuation by zero outside
the interval (0, 1), which is regarded as acting from 𝐿2(0, 1) into 𝐿2(R), and ℛ the operator of
restriction to (0, 1), which acts from 𝐿2(R) into 𝐿2(0, 1). These operators are introduced by
the formulas

ℒ𝑦 =

{︃
𝑦 in (0, 1),

0 outside (0, 1),
ℛ𝑦 = 𝑦 on (0, 1).

In the space 𝐿2(R) we define a pair of operators of small translations 𝒯 𝜀 acting by the rule
(𝒯 𝜀𝑦)(𝑥) = 𝑦(𝑥 + 𝜀), 𝑥 ∈ (0, 1), where 𝜀 is a small parameter, which can be both positive and
negative.

We define the perturbing operator 𝒫𝜀 in the space 𝐿2(0, 1) as

𝒫𝜀𝑦 = 𝑎
(︀
ℛ𝒯 𝜀ℒ𝑦 − 𝑦

)︀
, (2.4)
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where 𝑎 ∈ C is some constant. The action of such operator is described by the identity

(𝒫𝜀𝑦)(𝑥) = 𝑎
(︀
𝑦(𝑥+ 𝜀)− 𝑦(𝑥)

)︀
. (2.5)

Here the function 𝑦 is continued by zero outside the segment [0, 1], and the result of the action
is restricted to this section. We also note that, as 𝜀 = 0, the operator 𝒫𝜀 becomes the zero
operator.

The perturbed operator is defined by the identity ℋ𝜀 = ℋ + 𝒫𝜀 in the space 𝐿2(0, 1) on
the domain D(ℋ𝜀) := D(ℋ). Under the assumption of the identity (2.5), the action of the
perturbed operator is described by the formula

(ℋ𝜀𝑦)(𝑥) = −𝑑
2𝑦

𝑑𝑥2
(𝑥) + 𝑎

(︀
𝑦(𝑥+ 𝜀)− 𝑦(𝑥)

)︀
, 𝑥 ∈ (0, 1).

Our first result is auxiliary, and it describes basic properties of the operator ℋ𝜀.

Theorem 2.1. The operator ℋ𝜀 is 𝑚–sectorial, and the associated closed sectorial form in
the space 𝐿2(0, 1) is given by the identity

h𝜀(𝑢, 𝑣) = (𝑢′, 𝑣′)𝐿2(0,1) + 𝑎(ℛ𝒯 𝜀ℒ𝑢− 𝑢, 𝑣)𝐿2(0,1) (2.6)

on the domain
D(h𝜀) :=

{︀
𝑢 ∈ 𝑊 1

2 (0, 1) : 𝑢(0) = 0
}︀
.

There exists a number 𝜆0 independent of 𝜀 such that the half–plane Re 𝜆 ⩽ 𝜆0 is in the resolvent
set of the operator ℋ𝜀 for each 𝜀 ̸= 0. The operator ℋ𝜀 has a compact resolvent, and its spectrum
consists of countably many eigenvalues with the only accumulation point at infinity. As 𝜀→ 0,
the operator ℋ𝜀 converges to ℋ in the sense of the norm resolvent convergence, namely, the
estimate

‖ℋ𝜀 −ℋ‖𝐿2(0,1)→𝑊 1
2 (0,1)

⩽ 𝐶𝜀
1
2 (2.7)

holds, where ‖ · ‖𝐿2(0,1)→𝑊 1
2 (0,1)

is a norm of bounded operators acting from 𝐿2(0, 1) into𝑊
1
2 (0, 1),

and 𝐶 is some constant independent of 𝜀. The eigenvalues of the operator ℋ𝜀 converge to the
eigenvalues of the operator ℋ.

In what follows we arrange the eigenvalues of the operator ℋ𝜀 in the ascending order of their
absolute values counting the multiplicities, and they are denoted by 𝜆𝜀𝑛, 𝑛 ⩾ 0.
Our first main result describes the asymptotics of the eigenvalues 𝜆𝜀𝑛 as 𝑛→ +∞ uniformly

in the small parameter 𝜀.

Theorem 2.2. The eigenavlues of the operator ℋ𝜀 are simple. As 𝑛→ +∞, the asymptotics
of the eigenvalues 𝜆𝜀𝑛 read as

𝜆𝜀𝑛 = 𝜅2𝑛 + Λ𝜀
𝑛,0 +

Λ𝜀
𝑛,1

𝜋𝑛
+

Λ𝜀
𝑛,2

𝜋2𝑛2
+𝑂(𝑛−3), (2.8)

where the estimate for the error term is uniform in 𝜀 and

Λ𝜀
𝑛,0 :=𝑎(1− |𝜀|) cos𝜅𝑛𝜀− 𝑎, Λ𝜀

𝑛,1 :=
𝑎2𝜀(1− 𝜀2)

4
sin 2𝜅𝑛𝜀,

Λ𝜀
𝑛,2 :=− 3𝑎3

32
𝜀2(1− |𝜀|)(1 + 𝜀)2 cos 3𝜅𝑛𝜀+

𝑎2

8
(1− 2𝜀− 𝜀2) cos 2𝜅𝑛𝜀

+
𝑎3

32
𝜀2(3 + |𝜀|)(1− 𝜀)2 cos𝜅𝑛𝜀−

𝜋𝑎2

16
𝜀(1− 𝜀2) sin 2𝜅𝑛𝜀

− 𝑎2

8
(1 + 𝜀2)− 𝑎2

4
(𝜀+ |𝜀|).

(2.9)

This theorem provides a description for the eigenvalues for sufficiently large 𝑛, namely, for
𝑛 ⩾ 𝑁 with some fixed and sufficiently large 𝑁 chosen independently of 𝜀. The behavior of
finitely many eigenvalues with the indices 𝑛 < 𝑁 is described by the next theorem.
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Theorem 2.3. For each fixed 𝑁, for 𝑛 < 𝑁, the eigenvalues 𝜆𝜀𝑛 are holomorphic in 𝜀, and
the leading terms of their Taylor series in 𝜀 read as

𝜆𝜀𝑛 = 𝜅2𝑛 + 𝜀Υ𝑛,1 + 𝜀2Υ𝑛,2 +𝑂(𝜀3), (2.10)

where the estimate for the error term is, generally speaking, not uniform in 𝜀, and

Υ𝑛,1 := −3𝑎, Υ𝑛,2 :=
𝑎𝜅2𝑛
2

+
𝑎2

4
− 9𝑎2

4𝜅2𝑛
for 𝜀 > 0, (2.11)

Υ𝑛,1 := −𝑎, Υ𝑛,2 :=
𝑎𝜅2𝑛
2

+
𝑎2

4
− 𝑎2

4𝜅2𝑛
for 𝜀 < 0. (2.12)

Our second result describes the behavior of the associated eigenfunctions.

Theorem 2.4. The eigenfunctions 𝜓𝜀
𝑛 = 𝜓𝜀

𝑛(𝑥) of the operator ℋ𝜀 associated with the eigen-
values 𝜆𝜀𝑛 form a basis in 𝐿2(0, 1). As 𝑛→ ∞, the asymptotics

𝜓𝜀
𝑛(𝑥) =

√
2 sin𝜋𝜅𝑛𝑥+

Ψ𝜀
𝑛(𝑥)

𝜋𝑛
+𝑂(𝑛−2) (2.13)

hold in 𝐶[0, 1], where the estimate for the error term is uniform in 𝜀, and

Ψ𝜀
𝑛(𝑥) :=

𝑎√
2

⎧⎪⎪⎨⎪⎪⎩
−(1− 𝜀)(1− 𝑥) cos𝜅𝑛𝑥 cos𝜅𝑛𝜀, 𝑥 ∈ (0, 1− 𝜀),

1

2

(︀
((1− 𝜀)𝑥− 1 + 𝜀) cos𝜅𝑛(𝑥− 𝜀)

− (𝑥(1 + 𝜀)− 1 + 𝜀) cos𝜅𝑛(𝑥+ 𝜀)
)︀
, 𝑥 ∈ (1− 𝜀, 1),

(2.14)

for 𝜀 > 0, and

Ψ𝜀
𝑛(𝑥) :=

𝑎√
2

⎧⎪⎪⎨⎪⎪⎩
(1 + 𝜀)𝑥 cos𝜅𝑛𝜀 cos𝜅𝑛𝑥, 𝑥 ∈ (0, |𝜀|),

−1

2

(︀
(𝑥(1− 𝜀) + 2𝜀) cos𝜅𝑛(𝑥+ 𝜀)

− 𝑥(1 + 𝜀) cos𝜅𝑛(𝑥− 𝜀)
)︀
, 𝑥 ∈ (|𝜀|, 1),

(2.15)

for 𝜀 < 0. For each fixed 𝑁, for 𝑛 ⩽ 𝑁, the eigenfunctions 𝜓𝜀
𝑛 possess asymptotics

𝜓𝜀
𝑛(𝑥) = Φ𝜀

𝑛,0(𝑥) + 𝜀Φ𝜀
𝑛,1(𝑥) +𝑂(𝜀2) (2.16)

in the norm of 𝐶[0, 1], where the estimates for the error term is, generally speaking, not uniform
in 𝑛 and

Φ𝜀
𝑛,0(𝑥) :=

√
2 sin𝜅𝑛𝑥, 𝑥 ∈ [0, 1− 𝜀],

Φ𝜀
𝑛,0(𝑥) :=(−1)𝑛

√
2 cos

√︀
𝜅2𝑛 + 𝑎(𝑥− 1), 𝑥 ∈ [1− 𝜀, 1],

Φ𝜀
𝑛,1(𝑥) :=− 𝑎𝑥

2
√
2𝜅𝑛

(︀
𝜋 sin𝜅𝑛𝑥+ 6 cos𝜅𝑛𝑥

)︀
, 𝑥 ∈ [0, 1− 𝜀],

Φ𝜀
𝑛,1(𝑥) :=(−1)𝑛𝑎

(︃
− 1√

2
cos
√︀
𝜅2𝑛 + 𝑎(𝑥− 1)

+
3
√
2(𝑥− 1)√︀
𝜅2𝑛 + 𝑎

sin
√︀
𝜅2𝑛 + 𝑎(𝑥− 1)

)︃
, 𝑥 ∈ [1− 𝜀, 1],

(2.17)
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for 𝜀 > 0, and

Φ𝜀
𝑛,0(𝑥) :=

√
2𝜅𝑛√︀
𝜅2𝑛 + 𝑎

sin
√︀
𝜅2𝑛 + 𝑎𝑥, 𝑥 ∈ [0, |𝜀|],

Φ𝜀
𝑛,0(𝑥) :=

√
2 sin𝜅𝑛𝑥, 𝑥 ∈ [|𝜀|, 1],

Φ𝜀
𝑛,1(𝑥) :=

√
2𝑎

(︂(︂
𝜅𝑛√︀
𝜅2𝑛 + 𝑎

− i

𝜅𝑛
− 3𝑎

(𝜅2𝑛 + 𝑎)
3
2

)︂
sin
√︀
𝜅2𝑛 + 𝑎𝑥

− 3𝑎𝜅𝑛
2(𝜅2𝑛 + 𝑎)

𝑥 cos
√︀
𝜅2𝑛 + 𝑎𝑥

)︂
, 𝑥 ∈ [0, |𝜀|],

Φ𝜀
𝑛,1(𝑥) :=− 𝑎√

2

(︂
3𝑥− 2

𝜅𝑛
cos𝜅𝑛𝑥+ (𝑥− 1) sin𝜅𝑛𝑥

)︂
, 𝑥 ∈ [|𝜀|, 1].

(2.18)

for 𝜀 < 0.

Let us briefly describe the model and main results. The main feature of the operatorℋ𝜀 is the
small translation in the perturbation, which makes the operator ℋ𝜀 nonlocal. The translation
is described by the small parameter 𝜀, which can be both positive and negative. For 𝜀 > 0 the
operator ℛ𝒯 𝜀ℒ describes the translation to the right, while for 𝜀 < 0 it does to the left. Then
the function ℛ𝒯 𝜀ℒ𝑦 turns out to be zero on the integral (0, 𝜀) for 𝜀 > 0 and on the interval
(1−|𝜀|, 1) for 𝜀 < 0. In the case 𝜀 > 0 this small interval is attached to the point 𝑥 = 0 with the
Dirichlet condition, while in the case 𝜀 < 0 it is attached to the point 𝑥 = 1 with the Neumann
condition. This difference is reflect in the formulas for the leading terms in the asymptotics for
the eigenvalues and eigenfunctions of the operator ℋ𝜀, which are the main results of the work,
see Theorems 2.2, 2.3, 2.4.

Theorem 2.2 describes four leading terms in the asymptotics for the eigenvalues of the oper-
ator ℋ𝜀 as 𝑛→ +∞ with the error of order 𝑂(𝑛−3) uniform in 𝜀. This is a principally different
result in comparison with classical spectral asymptotics, see, for instance, [8], [9], since the
asymptotic depends on the small parameter and the uniform estimate for the error is provided.
In the asymptotics (2.8) we explicitly find four leading terms, and this is the main difference
from similar results in our recent works [22], [23], in which the method of similar operators al-
lowed us to construct the asymptotics only with the error of order 𝑂(𝑛−2). The corresponding
coefficients are described by the formulas (2.9). These relations contain the functions sin 𝑝𝜅𝑛𝜀,
cos 𝑝𝜅𝑛𝜀, 𝑝 = 1, 2, 3. They weakly oscillate in the index 𝑛. For small 𝑛 they are close respectively
to 0 and 1. For 𝑛 of order 𝑂(𝜀−1) the functions sin 𝑝𝜅𝑛𝜀 and cos 𝑝𝜅𝑛𝜀 smoothly vary from −1 to
+1, while for 𝑛 exceeding essentially 𝑂(𝜀−1) these functions fast oscillate. The presence of such
functions in the leadings terms of the asymptotics for the eigenvalues demonstrates an inter-
esting high–frequency phenomenon, in which the perturbation (small translation) non–trivially
interacts with large values of the index 𝑛.

If we fix the index 𝑛 and lessen the parameter 𝜀, then the eigenvalue 𝜆𝜀𝑛 turns out to be
holomorphic in sufficiently small 𝜀 and as 𝜀 → 0, convergence to the eigenvalue 𝜆𝑛 of the
limiting operator. This convergence is non–uniform, as the asymptotics (2.8) shows. At the
same, if we fix a sufficiently large 𝑁, then for 𝑛 ⩾ 𝑁 the asymptotics (2.8) describes in detail
the behavior of the eigenvalues 𝜆𝜀𝑛. Then for 𝑛 ⩽ 𝑁 we choose sufficiently small 𝜀, and for the
eigenvalues 𝜆𝜀𝑛 one can write asymptotics in the small parameter 𝜀, see the formulas (2.10),
(2.11), (2.12) in Theorem 2.3. The leading terms in in asymptotics are written explicitly, but
the error term in not uniform in 𝑛.

We also succeed to write the leading terms of the asymptotic expansions for the eigenfunction,
and this result is formulated in Theorem 2.4. The relations (2.13), (2.14), (2.15) describe the
asymptotics in large 𝑛 ⩾ 𝑁 , while the identities (2.16), (2.17), (2.18) provide the asymptotics
in the parameter 𝜀 for 𝑛 ⩽ 𝑁 .
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Theorems 2.2, 2.3, 2.4 describe rather explicitly the global behavior of the total ensemble
of eigenvalues of operator ℋ𝜀 and the associated eigenfunctions. Outside some rather large
circle in the complex plane, that is, for 𝑛 ⩾ 𝑁, we use asymptotics as 𝑛 → +∞, while inside
the circles we use the asymptotics as 𝜀 → +0. In addition, we show that the eigenfunctions
form a (non–orthonormalized) basis in 𝐿2(0, 1). This is a stronger result in comparison with
similar statements in papers [22], [23], where the basicity of the system of eigenfunctions and
generalized eigenfunctions was stated. In the present work we succeed to exclude the existence
of the generalized eigenfunctions.

It should be noted that the leading terms of the asymptotics both as 𝑛 → +∞ and 𝜀 → 0
depend on the sign of 𝜀. This is shown by the formulas (2.9). The terms Λ𝜀

𝑛,0 and Λ𝜀
𝑛,1 turn

out to be dependent on the absolute value of the parameter 𝜀, while the term Λ𝜀
𝑛,2 involves an

additional summand −𝑎2

4
(𝜀 + |𝜀|), which is equal to −𝑎2𝜀

2
for 𝜀 > 0 and vanishes identically

for 𝜀 < 0. The differences in terms of the asymptotics for the eigenvalues in 𝜀 arise from the
coefficients at 𝜀, see (2.11), (2.12). Moreover, the formulas (2.14), (2.15), (2.17), (2.18) show
essential differences of the terms of the asymptotics as 𝜀 > 0 and 𝜀 < 0.
Let us dwell on the technique of the present work. Since the limiting operator is very

simple and the coefficients 𝑎 in the perturbing operator is constant, we succeed to solve rather
explicitly the eigenvalue equation for the operator ℋ𝜀. The employed explicit solution allows
us to obtain all above described asymptotics. However, the nonlocality generated by the small
translation does not ensure that the constructed solution is general and the constructed system
of the eigenvalues exhausts the entire spectrum. In order to establish this fact, we make an
additional analysis of the associated eigenfunctions and show that they form a basis in 𝐿2(0, 1),
and hence, the constructed system of the eigenvalues exhausts the entire spectrum of the
operator ℋ𝜀. We stress that the method of similar operators used in [22] and [23] has no such a
disadvantage and provides immediately the results on the entire set of the eigenvalues. At the
same, the advantage of our explicit constructions in a possibility to construct further terms in
the asymptotics. Moreover, our technique allows us to construct any prescribed number of the
terms in the asymptotics of the eigenvalues and eigenfunctions, but the calculations turn out
to be very and very bulky.

3. Form and resolvent of perturbed operator

In the present section we prove Theorem 2.1. The scheme follows the lines of the proof of
Theorem 1 in paper [22], but for the reader’s convenience we briefly describe main milestones.

The application of general results from the proof of Theorem 3 in [19, Sect. 5] allows us
to conclude immediately that the form h𝜀 is sectorial and closed, and its numerical domain is
located in the sector {𝑧 ∈ C : | Im 𝑧| ⩽ 𝐶0(Re 𝑧 − 𝐶1)}, where 𝐶0 and 𝐶1 are some constants
independent of 𝜀 and 𝐶0 > 0. According to the first representation theorem [20, Ch. VI, Sect.
2.1, Thm. 2.1], there exists an associated 𝑚–sectorial operator. We denote this operator by
ℋ̃𝜀 and we are going to show that it coincides with ℋ𝜀. Due to the same first representation
theorem the domain of ℋ̃𝜀 consists of the functions 𝑢 ∈ D(h𝜀) obeying the identity

h𝜀(𝑢, 𝑣) = (ℎ, 𝑣)𝐿2(0,1) for all 𝑣 ∈ D(h𝜀) (3.1)

with some function ℎ ∈ 𝐿2(0, 1). This implies immediately that the function 𝑢 is a generalized
solution of the boundary value problem

−𝑢′′ = ̃︀ℎ on (0, 1), 𝑢(0) = 𝑢′(1) = 0,̃︀ℎ := ℎ− 𝑎ℛ𝒯 𝜀ℒ𝑢+ 𝑎𝑢 ∈ 𝐿2(0, 1),

and by the standard smoothness improving theorems we see that 𝑢 ∈ D(ℋ𝜀). Hence, D(ℋ̃𝜀) ⊆
D(ℋ𝜀) and the operator ℋ̃𝜀 is a continuation of the operator ℋ𝜀. For all 𝑢 ∈ D(ℋ𝜀), 𝑣 ∈ D(h𝜀)
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by an integration by parts we verify the identity

(ℋ𝜀𝑢, 𝑣)𝐿2(0,1) = h𝜀(𝑢, 𝑣),

which implies immediately that the operatorℋ𝜀 is a continuation of the operator ℋ̃𝜀. Therefore,
the form h𝜀 corresponds to the operator ℋ𝜀, and the statements of the theorem on the 𝑚–
sectoriality of the operator ℋ𝜀 and the location of its spectrum are true.

The definition of the operator ℋ𝜀 and the compact embedding of the space 𝑊 1
2 (0, 1) into

𝐿2(0, 1) implies that the resolvent of the operator ℋ𝜀 is compact, and this is why its spectrum
consists of countably many isolated eigenvalues, which can accumulate at the infinity only.

Other statements of the theorem follows from the general results of Theorems 4, 5 in work
[19] applied to the operator ℋ𝜀. The proof of Theorem 2.1 is complete.

4. Transcendental equation for eigenvalues

In the present section we begin proving Theorem 2.2. Let 𝜆 be an eigenvalue of the opera-
tor ℋ𝜀. Then the associated normalized in 𝐿2(0, 1) eigenfunction 𝜓 should satisfy an integral
identity, namely,

𝜆 = h𝜀(𝜓, 𝜓) = ‖𝜓′‖2𝐿2(0,1)
+ 𝑎(ℛ𝒯 𝜀ℒ𝜓 − 𝜓, 𝜓)𝐿2(0,1).

Taking real and imaginary parts of this identity, in view of the normalization of the function 𝜓
we immediately obtain the apriori estimates

Re𝜆 ⩾ −𝑐1, | Im𝜆| ⩽ 𝑐1, (4.1)

where 𝑐1 is some positive constant independent of 𝜀 and 𝜆. This is why all eigenvalues of the
operator ℋ𝜀 lie in some fixed semi–strip along the real semi–axis.

According to Theorem 2.1, the eigenvalues of the operator ℋ𝜀 located in a fixed circle in the
complex plane converge to the eigenvalues of the operator ℋ, which can be found explicitly
and read as 𝜆0𝑛 := 𝜅2𝑛. This is why in view of the estimate (4.1), we seek the eigenvalues of the
operator ℋ𝜀 in the form

𝜆 = 𝑘2, (4.2)

where 𝑘 ∈ C is a new complex parameter ranging in the domain

Ω :=
{︁
𝑘 ∈ C : Re 𝑘 ⩾

𝜋

8
, | Im 𝑘| ⩽ 𝑐2

Re 𝑘

}︁
,

with some positive constant 𝑐2 independent of 𝑘 and 𝜀.
Due to the definition of the operator ℋ𝜀, the eigenvalue equation ℋ𝜀𝜓 = 𝜆𝜓 with the spectral

parameter defined by the formula (4.2) is equivalent to the boundary value problems

−𝜓′′(𝑥) + 𝑎
(︀
𝜓(𝑥+ 𝜀)− 𝜓(𝑥)

)︀
− 𝑘2𝜓(𝑥) = 0, 𝑥 ∈ (0, 1− 𝜀),

−𝜓′′(𝑥)− (𝑘2 + 𝑎)𝜓(𝑥) = 0, 𝑥 ∈ (1− 𝜀, 1),

𝜓(0) = 0, 𝜓′(1) = 0, [𝜓]1−𝜀 = 0, [𝜓′]1−𝜀 = 0,

(4.3)

for 𝜀 > 0, and

−𝜓′′(𝑥)− (𝑘2 + 𝑎)𝜓(𝑥) = 0, 𝑥 ∈ (0, |𝜀|),
−𝜓′′(𝑥) + 𝑎

(︀
𝜓(𝑥+ 𝜀)− 𝜓(𝑥)

)︀
− 𝑘2𝜓(𝑥) = 0, 𝑥 ∈ (|𝜀|, 1),

𝜓(0) = 0, 𝜓′(1) = 0, [𝜓]|𝜀| = 0, [𝜓′]|𝜀| = 0,

(4.4)

for 𝜀 < 0. Here [𝑢]𝑥0 is the jump of a function 𝑢 at the point 𝑥 = 𝑥0 :

[𝑢]𝑥0 := 𝑢(𝑥0 + 0)− 𝑢(𝑥0 − 0).

We seek a solution to this pair of boundary value problems separately on the intervals (0, 1−𝜀),
(1 − 𝜀, 1), and (0, |𝜀|), (|𝜀|, 1) taking into consideration the boundary conditions at the points
𝑥 = 0 and 𝑥 = 1. Then we substitute the obtained solution into the matching conditions at the
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points 𝑥 = 1− 𝜀 and, respectively, 𝑥 = |𝜀|, and this finally will give a transcendental equation
for 𝑘.

In order to construct solutions to the nonlocal equations on the intervals (0, 1−𝜀) and (0, |𝜀|)
in the boundary value problems (4.3), (4.4), we consider an auxiliary nonlocal equation on the
axis

−𝑦′′(𝑥) + 𝑎
(︀
𝑦(𝑥+ 𝜀)− 𝑦(𝑥)

)︀
− 𝑘2𝑦(𝑥) = 0, 𝑥 ∈ R. (4.5)

We seek its partial solution in the form

𝑦(𝑥) = 𝑒i𝜏𝑥. (4.6)

Then for 𝜏 we immediately obtain the characteristic equation

𝜏 2 + 𝑎(𝑒i𝜏𝜀 − 1)− 𝑘2 = 0. (4.7)

The left hand side of this equation is an entire function of an exponential type for 𝜀 ̸= 0, 𝑎 ̸= 0.
The function 𝜏 ↦→ 𝑒i𝜏𝜀−1 has infinitely many zeroes, and the same is true for the function in the
left hand side of Equation (4.7). Thus, Equation (4.5) has infinitely many linearly independent
solutions of the form (4.6) once 𝜀 ̸= 0. Among this set of zeroes, in what follows we employ just
a certain pair, the existence of which is described in the next lemma.

We denote

Ω :=
{︁
𝑘 ∈ C : Re 𝑘 ⩾

𝜋

8
, | Im 𝑘| ⩽ 𝑐2

Re 𝑘

}︁
,

Ω0 :=
{︁
𝑘 ∈ C :

𝜋

8
⩽ Re 𝑘 ⩽ 𝑅1 +

𝜋

3
, | Im 𝑘| ⩽ 𝑐2

Re 𝑘

}︁
,

Ω1 :=
{︁
𝑘 ∈ C : Re 𝑘 ⩾ 𝑅1, | Im 𝑘| ⩽ 𝑐2

Re 𝑘

}︁
, (4.8)

where a constant 𝑅1 is large enough, fixed, and independent of 𝜀. Let 𝐵𝑟(𝑘) be an open ball of
a radius 𝑟 centered at a point 𝑘.

Lemma 4.1. For a sufficiently large 𝑅1 there exist fixed numbers 𝑅2 ∈ (𝑅1 − 1, 𝑅1) and 𝑐3
independent of 𝜀 such that for all 𝑘 ∈ Ω each of the sets

Π± :=
{︀
𝜏 ∈ C : | Im 𝜏 | ⩽ 𝑐3, ±Re 𝜏 > 𝑅2

}︀
contains exactly a single root 𝜏± = 𝜏±(𝜀, 𝑘) of Equation (4.7). These roots satisfy the estimates

|𝜏± ∓ 𝑘| ⩽ 𝑟, (4.9)

where 𝑟 is a sufficiently small number independent of 𝑘 and 𝜀. The roots 𝜏± are holomorphic
in 𝑘 ∈ Ω for each fixed small 𝜀.

Proof. For 𝜏 ∈ Π+, 𝑘 ∈ Ω and sufficiently small 𝜀 the estimates

|𝜏 2 − 𝑘2| ⩾ |𝜏 − 𝑘|Re(𝜏 + 𝑘) ⩾ 2𝑅2|𝜏 − 𝑘|, |𝑎(𝑒i𝜏𝜀 − 1)| ⩽ |𝑎|(1 + 𝑒𝑐3𝜀) ⩽ 3|𝑎| (4.10)

hold. We choose large enough 𝑅2 and a sufficiently small but fixed 𝑟 > 0 so that the identity
and embedding

2𝑅2 > 3|𝑎|𝑟 + 1, 𝐵𝑟(𝑘) ⊂ Π+, 𝑘 ∈ Ω, (4.11)

are guaranteed. It is clear that such a choice is possible. These estimates immediately imply
that

|𝜏 2 − 𝑘2| > |𝑎(𝑒i𝜏𝜀 − 1)| for 𝜏 ∈ Π+ ∖𝐵𝑟(𝑘).

Therefore, Equation (4.7) has no roots in 𝜏 ∈ Π+ ∖ 𝐵𝑟(𝑘), while the application of Rouché
theorem ensures that Equation (4.7) contains in𝐵𝑟(𝑘) as many zeroes counting the multiplicities
as the function 𝜏 ↦→ 𝜏 2−𝑘2 does, that is, exactly a single root. We denote this root by 𝜏+(𝜀, 𝑘),
and since it belongs to the circle 𝐵𝑟(𝑘), it obeys the estimate (4.9).
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If the parameter 𝜏 ranges over the domain Π−, then−𝜏 ∈ Π+. The change 𝜏 by−𝜏 transforms
Equation (4.7) into a similar one:

𝜏 2 + 𝑎(𝑒−i𝜏𝜀 − 1)− 𝑘2 = 0, 𝜏 ∈ Π+, 𝑘 ∈ Ω. (4.12)

This equation can be studied exactly in the same way as it has been done above, and it also
has exactly one root in Π+. Returning back to the domain Π−, we conclude that this domain
contains exactly on root 𝜏−(𝜀, 𝑘) of Equation (4.7), and it satisfies the estimate (4.9).

The application of the inverse function theorem [21, Thm. 1.3.5, Rem. 1.3.6] to Equation
(4.7) shows immediately that the roots 𝜏± are holomorphic in 𝑘 for each sufficiently small 𝜀.
The proof is complete.

Lemma 4.2. For each fixed 𝑅1, for 𝑘 ∈ Ω0 and sufficiently small complex 𝜀 Equation (4.7)
has exactly one root 𝜏± = 𝜏±(𝜀, 𝑘) in the circles 𝐵𝜋

8
(±𝑘). These roots are holomorphic in 𝜀 and

𝑘.

Proof. The set Ω0 is bounded and this is why for 𝑘 ∈ Ω0 we can apply the inverse function
theorem [21, Thm. 1.3.5, Rem. 1.3.6] to Equation (4.7) and this implies the statement of the
lemma.

We proceed to constructing solutions to the equations in (4.3), (4.4) satisfying the boundary
conditions at the points 𝑥 = 0 and 𝑥 = 1. We seek a solution to Equation (4.3) on the interval
(0, 1− 𝜀) obeying the Dirichlet condition at the point 𝑥 = 0 in the form

𝜓(𝑥) = 𝐶1

(︀
𝑒i𝜏

+(𝜀,𝑘)𝑥 − 𝑒i𝜏
−(𝜀,𝑘)𝑥

)︀
, 𝑥 ∈ (0, 1− 𝜀), (4.13)

where 𝜏± = 𝜏±(𝜀, 𝑘) are the roots of Equation (4.7) found in Lemma 4.1, and 𝐶1 is an arbi-
trary constant. The general solution to Equation (4.3) on the interval (1− 𝜀, 1) satisfying the
Neumann condition at the point 𝑥 = 1 is obviously reads as

𝜓(𝑥) = 𝐶2 cos
√
𝑘2 + 𝑎(𝑥− 1), 𝑥 ∈ (1− 𝜀, 1), (4.14)

where 𝐶2 is an arbitrary constant, and the branch of the root is chosen by the condition√
1 = 1 with the cut along the negative real semi–axis. Under such a choice the identity√
𝑘2 + 𝑎 = 𝑘

√
1 + 𝑎𝑘−2 is obviously true.

The found solutions should satisfy the matching conditions at the point 𝑥 = 1− 𝜀 from the
problem (4.3), and this gives a system of linear equations for the constants 𝐶1 and 𝐶2

𝐶1

(︀
𝑒i(1−𝜀)𝜏+ − 𝑒i(1−𝜀)𝜏−

)︀
− 𝐶2 cos

√
𝑘2 + 𝑎𝜀 = 0,

𝐶1i
(︀
𝜏+𝑒i(1−𝜀)𝜏+ − 𝜏−𝑒i(1−𝜀)𝜏−

)︀
− 𝐶2

√
𝑘2 + 𝑎 sin

√
𝑘2 + 𝑎𝜀 = 0.

(4.15)

By the Cramer’s rule this system has a nontrivial solution and hence, the boundary value
problem (4.3) has a nontrivial solution if and only if the parameter 𝑘 satisfies the equation(︀

𝑒i(1−𝜀)𝜏+ − 𝑒i(1−𝜀)𝜏−
)︀√

𝑘2 + 𝑎 sin
√
𝑘2 + 𝑎𝜀− i

(︀
𝜏+𝑒i(1−𝜀)𝜏+ − 𝜏−𝑒i(1−𝜀)𝜏−

)︀
cos

√
𝑘2 + 𝑎𝜀 = 0,

and it is convenient to rewrite this equation as

(︀
𝑒i(1−𝜀)𝜏+ − 𝑒i(1−𝜀)𝜏−

)︀
sin

√
𝑘2 + 𝑎𝜀− i

(︀
𝜏+𝑒i(1−𝜀)𝜏+ − 𝜏−𝑒i(1−𝜀)𝜏−

)︀cos√𝑘2 + 𝑎𝜀√
𝑘2 + 𝑎

= 0. (4.16)

This is exactly the transcendental equation for the parameter 𝑘, which determines the eigen-
values of the operator ℋ𝜀 in the case 𝜀 > 0.
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In the same way we construct solutions to the equation in the problem (4.4) obeying the
same boundary conditions at the points 𝑥 = 0 and 𝑥 = 1. We have

𝜓(𝑥) = 𝐶1 sin
√
𝑘2 + 𝑎𝑥, 𝑥 ∈ (0, |𝜀|),

𝜓(𝑥) = 𝐶2

√
𝑘2 + 𝑎

(︃
𝑒i𝜏

+(𝜀,𝑘)(𝑥−1)

𝜏+(𝜀, 𝑘)
− 𝑒i𝜏

−(𝜀,𝑘)(𝑥−1)

𝜏−(𝜀, 𝑘)

)︃
, 𝑥 ∈ (|𝜀|, 1).

(4.17)

The matching conditions at the point 𝑥 = |𝜀| = −𝜀 give

𝐶1 sin
√
𝑘2 + 𝑎𝜀+ 𝐶2

√
𝑘2 + 𝑎

(︃
𝑒−i𝜏+(𝜀,𝑘)(1+𝜀)

𝜏+(𝜀, 𝑘)
− 𝑒−i𝜏−(𝜀,𝑘)(1+𝜀)

𝜏−(𝜀, 𝑘)

)︃
= 0,

𝐶1 cos
√
𝑘2 + 𝑎𝜀− i𝐶2

(︀
𝑒−i𝜏+(𝜀,𝑘)(1+𝜀) − 𝑒−i𝜏−(𝜀,𝑘)(1+𝜀)

)︀
= 0.

(4.18)

The application of the Cramer’s rule gives the equation for 𝑘(︃
𝑒−i𝜏+(𝜀,𝑘)(1+𝜀)

𝜏+(𝜀, 𝑘)
− 𝑒−i𝜏−(𝜀,𝑘)(1+𝜀)

𝜏−(𝜀, 𝑘)

)︃
√
𝑘2 + 𝑎 cos

√
𝑘2 + 𝑎𝜀

+ i
(︀
𝑒−i𝜏+(𝜀,𝑘)(1+𝜀) − 𝑒−i𝜏−(𝜀,𝑘)(1+𝜀)

)︀
sin

√
𝑘2 + 𝑎𝜀 = 0,

(4.19)

which determines the eigenvalues of the operator ℋ𝜀 for 𝜀 < 0.
Our next step is a detailed study of the obtained transcendental Equations (4.16), (4.19).

This will be done in the next section.

5. Solvability of transcendental equations and asymptotics for roots

In order to study the solvability of Equations (4.16), (4.19), we need to know the structure of
the dependence of the roots 𝜏±(𝜀, 𝑘) of Equation (4.7) on 𝜀 and 𝑘. We shall consider separately
two cases: 𝑘 ∈ Ω0 and 𝑘 ∈ Ω1. At the same time the number 𝑅1 in the definition of these sets
can be arbitrarily large (but fixed!), and the choice will be made later.

We first consider the case 𝑘 ∈ Ω1. We choose 𝑅1 large enough so that 𝑘 also turns out to be
large, and we are going to describe the asymptotic behavior of 𝜏±(𝜀, 𝑘) for large 𝑘.

Lemma 5.1. The parameter 𝑅1 in the definition (4.8) of the set Ω1 can be chosen so that
for 𝑘 ∈ Ω1 the roots 𝜏±(𝜀, 𝑘) satisfy the relations

𝜏±(𝜀, 𝑘) = ±𝑘 + 𝜉±1 (𝜀, 𝑘)

𝑘
+
𝜉±2 (𝜀, 𝑘)

𝑘2
+
𝜉±3 (𝜀, 𝑘)

𝑘3
+𝑂(𝑘−4), (5.1)

where the estimates for the error terms are uniform in 𝜀 and

𝜉±1 (𝜀, 𝑘) := ∓𝑎
2
(𝑒±i𝜀𝑘 − 1), 𝜉±2 (𝜀, 𝑘) := ∓ i𝑎𝜀

2
𝑒±i𝑘𝜀𝜉±1 (𝜀, 𝑘),

𝜉±3 (𝜀, 𝑘) := ∓(𝜉±1 (𝜀, 𝑘))
2

4
(2− 𝑎𝜀2𝑒±i𝑘𝜀)∓ i𝑎𝜀

2
𝑒±i𝑘𝜀𝜉±2 (𝜀, 𝑘).

(5.2)

Proof. As it has been established in the proof of Lemma 4.1, the root 𝜏+ is located inside the
circle of the radius 𝑟 centered at the point 𝑘. This is why this root can be represented as

𝜏 = 𝑘 + 𝜏0, |𝜏0| ⩽ 𝑟, (5.3)

where 𝜏0 = 𝜏0(𝜀, 𝑘) is some function. Substituting this representation into Equation (4.7), we
immediately obtain equations for 𝜏0

2𝜏0 +
𝜏 20
𝑘

+
𝑎

𝑘
(𝑒i𝜀𝑘𝑒i𝜀𝑟 − 1) = 0.
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Due to the apriori boundedness of 𝜏0, see (5.3), and the belonging 𝑘 ∈ Ω, it follows from the
obtained equation that |𝜏0| ⩽ 𝐶𝑘−1 with some constant 𝐶 independent of 𝜀 and 𝑘. This is why
the representation (5.3) can be specified

𝜏+ = 𝑘 +
𝜏+1
𝑘
, |𝜏+1 | ⩽ 𝐶. (5.4)

We substitute the specified representation into (4.7), then for 𝜏+1 we obtain the equation

2𝜏+1 +
(𝜏+1 )

2

𝑘2
+ 𝑎(𝑒i𝜀𝑘 − 1) + 𝑎𝑒i𝜀𝑘(𝑒i𝜀

𝜏+1
𝑘 − 1) = 0.

This equation, estimate for 𝜏+1 from (5.4), and the obvious inequality

|𝑎𝑒i𝜀𝑘(𝑒i𝜀
𝜏+1
𝑘 − 1)| ⩽ 𝐶𝜀𝑘−1

with one more constant 𝐶 imply that

𝜏+1 (𝜀, 𝑘) = 𝜉+1 (𝜀, 𝑘) +
𝜏+2 (𝜀, 𝑘)

𝑘
, |𝜏+2 (𝜀, 𝑘)| ⩽ 𝐶, (5.5)

where 𝜏+2 = 𝜏+2 (𝜀, 𝑘) is some function, and 𝐶 is some constant independent of 𝜀 and 𝑘. We
substitute the obtained representation for 𝜏+1 in (5.4) and similarly to the above calculations
we write an equation for 𝜏+2 . Taking then into consideration that

𝑒i𝜀
𝜏+1
𝑘 = 1− 𝑎𝜀

2𝑘
(𝑒i𝜀𝑘 − 1) +𝑂(𝑘−2),

where the estimate for error term is uniform in 𝜀, we obtain the identity

𝜏+2 = 𝜉+2 (𝜀, 𝑘) +
𝜉+3 (𝜀, 𝑘)

𝑘
, (5.6)

Substituting this identity, (5.4), and (5.5) into Equation (4.16) and extracting the terms of
order up to 𝑂(𝑘−2), we arrive at the identity

𝜏+3 = 𝜉+3 (𝜀, 𝑘) +
𝜉+4 (𝜀, 𝑘)

𝑘
,

where the function 𝜉+4 (𝜀, 𝑘) is bounded uniformly in 𝜀 and 𝑘. Substituting this relation, (5.5),
and (5.6) into (5.4), we get the formula (5.1) for 𝜏+. The same identity for 𝜏− can be proved
similarly. The proof is complete.

Lemma 5.2. For each fixed 𝑅1, for 𝑘 ∈ Ω0, and sufficiently small 𝜀 the leading terms of the
Taylor series of the roots 𝜏±(𝜀, 𝑘) read as

𝜏±(𝜀, 𝑘) = ±𝑘 + i𝑎𝜀

2
∓ 𝑎(2𝑘2 + 𝑎)

8𝑘
𝜀2 +𝑂(𝜀3). (5.7)

Proof. Due to Lemma 4.2, for 𝑘 ∈ Ω0 the roots 𝜏±(𝜀, 𝑘) are holomorphic in 𝜀. We write the
Taylor series with the first three terms with unknown coefficients and substitute these formulas
into Equation (4.7). We expand the obtained equation into the Taylor series up to the order
𝑂(𝜀2) and equate the coefficients at 𝜀 and 𝜀2 to zero. Solving the obtained equations, we arrive
at the relations (5.7). The proof is complete.



12 D.I. BORISOV, D.M. POLYAKOV

Let 𝑘 ∈ Ω1 and 𝑅1 be chosen according to Lemma 5.1. The identity (5.1) allows us to obtain
similar representations for separate expressions in the left hand side of (4.16)

𝑒i(1−𝜀)𝜏± = 𝑒±i(1−𝜀)𝑘

(︃
1 +

i(1− 𝜀)𝜉±1
𝑘

+
2i(1− 𝜀)𝜉±2 − (1− 𝜀)2(𝜉±1 )

2

2𝑘2

+
6i(1− 𝜀)𝜉±3 − 6(1− 𝜀)2𝜉±2 𝜉

±
1 − i(1− 𝜀)3(𝜉±1 )

3

6𝑘3

)︃
+𝑂(𝑘−4),

(5.8)

where the estimate for the error term is uniform 𝜀. The obvious identities

sin
√
𝑘2 + 𝑎𝜀 = sin 𝑘𝜀+

𝑎𝜀

2𝑘
cos 𝑘𝜀− 𝑎2𝜀2

8𝑘2
sin 𝑘𝜀− 𝑎2𝜀(𝑎𝜀2 + 6)

48𝑘3
cos 𝑘𝜀+𝑂(𝑘−4),

cos
√
𝑘2 + 𝑎𝜀√
𝑘2 + 𝑎

=
cos 𝑘𝜀

𝑘
− 𝑎𝜀 sin 𝑘𝜀

2𝑘2
− 𝑎(4 + 𝑎𝜀2) cos 𝑘𝜀

8𝑘3
+
𝑎2𝜀(𝑎𝜀2 + 18) sin 𝑘𝜀

48𝑘4
+𝑂(𝑘−5),

√
𝑘2 + 𝑎 cos

√
𝑘2 + 𝑎𝜀 = 𝑘 cos 𝑘𝜀− 𝑎𝜀

2
sin 𝑘𝜀+

𝑎(4− 𝑎𝜀2) cos 𝑘𝜀

8𝑘
+
𝑎2𝜀(𝑎𝜀2 − 6) sin 𝑘𝜀

48𝑘2

+
𝑎2(𝑎2𝜀2 − 48)

384
cos 𝑘𝜀+𝑂(𝑘−4)

(5.9)

are also true.
We substitute the obtained relations into Equation (4.16) and collect the terms up to order

𝑂(𝑘−3). Then the equation is rewritten in the form

𝐾0(𝑘) +
4∑︁

𝑗=1

𝐾+
𝑗 (𝜀, 𝑘)

𝑘𝑗
= 0, (5.10)

where 𝐾+
4 is some uniformly bounded in 𝜀 and 𝑘 ∈ Ω function holomorphic in 𝑘 ∈ Ω for each

sufficiently small 𝜀, and the functions 𝐾0, 𝐾
+
1 , 𝐾

+
2 are given by the formulas

𝐾0(𝑘) := cos 𝑘, 𝐾+
1 (𝜀, 𝑘) := −𝑎

2
sin 𝑘 +

𝑎

2
(1− 𝜀) sin 𝑘(1 + 𝜀),

𝐾+
2 (𝜀, 𝑘) := −𝑎

8

(︀
1− 2(𝑎(1− 𝜀2)) cos 𝑘(1 + 𝜀) + 𝑎(1− 𝜀2) cos 𝑘(1 + 2𝜀)

+ 2 cos 𝑘(1− 𝜀) + 𝑎 cos 𝑘
)︀
,

𝐾+
3 (𝜀, 𝑘) :=

𝑎2

48

(︁
3(𝑎+ 2(𝑎− 1)𝜀− 𝑎𝜀2 − 2𝑎𝜀3) sin 𝑘(1 + 2𝜀) + 6(1− 𝜀) sin 𝑘(1− 𝜀)

− 𝑎(1− 𝜀)(1 + 2𝜀)2 sin 𝑘(1 + 3𝜀) + 𝑎 sin 𝑘

− 3(𝑎+ 2− (𝑎− 6)𝜀+ 𝑎𝜀2 + 𝑎𝜀3) sin 𝑘(1 + 𝜀)
)︁
.

It is clear that the functions 𝐾+
𝑖 , 𝑖 = 1, 2, 3, are bounded uniformly in 𝑘 ∈ Ω and sufficiently

small 𝜀.
The function 𝐾0 has zeroes at the points 𝑘 = 𝜅𝑛, 𝑛 ∈ N, and obvious estimates

|𝐾0(𝑘)| ⩾ 𝐶1min
𝑛∈N

|𝑘 − 𝜅𝑛|, 𝑘 ∈ Ω, (5.11)

hold true, where 𝐶1 is some constant independent of 𝑘, the choice 𝑅1 and 𝑛, and the index 𝑛 is
chosen by the condition 𝑛 ⩾ 𝑛0 with some fixed 𝑛0, which ensures the embedding of the circles
𝐵𝜋

4
(𝜅𝑛) in the domain Ω. Equation (5.10) can be rewritten in the form

𝐾+
0 (𝑘) +

𝑓+(𝜀, 𝑘)

𝑘
= 0, 𝑓+(𝜀, 𝑘) :=

4∑︁
𝑗=1

𝐾+
𝑗 (𝜀, 𝑘)

𝑘𝑗−1
. (5.12)
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The function 𝑓 is holomorphic in 𝑘 ∈ Ω and bounded uniformly in 𝜀 and 𝑘, and the estimate⃒⃒⃒⃒
𝑓+(𝜀, 𝑘)

𝑘

⃒⃒⃒⃒
⩽
𝐶2

|𝑘|
⩽
𝐶2

𝑅1

(5.13)

holds, where 𝐶2 is some constant independent of 𝜀, 𝑘, and the choice of 𝑅1. We choose the
number 𝑅1 by the condition

𝜋

4
𝐶1 >

𝐶2

𝑅1

.

Then it follows from (5.11), (5.13) that

|𝐾0(𝑘)| >
⃒⃒⃒⃒
𝑓+(𝜀, 𝑘)

𝑘

⃒⃒⃒⃒
for 𝑘 ∈ Ω ∖

⋃︁
𝑛∈N

𝐵𝜋
4
(𝜅𝑛). (5.14)

This inequality means that Equation (5.10) has no roots outside the circles 𝐵𝜋
4
(𝜅𝑛), 𝑛 ⩾ 𝑛0,

and by the Rouché theorem it has exactly one root in each of these circles. We denote these
roots by 𝑘𝜀𝑛.
In view of (5.13), the estimate (5.14) can be specified, namely,

|𝐾+
0 (𝑘)| >

⃒⃒⃒⃒
𝑓+(𝜀, 𝑘)

𝑘

⃒⃒⃒⃒
for 𝑘 ∈ 𝐵𝐶3

𝑛
(𝜅𝑛), 𝑛 ⩾ 𝑛0, (5.15)

with some constant 𝐶3 independent of 𝑛 and 𝜀. This is why the roots 𝑘𝜀𝑛 satisfy the estimates

|𝑘𝜀𝑛 − 𝜅𝑛| ⩽
𝐶3

𝑛
. (5.16)

By this inequality for 𝑘𝜀𝑛 the representation

𝑘𝜀𝑛 = 𝜅𝑛 +
𝜉𝜀𝑛,1
𝜅𝑛

(5.17)

holds, where 𝜉𝜀𝑛,1 are some quantities bounded uniformly in 𝜀 and 𝑛. Substituting this relation

into (5.10) and writing the terms up to the order 𝑂(𝑛−1), for large 𝑛 we get

(−1)𝑛+1𝜉𝜀𝑛,1 −
(−1)𝑛𝑎

2

(︀
1− (1− 𝜀) cos𝜅𝑛𝜀

)︀
+𝑂(𝑛−1) = 0.

This implies

𝜉𝜀𝑛,1 = 𝜁𝜀𝑛,1 +
𝜉𝜀𝑛,2
𝜅𝑛

, 𝜁𝜀𝑛,1 :=
𝑎

2
(1− 𝜀) cos𝜅𝑛𝜀−

𝑎

2
, (5.18)

where 𝜉𝜀𝑛,2 are some quantities bounded uniformly in 𝜀 and 𝑛.We substitute this representation
into (5.17), and the result is substituted into Equation (5.10). Then we extract the terms up
to the order 𝑂(𝑛−2). This gives the relation

𝜉𝜀𝑛,2 = 𝜁𝑛,2 +
𝜉𝜀𝑛,3
𝜅𝑛

, 𝜁𝜀𝑛,2 :=
𝑎2

8
𝜀2(1− 𝜀2) sin 2𝜅𝑛𝜀, (5.19)

where 𝜉𝜀𝑛,3 is some uniformly bounded quantity. It is determined by the same scheme as 𝜉𝜀𝑛,2,
and after routine technical calculations we obtain

𝜉𝜀𝑛,3 = 𝜁𝜀𝑛,3 +𝑂(𝑛−1), (5.20)

where the error term is uniform in the small parameter 𝜀, and the quantity 𝜁𝜀𝑛,3 is given by the
formula

𝜁𝜀𝑛,3 :=− 3𝑎3𝜀2

64
(1− 𝜀)(1 + 𝜀)2 cos 3𝜅𝑛𝜀−

𝑎2𝜀2

8
cos 2𝜅𝑛𝜀

+
𝑎2

64
(1− 𝜀)(16 + 3𝑎𝜀2 − 2𝑎𝜀3 − 𝑎𝜀4) cos𝜅𝑛𝜀−

𝑎2

8
(2− 𝜀+ 𝜀2).

(5.21)
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This formula and (5.17), (5.18), (5.19) finally imply

𝑘𝜀𝑛 = 𝜅𝑛 +
𝜁𝜀𝑛,1
𝜅𝑛

+
𝜁𝜀𝑛,2
𝜅2𝑛

+
𝜁𝜀𝑛,3
𝜅3𝑛

+𝑂(𝑛−4) (5.22)

for 𝜀 > 0, where the error term is uniform in 𝜀.
The study of Equation (4.19) follows the same lines. Here the identities (5.8) are replaced

by

𝑒−i(1+𝜀)𝜏± = 𝑒∓i(1+𝜀)𝑘

(︂
1− i(1 + 𝜀)𝜉±1

𝑘
− 2i(1 + 𝜀)𝜉±2 + (1 + 𝜀)2(𝜉±1 )

2

2𝑘2

+
i(1 + 𝜀)3(𝜉±1 )

3 − 6(1 + 𝜀)2𝜉±1 𝜉
±
2 − i(1 + 𝜀)𝜉±3

6𝑘3

)︂
+𝑂(𝑘−4),

where the estimate for the error term is uniform in 𝜀. We substitute these relations and (5.9)
into Equation (4.19) and extract the terms up to the order 𝑂(𝑘−2). As a result we obtain an
analogue of Equation (5.10)

𝐾0(𝑘) +
𝐾−

1 (𝜀, 𝑘)

𝑘
+
𝐾−

2 (𝜀, 𝑘)

𝑘2
+
𝐾−

3 (𝜀, 𝑘)

𝑘3
= 0, (5.23)

where 𝐾−
3 is some function bounded uniformly in 𝜀 and 𝑘 ∈ Ω, holomorphic in 𝑘 ∈ Ω for each

sufficiently small 𝜀, while the functions 𝐾−
1 and 𝐾−

2 are given by the formulas

𝐾−
1 (𝜀, 𝑘) :=

𝑎

2
(1 + 𝜀) sin(1− 𝜀)𝑘 − 𝑎

2
sin 𝑘,

𝐾−
2 (𝜀, 𝑘) :=

𝑎

8

(︀
2(𝑎+ 1− 𝜀2) cos 𝑘(1− 𝜀)− 𝑎(1− 𝜀2) cos 𝑘(1− 2𝜀)− 𝑎 cos 𝑘 + 2 cos 𝑘(1 + 𝜀)

)︀
,

𝐾−
3 (𝜀, 𝑘) :=

𝑎2

48

(︁
(12 + 3𝑎+ 6(1− 𝑎)𝜀− 3𝑎𝜀2 + 6𝑎𝜀3) sin 𝑘(1− 2𝜀) + 6(1 + 𝜀) sin 𝑘(1 + 𝜀)

− 𝑎(1− 𝜀)(2𝜀− 1)2 sin 𝑘(1− 3𝜀) + (𝑎+ 12) sin 𝑘

− 3(𝑎+ 6− (𝑎− 2)𝜀− 𝑎𝜀2 + 𝑎𝜀3) sin 𝑘(1− 𝜀)
)︁
.

The calculations from (5.11)–(5.16) are repeated almost literally, and we again arrive at the
representation (5.17). The substitution of this formula into Equation (4.19) and writing the
terms up to 𝑂(𝑛−1) gives the analogue of the identity (5.18)

𝜉𝜀𝑛,1 = 𝜁𝑛,1 +
𝜉𝜀𝑛,2
𝜋𝑛

, 𝜁𝜀𝑛,1 :=
𝑎

2
(1 + 𝜀) cos𝜅𝑛𝜀−

𝑎

2
, (5.24)

where 𝜉𝜀𝑛,1 are some quantities bounded uniformly in 𝜀 and 𝑛. Further calculations are similar to
(5.18)–(5.20) and lead to the representation (5.22), but for 𝜀 < 0 with a uniform in 𝜀 estimate
for the error term and the coefficients

𝜁𝜀𝑛,2 :=
𝑎2𝜀(1− 𝜀2)

8
sin 2𝜅𝑛𝜀,

𝜁𝜀𝑛,3 :=− 3𝑎3𝜀2

64
(1 + 𝜀)(1− 𝜀)2 cos 3𝜅𝑛𝜀−

𝑎2𝜀(2 + 𝜀)

8
cos 2𝜅𝑛𝜀

+
𝑎2

64
(1 + 𝜀)(16 + 3𝑎𝜀2 + 2𝑎𝜀3 − 𝑎𝜀4) cos𝜅𝑛𝜀−

𝑎2

8
(2 + 3𝜀+ 𝜀2).

(5.25)

These formulas and (5.22), (4.2) imply the asymptotics (2.8), (2.9).
The above calculations have fixed a choice of a sufficiently large number 𝑅1 in the definition

(4.8) of the set Ω0. Now let 𝑘 ∈ Ω1 with the same 𝑅1. We rewrite Equations (4.16) and (4.19)
in the form

𝐹+(𝜀, 𝑘) = 0 for 𝜀 > 0, 𝐹−(𝜀, 𝑘) = 0 for 𝜀 < 0, (5.26)
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where

𝐹+(𝜀, 𝑘) :=
(︀
𝑒i(1−𝜀)𝜏+ − 𝑒i(1−𝜀)𝜏−

)︀√
𝑘2 + 𝑎 sin

√
𝑘2 + 𝑎𝜀

− i
(︀
𝜏+𝑒i(1−𝜀)𝜏+ − 𝜏−𝑒i(1−𝜀)𝜏−

)︀
cos

√
𝑘2 + 𝑎𝜀 = 0,

(5.27)

𝐹−(𝜀, 𝑘) :=

(︃
𝑒−i𝜏+(𝜀,𝑘)(1+𝜀)

𝜏+(𝜀, 𝑘)
− 𝑒−i𝜏−(𝜀,𝑘)(1+𝜀)

𝜏−(𝜀, 𝑘)

)︃
cos

√
𝑘2 + 𝑎𝜀

+ i
(︀
𝑒−i𝜏+(𝜀,𝑘)(1+𝜀) − 𝑒−i𝜏−(𝜀,𝑘)(1+𝜀)

)︀sin√𝑘2 + 𝑎𝜀√
𝑘2 + 𝑎

= 0.

(5.28)

Due to Lemma 4.2, the functions 𝐹±(𝜀, 𝑘) are holomorphic in sufficiently small complex 𝜀 and
𝑘 ∈ Ω0, the left hand sides of these equations are holomorphic in 𝑘 and 𝜀 functions, and

𝐹+(𝜀, 𝑘) = −2i𝑘 cos 𝑘 +𝑂(𝜀), 𝐹−(𝜀, 𝑘) =
2 cos 𝑘

𝑘
+𝑂(𝜀).

This is why by the inverse function theorem [21, Thm. 1.3.5, Rem. 1.3.6], for sufficiently small
𝜀 Equations (5.26) possess exactly one root 𝑘𝜀𝑛 in the neighbourhoods of the points 𝜅𝑛 belonging
to the domain Ω0, and these roots are holomorphic in 𝜀. The leading terms in the Taylor series
of the roots of these equations are easily found similarly to the proof of Lemma 5.2:

𝑘𝜀𝑛 = 𝜅𝑛 −
6𝑎𝜀

𝜅𝑛
+
𝑎𝜀2

4

(︂
𝜅𝑛 +

2𝑎

𝜅𝑛
− 576𝑎

𝜅3𝑛

)︂
+𝑂(𝜀3) (5.29)

for 𝜀 > 0, and

𝑘𝜀𝑛 = 𝜅𝑛 −
2𝑎𝜀

𝜅𝑛
+
𝑎𝜀2

8

(︂
𝜅𝑛 +

2𝑎

𝜅𝑛
− 64𝑎

𝜅3𝑛

)︂
+𝑂(𝜀3) (5.30)

for 𝜀 < 0. This implies the relations (2.10)–(2.12).
The above calculations do not prove completely Theorem 2.2. The reason is that the so-

lutions to the equation in (4.3) on the interval (0, 1 − 𝜀) and to the equation in (4.4) on the
interval (|𝜀|, 1) are sought in the form (4.13) and (4.17) without having a statement that this
is a general solution. Moreover, this statement is wrong; we have already mentioned before
Lemma 4.1 that Equation (4.5) has a much richer family of solutions. This is why to complete
the proof of Theorem 2.2 we need to prove that for sufficiently large 𝑛 the operator ℋ𝜀 has no
eigenvalues except for the found ones. In order to do this, we need to study the behavior of
the eigenfunctions associated with the found eigenvalues, and this will also prove Theorem 2.4.
Such a study will be performed in the next section.

6. Eigenfunctions

Let 𝑘𝜀𝑛 be one of the roots of Equation (4.16). Then system of the linear equations (4.15) has
a nontrivial solution. For large 𝑛 ⩾ 𝑁 the asymptotics (5.8), (5.9), (5.22) yield that(︀

𝑒i(1−𝜀)𝜏+(𝑘𝜀𝑛,𝜀) − 𝑒i(1−𝜀)𝜏−(𝑘𝜀𝑛,𝜀)
)︀
= 2(−1)𝑛i cos𝜅𝑛𝜀+𝑂(𝑛−1),

i
𝜏+𝑒i(1−𝜀)𝜏+(𝑘𝜀𝑛,𝜀) − 𝜏−𝑒i(1−𝜀)𝜏−(𝑘𝜀𝑛,𝜀)√︀

(𝑘𝜀𝑛)
2 + 𝑎

= 2(−1)𝑛i sin𝜅𝑛𝜀+𝑂(𝑛−1),

sin
√︀

(𝑘𝜀𝑛)
2 + 𝑎𝜀 = sin𝜅𝑛𝜀+𝑂(𝑛−1), cos

√︀
(𝑘𝜀𝑛)

2 + 𝑎𝜀 = cos𝜅𝑛𝜀+𝑂(𝑛−1).

This is why the rank of matrix of the linear system (4.15) is equal to one, and it has a unique
linearly independent solution. This solution generates a unique eigenfunction 𝜓𝜀

𝑛(𝑥) associated
with the eigenvalue 𝜆𝜀𝑛 by the formulas (4.14), (4.15).
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We multiply the second equation in the system by i√
𝑘2+𝑎

and sum it with the first equation.

In the obtained equation we let 𝐶2 = (−1)𝑛
√
2 and express 𝐶1. Then we have the solution

𝐶1 =(−1)𝑛
√
2𝑒i

√
(𝑘𝜀𝑛)

2+𝑎𝜀

·

(︃(︃
1− 𝜏+(𝑘𝜀𝑛, 𝜀)√︀

(𝑘𝜀𝑛)
2 + 𝑎

)︃
𝑒i(1−𝜀)𝜏+(𝑘𝜀𝑛,𝜀) −

(︃
1− 𝜏−(𝑘𝜀𝑛, 𝜀)√︀

(𝑘𝜀𝑛)
2 + 𝑎

)︃
𝑒i(1−𝜀)𝜏−(𝑘𝜀𝑛,𝜀)

)︃−1

.
(6.1)

The expansions (5.8), (5.9), (5.22) allow us to obtain similar expansions for 𝐶1 as 𝑛→ +∞

𝐶1 = − i√
2
+

i𝑎

2
√
2𝜋𝑛

(1− 𝜀) sin𝜅𝑛𝜀+𝑂(𝑛−2), (6.2)

where the estimate for the error term is uniform in 𝜀.We substitute this formula and the identity
𝐶2 = (−1)𝑛 into (4.14), (4.15), and in view of the asymptotics (5.22) with the coefficients
in (5.18), (5.19), (5.21) we write the leading terms of the asymptotics of the eigenfunctions
associated with the eigenvalues 𝜆𝜀𝑛. After technical and long but simple calculations we get

𝜓𝜀
𝑛(𝑥) =

√
2 sin𝜅𝑛𝑥−

𝑎(1− 𝜀)√
2𝜋𝑛

(1− 𝑥) cos𝜅𝑛𝑥 cos𝜅𝑛𝜀+𝑂(𝑛−2),

in the norm of 𝐶2[1− 𝜀, 1], and

𝜓𝜀
𝑛(𝑥) =

√
2 sin𝜅𝑛𝑥+

𝑎

2
√
2𝜋𝑛

(︀
((1− 𝜀)𝑥− 1 + 𝜀) cos𝜅𝑛(𝑥− 𝜀)

− (𝑥(1 + 𝜀)− 1 + 𝜀) cos𝜅𝑛(𝑥+ 𝜀)
)︀
+𝑂(𝑛−2)

in the norm of 𝐶2[0, 1−𝜀], where the estimates for the error terms are uniform in 𝜀. This implies
the asymptotics (2.13), (2.14).

In the case 𝜀 < 0 and the system (4.18) the calculations are similar. The rank of the matrix
of this system is again one, and to obtain the required nontrivial solution, we multiply the first
equation by i and sum it with the second equation. Then we let 𝐶1 =

√
2 and express 𝐶2 :

𝐶2 =− i
√
2𝑒i

√
(𝑘𝜀𝑛)

2+𝑎𝜀

·

(︃(︃
1−

√︀
(𝑘𝜀𝑛)

2 + 𝑎

𝜏+(𝑘𝜀𝑛, 𝜀)

)︃
𝑒−i(1+𝜀)𝜏+(𝑘𝜀𝑛,𝜀) −

(︃
1−

√︀
(𝑘𝜀𝑛)

2 + 𝑎

𝜏−(𝑘𝜀𝑛, 𝜀)

)︃
𝑒−i(1+𝜀)𝜏−(𝑘𝜀𝑛,𝜀)

)︃−1

.
(6.3)

The asymptotics of this coefficient as 𝑛→ +∞ turns out to be

𝐶2 =
(−1)𝑛√

2
+

(−1)𝑛𝑎

2
√
2𝜋𝑛

(1 + 𝜀) sin𝜅𝑛𝜀+𝑂(𝑛−2). (6.4)

We substitute 𝐶1 =
√
2 and the formula (6.3) into (4.17), and in view of the asymptotics (6.4)

and (5.22) with the coefficients in (5.24), (5.25) we write the leading terms in the asymptotics
of the eigenfunctions associated with the eigenvalues 𝜆𝜀𝑛. As a result we obtain

𝜓𝜀
𝑛(𝑥) =

√
2 sin𝜅𝑛𝑥+

𝑎√
2𝜋𝑛

(1 + 𝜀)𝑥 cos𝜅𝑛𝜀 cos𝜅𝑛𝑥+𝑂(𝑛−2) (6.5)

in the norm of 𝐶2[0, |𝜀|], and

𝜓𝜀
𝑛(𝑥) =

√
2 sin𝜅𝑛𝑥−

𝑎

2
√
2𝜋𝑛

(︀
(𝑥(1− 𝜀) + 2𝜀) cos𝜅𝑛(𝑥+ 𝜀)

− 𝑥(1 + 𝜀) cos𝜅𝑛(𝑥− 𝜀)
)︀
+𝑂(𝑛−2)

(6.6)

in the norm of 𝐶2[|𝜀|, 1], where the estimates for the error terms are uniform in 𝜀. This implies
the asymptotics (2.13), (2.15).
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Now let 𝑛 ⩽ 𝑁 . Then the expansions (5.29), (5.30) hold for the roots 𝑘𝜀𝑛, and each of the
systems (4.15), (4.18) again has one nontrivial solution. We choose these solutions as above
taking the aforementioned linear combinations of the equations in the systems (4.15), (4.18).
At the same time, we choose a nontrivial solution to the first system letting 𝐶1 = 1 and

𝐶1 = − i√
2
,

𝐶2 = − i√
2
𝑒−i

√
(𝑘𝜀𝑛)

2+𝑎𝜀

(︂(︂
1− 𝜏+(𝑘𝜀𝑛, 𝜀)√︀

(𝑘𝜀𝑛)
2 + 𝑎

)︂
𝑒i(1−𝜀)𝜏+(𝑘𝜀𝑛,𝜀)

−
(︂
1− 𝜏−(𝑘𝜀𝑛, 𝜀)√︀

(𝑘𝜀𝑛)
2 + 𝑎

)︂
𝑒i(1−𝜀)𝜏−(𝑘𝜀𝑛,𝜀)

)︂
.

For the system (4.18) we let

𝐶2 =
(−1)𝑛

√
2𝑘𝜀𝑛√︀

(𝑘𝜀𝑛)
2 + 𝑎

,

𝐶1 = i𝐶2𝑒
−i
√

(𝑘𝜀𝑛)
2+𝑎𝜀

(︂(︂
1−

√︀
(𝑘𝜀𝑛)

2 + 𝑎

𝜏+(𝑘𝜀𝑛, 𝜀)

)︂
𝑒−i(1+𝜀)𝜏+(𝑘𝜀𝑛,𝜀)

−
(︂
1−

√︀
(𝑘𝜀𝑛)

2 + 𝑎

𝜏−(𝑘𝜀𝑛, 𝜀)

)︂
𝑒−i(1+𝜀)𝜏−(𝑘𝜀𝑛,𝜀)

)︂
.

We substitute these formulas into (4.13), (4.14), (4.17), and in view of the expansions (5.29)
and (5.30) we write similar expansions for the eigenfunctions as 𝜀→ +0. As a result, for 𝜀 > 0
we obtain

𝜓𝜀
𝑛(𝑥) =

√
2 sin𝜅𝑛𝑥−

𝜀𝑎𝑥

2
√
2𝜅𝑛

(︀
𝜋 sin𝜅𝑛𝑥+ 6 cos𝜅𝑛𝑥

)︀
+𝑂(𝜀2)

in the norm of 𝐶[0, 1− 𝜀], and

𝜓𝜀
𝑛(𝑥) =(−1)𝑛

√
2 cos

√︀
𝜅2𝑛 + 𝑎(𝑥− 1)

+ (−1)𝑛𝜀𝑎

(︃
− 1√

2
cos
√︀
𝜅2𝑛 + 𝑎(𝑥− 1) +

3
√
2(𝑥− 1)√︀
𝜅2𝑛 + 𝑎

sin
√︀
𝜅2𝑛 + 𝑎(𝑥− 1)

)︃
+𝑂(𝜀2)

in the norm of 𝐶[1 − 𝜀, 1], where the estimates for the error terms are, generally speaking,
non–uniform in 𝜀. In the case 𝜀 < 0 similar formulas read as

𝜓𝜀
𝑛(𝑥) =

√
2𝜅𝑛√︀
𝜅2𝑛 + 𝑎

sin
√︀
𝜅2𝑛 + 𝑎𝑥

+
√
2𝜀𝑎

(︂(︂
𝜅𝑛√︀
𝜅2𝑛 + 𝑎

− i

𝜅𝑛
− 3𝑎

(𝜅2𝑛 + 𝑎)
3
2

)︂
sin
√︀
𝜅2𝑛 + 𝑎𝑥

− 3𝑎𝜅𝑛
2(𝜅2𝑛 + 𝑎)

𝑥 cos
√︀
𝜅2𝑛 + 𝑎𝑥

)︂
+𝑂(𝜀2)

in the norm of 𝐶[0, |𝜀|], and

𝜓𝜀
𝑛(𝑥) =

√
2 sin𝜅𝑛𝑥−

𝜀𝑎√
2

(︂
3𝑥− 2

𝜅𝑛
cos𝜅𝑛𝑥+ (𝑥− 1) sin𝜅𝑛𝑥

)︂
+𝑂(𝜀2)

in the norm of 𝐶[|𝜀|, 1], where the estimates for the error terms are, generally speaking, non–
uniform in 𝜀. The obtained relations prove the asymptotics (2.16)–(2.18).
Now we are going to show that for sufficiently small 𝜀 the eigenfunctions 𝜓𝜀

𝑛, 𝑛 ∈ Z+, form a
basis in 𝐿2(0, 1). We first note that the functions 𝜓0

𝑛(𝑥) :=
√
2 sin𝜅𝑛𝑥 form an orthonormalized
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basis in 𝐿2(0, 1). We represent each of the functions 𝜓𝜀
𝑛(𝑥) as

𝜓𝜀
𝑛(𝑥) = 𝜓0

𝑛(𝑥) + 𝜑𝜀
𝑛(𝑥), (6.7)

and we note that the asymptotics (2.13), (2.16) immediately imply the estimates

‖𝜑𝜀
𝑛‖𝐿2(0,1) ⩽

𝑐4
𝑛
, 𝑛 ⩾ 𝑁, (6.8)

‖𝜑𝜀
𝑛‖𝐿2(0,1) ⩽ 𝑐5|𝜀|

1
2 , 𝑛 ⩽ 𝑁. (6.9)

Here the choice of the number 𝑁 is determined by the asymptotics (2.13), namely, this is a
number independent of 𝜀 such that as 𝑛 ⩾ 𝑁, the asymptotic identity (2.13) and the estimate
(6.8) hold with a constant 𝑐4 independent on 𝜀, 𝑛, and the choice of 𝑁. Having fixed 𝑁, then
we choose a sufficiently small 𝜀0 = 𝜀0(𝑁) so that for |𝜀| < 𝜀0 the asymptotics (2.16) hold for
all 𝑛 ⩽ 𝑁 as well as the estimates (6.9) with a constant 𝑐5 independent of 𝜀 and 𝑛.

Since the functions 𝜓0
𝑛 form a basis in 𝐿2(0, 1), each of the functions 𝜑𝜀

𝑛 can be expanded
over this basis

𝜑𝜀
𝑛 =

∞∑︁
𝑚=0

𝛼𝜀
𝑚𝑛𝜓

0
𝑚, 𝛼𝜀

𝑚𝑛 := (𝜑𝜀
𝑛, 𝜓

0
𝑚)𝐿2(0,1). (6.10)

In the space 𝐿2(0, 1) we introduce an operator acting by the rule

𝒜𝑢 =
∞∑︁

𝑚=0

𝜓0
𝑚

∞∑︁
𝑛=0

𝛼𝜀
𝑚𝑛𝑢𝑛, (6.11)

where the coefficients 𝑢𝑛 are determined by the expansion of the function 𝑢 over the basis {𝜓0
𝑛}

𝑢 =
∞∑︁
𝑛=0

𝑢𝑛𝜓
0
𝑛. (6.12)

Let us show that the operator 𝒜 is well–defined and its norm is small for small 𝜀.
We let

𝑣𝜀𝑚 :=
∞∑︁
𝑛=0

𝛼𝜀
𝑚𝑛𝑢𝑛. (6.13)

Since 𝑢𝑛 and 𝛼𝜀
𝑚𝑛 the coefficients of expansion of the functions 𝑢, 𝜑𝜀

𝑛 ∈ 𝐿2(0, 1) over the basis
{𝜓0

𝑛}, then the series in the definition of the numbers 𝑣𝜀𝑚 converges and the sequence {𝑣𝜀𝑚} is
well–defined. Cauchy–Schwarz inequality and the estimates (6.8), (6.9) immediately imply the
inequality

|𝑣𝜀𝑚| ⩽

(︃
∞∑︁
𝑛=0

|𝑢𝑛|2
)︃ 1

2
(︃

∞∑︁
𝑛=0

|𝛼𝜀
𝑚𝑛|2

)︃ 1
2

⩽ ‖𝑢‖𝐿2(0,1)‖𝜑𝜀
𝑚‖𝐶[0,1] ⩽ ‖𝑢‖𝐿2(0,1)

{︃
𝑐4𝑛

−1, 𝑛 ⩾ 𝑁,

𝑐5|𝜀|
1
2 , 𝑛 ⩽ 𝑁.

This yields
∞∑︁

𝑚=0

|𝑣𝜀𝑚|2 ⩽

(︃
𝑐25|𝜀|𝑁 + 𝑐24

∞∑︁
𝑚=𝑁

𝑛−2

)︃
‖𝑢‖2𝐿2(0,1)

. (6.14)

Since the series
∞∑︀

𝑚=0

𝑛−2 converges, we choose and fix sufficiently large 𝑁 to ensure the inequality

𝑐24

∞∑︁
𝑛=𝑁

𝑛−2 ⩽
1

8
.

Then we choose a sufficiently small 𝜀0 so that for |𝜀| < 𝜀0 one more inequality

𝑐25|𝜀|𝑁 ⩽
1

8
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is satisfied. These two inequalities and (6.14) give
∞∑︁

𝑚=0

|𝑣𝜀𝑚|2 ⩽
1

4
‖𝑢‖2𝐿2(0,1)

.

Due to (6.11), (6.13) this implies immediately that the series in the definition of the operator
𝒜 converges in 𝐿2(0, 1), and this means that the operator 𝒜 is well–defined, and the estimate

‖𝒜𝑢‖𝐿2(0,1) ⩽
1

2
‖𝑢‖𝐿2(0,1) (6.15)

holds.
It follows from the definition of the operator 𝒜 and the formula (6.7) that

𝜓𝜀
𝑛 = (ℐ +𝒜)𝜓0

𝑛,

where ℐ is the unit operator in 𝐿2(0, 1). The estimate (6.15) allows us to state the existence
of the inverse bounded operator (ℐ + 𝒜)−1 on the space 𝐿2(0, 1). Thus, we have a bounded
operator possessing a bounded inverse, which maps the basis {𝜓0

𝑛} into the system of functions
{𝜓𝜀

𝑛}. Therefore, the second system of functions is also a basis in 𝐿2(0, 1). This implies that the
operator ℋ𝜀 has no other eigenvalues except for the above constructed functions 𝜓𝜀

𝑛. Therefore,
the set of the eigenvalues 𝜆𝜀𝑛 described in Theorem 2.2 exhausts the entire spectrum of the
operator ℋ𝜀. The proof of Theorems 2.2, 2.3, 2.4 are complete.
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Basel (1997).

2. G.A. Kamenskii. Extrema of nonlocal functional and boundary value problems for functional
differential equations, Nova Science Publishers, New York (2007).

3. A.L. Skubachevskii. Boundary–value problems for elliptic functional-differential equations and
their applications // Usp. Mat. Nauk 71:5(431), 3–112 (2016). [Russ. Math. Surv. 71:5, 801–906
(2016).]

4. V. V. Liiko, A. L. Skubachevskii. Mixed problems for strongly elliptic differential-difference equa-
tions in a cylinder // Mat. Zametki 107:5, 693–716 (2020). [Math. Notes 107:5, 770–790 (2020).]

5. R. Yu. Vorotnikov, A. L. Skubachevskii. Smoothness of generalized eigenfunctions of differential–
difference operators on a finite interval // Mat. Zametki 114:5, 679–701 (2023). [Math. Notes
114:5, 1002–1020 (2023).]

6. A.B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high–
order nonlocal terms of general kind // Discrete Contin. Dyn. Syst. 16:3, 541–561 (2006).

7. L. E. Rossovskii. Elliptic functional differential equations with contractions and extensions of
independent variables of the unknown function // Sovrem. Mat., Fundam. Napravl. 54, 3–138
(2014). [J. Math. Sci. 223:4, 351–493 (2017).]

8. V.A. Marchenko. Spectral Theory of Sturm–Liouville Operators. Naukova Dumka, Kiev (1977)
(in Russian).

9. B.M. Levitan and I.S. Sargsjan. Introduction to Spectral Theory: Selfadjoint Ordinary Differen-
tial Operators. Nauka, Moscow (1970). [Amer. Math. Soc., Providence, R.I. (1975).]

10. A.A. Shkalikov. The limit behavior of the spectrum for large parameter values in a model problem
// Mat. Zametki 62:6, 950–953 (1997). [Math. Notes 62:6, 796–799 (1997).]

11. S.N. Tumanov, A.A. Shkalikov. On the limit behaviour of the spectrum of a model problem for
the Orr–Sommerfeld equation with Poiseuille profile // Izv. Ross. Akad. Nauk, Set. Mat. 66:4,
177–204 (2002). [Izv. Math. 66:4, 829–856 (2002).]

12. S.A. Stepin. A model of transition from discrete spectrum to continuous one in singular pertur-
bation theory // Fundam. Prikl. Mat. 3:4, 1199–1227 (1997) (in Russian).

13. C.S. Morawetz. The eigenvalues of some stability problems involving viscosity // J. Rat. Mech.
Anal. 1, 579–603 (1952).



20 D.I. BORISOV, D.M. POLYAKOV

14. A.V. D’yachenko and A.A. Shkalikov. On a model problem for the Orr–Sommerfeld equation with
linear profile // Funkts. Anal. Prilozh. 36:3, 71–75 (2002). [Funct. Anal. Appl. 36:3, 228–232
(2002).]

15. A.A. Shkalikov. Spectral Portraits of the Orr–Sommerfeld Operator with Large Reynolds Numbers
// Sovrem. Mat., Fundam. Napravl. 3, 89–112 (2003). [J. Math. Sci. 124:6, 5417–5441 (2004).]

16. S.N. Tumanov and A.A. Shkalikov. The limit spectral graph in semiclassical approximation for
the Sturm–Liouville problem with complex polynomial potential // Dokl. Akad. Nauk, Ross. Akad.
Nauk. 465:6, 660–664 (2015). [Dokl. Math. 92:3, 773–777 (2015).]

17. S.N. Tumanov, A.A. Shkalikov. Spectral portraits in the semi-classical approximation of the
Sturm–Liouville problem with a complex potential // J. Phys. Conf. Ser. 1141, 012155 (2018).

18. Kh.K. Ishkin and R.I. Marvanov. On localization conditions for spectrum of model operator for
Orr–Sommerfeld equation // Ufim. Math. Zh. 12:4, 66–79 (2020). [Ufa Math. J. 12:4, 64–77
(2020).]

19. D.I. Borisov, D.M. Polyakov. Resolvent convergence for differential–difference operators with
small variable translations // Mathematics. 11:20, 4260 (2023).

20. T. Kato. Perturbation Theory for Linear Operators, Springer–Verlag, Berlin (1976).
21. R. Narasimhan. Analysis on real and complex manifolds. North–Holland, Amsterdam 1985.
22. D.I. Borisov, D.M. Polyakov. Spectral asymptotics for one–dimensional Schrödinger operator on

the segment with translation in free term and Dirichlet condition // Izv. Ross. Akad. Nauk, Ser.
Mat. (submitted).

23. D.I. Borisov, D.M. Polyakov. Asymptotics for eigenvalues of Schrödinger operator with small
translation and Dirichlet condition // Dokl. Akad. Nauk, Ross. Akad. Nauk. 517:3, (2024) (to
appear).

Denis Ivanovich Borisov,
Institute of Mathematics,
Ufa Federal Research Center, RAS
Chernyshevsky str. 112,
450008, Ufa, Russia
E-mail: BorisovDI@yandex.ru

Dmitry Mikhailovich Polyakov,
South Matematical Institute,
Vladikavkaz Scientific Center of RAS,
Vatutina str. 53,
362025, Vladikavkaz, Russia

Institute of Mathematics,
Ufa Federal Research Center, RAS
Chernyshevsky str. 112,
450008, Ufa, Russia
E-mail: dmitrypolyakow@mail.ru


	to1. Introduction
	to2. Formulation of problem and main results
	to3. Form and resolvent of perturbed operator
	to4. Transcendental equation for eigenvalues
	to5. Solvability of transcendental equations and asymptotics for roots
	to6. Eigenfunctions
	 References

