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GENERALIZED COMPOSITION OPERATORS ON

WEIGHTED FOCK SPACES

M. WORKU, L.T. WESEN

Abstract. The generalized composition operators 𝐽𝛷
𝑔 and 𝐶𝛷

𝑔 , induced by analytic func-
tions 𝑔 and 𝛷 on the complex plane C, are defined by

𝐽𝛷
𝑔 (𝑓)(𝑧) =

𝑧∫︁
0

𝑓 ′(𝛷(𝜔))𝑔(𝜔)𝑑𝜔 and 𝐶𝛷
𝑔 (𝑓)(𝑧) =

𝛷(𝑧)∫︁
0

𝑓 ′(𝜔)𝑔(𝜔)𝑑𝜔.

In this paper, we consider these operators on weighted Fock spaces ℱ𝛹
𝑝 , consisting of entire

functions, which are ℒ𝑝(C)-integrable with respect to the measure 𝑑𝜆(𝑧) = 𝑒−𝛹(𝑧)𝑑Λ(𝑧),
where 𝑑Λ is the usual Lebesgue area measure in C. We assume that the weight function
𝛹 in the spaces satisfies certain smoothness conditions, in particular, this weight function

grows faster than the Gaussian weight |𝑧|2
2 defining the classical Fock spaces.

We first consider bounded and compact properties of 𝐽𝛷
𝑔 and 𝐶𝛷

𝑔 , and characterize these
properties in terms function theory of inducing functions 𝑔 and 𝛷, given by

ℳ𝛷
𝑔 (𝑧) :=

|𝑔(𝑧)|𝛹 ′(𝛷(𝑧))

1 + 𝛹 ′(𝑧)
𝑒𝛹(𝛷(𝑧))−𝛹(𝑧).

Our characterization is simpler to use than the Berezin type integral transform characteri-
zation. In some cases, our result shows that these operators experience poorer boundedness
and compactness structures when acting between such spaces than the classical Fock spaces.
For instance, for 𝛷(𝑧) = 𝑧, there is no nontrivial bounded 𝐽𝛷

𝑔 and 𝐶𝛷
𝑔 on weighted Fock

spaces. In the case of classical Fock spaces, they are bounded if and only if 𝑔 is constant.
In the second part of this paper, we apply our simpler characterization of bounded-

ness and compactness to further study the Schatten-class membership of these operators.
In particular, we express the Schatten 𝑆𝑝(ℱ𝛹

2 ) class membership property in terms of
ℒ𝑝(C,Δ𝛹𝑑Λ)-integrability of ℳ𝛷

𝑔 .
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1. Introduction

Given analytic functions 𝑔 and 𝛷 on the complex plane C, generalized composition operators
𝐽𝛷
𝑔 and 𝐶𝛷

𝑔 , induced by 𝑔 and 𝛷, are defined by

𝐽𝛷
𝑔 (𝑓)(𝑧) =

𝑧∫︁
0

𝑓 ′(𝛷(𝜔))𝑔(𝜔)𝑑𝜔 and 𝐶𝛷
𝑔 (𝑓)(𝑧) =

𝛷(𝑧)∫︁
0

𝑓 ′(𝜔)𝑔(𝜔)𝑑𝜔. (1.1)
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Specifically, for the case 𝛷 is an identity function, that is, 𝛷(𝑧) = 𝑧,

𝐽𝛷
𝑔 (𝑓)(𝑧) = 𝐶𝛷

𝑔 (𝑓)(𝑧) =

𝑧∫︁
0

𝑓 ′(𝜔)𝑔(𝜔)𝑑𝜔

is the well-known Volterra companion operator denoted by 𝐽𝑔. Operators in 1.1 are first in-
troduced by S. Li and S. Stević [2], [3], on some spaces of analytic functions defined on a unit
disc, and then considered by several authors on different function spaces. In particular, on
classical Fock spaces, T. Mengestie [4], [5] characterized bounded, compact and Schatten-class
membership properties in terms of the properties of inducing symbols 𝑔 and 𝛷. Later in [7],
together with the first author of this paper, they studied some topological properties of these
operators. In [6], T. Mengestie and S. Ueki studied boundedness and compactness of the par-
ticular operator 𝐽𝑔, on weighted Fock spaces ℱ𝛹

𝑝 (defined below), with a weight function 𝛹
satisfying the following conditions (as in [1]):

(1) 𝛹 : [0,∞) → R+ is twice continuously differentiable function and 𝛹(𝑧) = 𝛹(|𝑧|), 𝑧 ∈ C.
(2) The Laplacian of 𝛹 is positive and there exists a function 𝜈(𝑧) obeying1

𝜈(𝑧) ≍

{︃
1, 0 ⩽ |𝑧| < 1

(∆𝛹(|𝑧|))−
1
2 , |𝑧| ⩾ 1,

has the following properties;
(I) 𝜈 is a radial positive differentiable function and decreases to zero as |𝑧| → ∞.
(II) lim

𝑟→∞
𝜈 ′(𝑟) = 0.

(III) either there exists a constant 𝛼 > 0 such that 𝜈(𝑟)𝑟𝛼 increases for large 𝑟 or
lim
𝑟→∞

𝜈 ′(𝑟) log 1
𝜈(𝑟)

= 0.

Throughout the manuscript we assume that the weight function 𝛹 satisfies the above conditions.

We note that this kind of weight function grows faster than the Gaussian weight |𝑧|2
2

defining
the classical Fock spaces.

Next we define a corresponding weighted Fock space. Let 𝑑𝜆(𝑧) = 𝑒−𝛹(𝑧)𝑑Λ(𝑧), where 𝑑Λ is
the Lebesgue area measure in C. Then, for 0 < 𝑝 < ∞, the weighted Fock space ℱ𝛹

𝑝 is space
of analytic functions on C, which are ℒ𝑝(C, 𝑑𝜆)-integrable, that is,

‖𝑓‖𝑝ℱ𝛹
𝑝
:=

∫︁
C

|𝑓(𝑧)|𝑝𝑒−𝑝𝛹(𝑧)𝑑Λ(𝑧) < ∞. (1.2)

The growth type weighted Fock space ℱ𝛹
∞ consists of analytic functions on C such that

‖𝑓‖ℱ𝛹
∞
:= sup

𝑧∈C
|𝑓(𝑧)|𝑒−𝛹(𝑧) < ∞. (1.3)

Recently, in [8], Z. Yang and Z. Zhou characterized boundedness and compactness of the
generalized composition operator 𝐽𝛷

𝑔 , acting between the weighted Fock spaces ℱ𝛹
𝑝 and ℱ𝛹

𝑞 , for
0 < 𝑝, 𝑞 < ∞, in terms of the Berezin type integral transform,∫︁

C

|𝑘(𝑤,𝛹)(𝛷(𝑧))|𝑞
(1 + 𝛹 ′(𝛷(𝑧))𝑞

(1 + 𝛹 ′(𝑧)𝑞
|𝑔(𝑧)|𝑞𝑒−𝑞𝛹(𝑧)𝑑Λ(𝑧),

where 𝑘(𝑤,𝛹) is normalized kernel function of ℱ𝛹
2 . Motivated by this research, the purpose of

the present work is to further characterize boundedness and compactness of 𝐽𝛷
𝑔 on weighted

1The notation 𝑈(𝑧) ≍ 𝑉 (𝑧) means both 𝑈(𝑧) ≲ 𝑉 (𝑧) and 𝑉 (𝑧) ≲ 𝑈(𝑧), where 𝑈(𝑧) ≲ 𝑉 (𝑧) (or 𝑉 (𝑧) ≳ 𝑈(𝑧))
means that there exists a constant 𝐶 such that 𝑈(𝑧) ⩽ 𝐶𝑉 (𝑧) holds.



106 M. WORKU, L.T. WESEN

Fock spaces in terms of a simpler function

ℳ𝛷
𝑔 (𝑧) :=

|𝑔(𝑧)|𝛹 ′(𝛷(𝑧))

1 + 𝛹 ′(𝑧)
𝑒𝛹(𝛷(𝑧))−𝛹(𝑧),

by using the notion of embedding map. We also do the same for the similar operator 𝐶𝛷
𝑔 . More-

over, applying the simplified condition, we characterize the Schatten class 𝑆𝑝(ℱ𝛹
2 ) membership

property of 𝐽𝛷
𝑔 and 𝐶𝛷

𝑔 .

2. Preliminaries

We begin the section with some preliminary results that will be used in the proof of our
main results. In [1], [6], weighted Fock spaces were described in terms of a derivative, which
expresses (1.2) and (1.3) as

‖𝑓‖𝑝ℱ𝛹
𝑝
≍ |𝑓(0)|𝑝 +

∫︁
C

|𝑓 ′(𝑧)|𝑝

(1 + 𝛹 ′(𝑧))𝑝
𝑒−𝑝𝛹(𝑧)𝑑Λ(𝑧) (2.1)

for finite 𝑝 and

‖𝑓‖ℱ𝛹
∞
≍ |𝑓(0)|+ sup

𝑧∈C

|𝑓 ′(𝑧)|
1 + 𝛹 ′(𝑧)

𝑒−𝛹(𝑧). (2.2)

This type of estimate is usually called Littlewood-Paley type estimate, and it plays an important
role specially in studying integral operators. Let 𝐷(𝛼, 𝑟) be a disc with a center 𝛼 and a radius
𝑟. By Lemma 7 in [1], for 0 < 𝑝 < ∞ and subharmonic functions 𝛹 and 𝑓 we have the pointwise
estimate

|𝑓(𝑧)|𝑝𝑒−𝑝𝛹(𝑧) ≲
1

𝜎2𝜈(𝑧)2

∫︁
𝐷(𝑧,𝜎𝜈(𝑧))

|𝑓(𝑤)|𝑝𝑒−𝑝𝛹(𝑤)𝑑Λ(𝑤) ≲ 𝜈(𝑧)−2‖𝑓‖𝑝ℱ𝛹
𝑝
, (2.3)

for a small positive number 𝜎, which shows that the space ℱ𝛹
2 is a reproducing kernel Hilbert

space. At the same time, an explicit formula for the kernel 𝐾(𝑤,𝛹) is not known yet. However,
if {𝑒𝑛} is an orthonormal basis of ℱ𝛹

2 , then

𝐾(𝑤,𝛹)(𝑧) =
∑︁
𝑛

𝑒𝑛(𝑧)𝑒𝑛(𝑤) and
𝜕

𝜕𝑤
𝐾(𝑤,𝛹)(𝑧) =

∑︁
𝑛

𝑒𝑛(𝑧)𝑒′𝑛(𝑤).

Moreover, by Corollary 8 and Lemma 22 in [1] we have

‖𝐾(𝑤,𝛹)‖2ℱ𝛹
2
=
∑︁
𝑛

|𝑒𝑛(𝑤)|2 ≍ 𝜈(𝑤)−2𝑒2𝛹(𝑤) (2.4)⃦⃦⃦⃦
𝜕

𝜕𝑤
𝐾(𝑤,𝛹)

⃦⃦⃦⃦2
ℱ𝛹

2

=
∑︁
𝑛

|𝑒′𝑛(𝑤)|2 ≍ ‖𝐾(𝑤,𝛹)‖2ℱ𝛹
2
(𝛹 ′(𝑤))2 ≍ (𝛹 ′(𝑤))2𝜈(𝑤)−2𝑒2𝛹(𝑤). (2.5)

In [1], there were constructed test functions, which played the role of kernel function, as it is
stated by the following lemma.

Lemma 2.1. For a large number 𝑅 there exists a number 𝜂(𝑅) such that for any 𝑤 ∈ C

with |𝑤| > 𝜂(𝑅), there exists an entire test function 𝐹(𝑤,𝑅) in ℱ𝛹
𝑝 with

‖𝐹(𝑤,𝑅)‖ℱ𝛹
𝑝
≍ 𝜈(𝑤)

2
𝑝

for 0 < 𝑝 < ∞ and ‖𝐹(𝑤,𝑅)‖ℱ𝛹
∞
≍ 1. In particular, for 𝑧 ∈ 𝐷(𝑤,𝑅𝜈(𝑤)),

|𝐹 ′
(𝑤,𝑅)(𝑧)|

1 + 𝛹 ′(𝑧)
𝑒−𝛹(𝑧) ≍ 1. (2.6)
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We also need the following statement called covering lemma to prove our main results; this
lemma was proved in [1].

Lemma 2.2. Assume that 𝑡 : C→ (0,∞) is a continuous function such that

|𝑡(𝑧)− 𝑡(𝑤)| ⩽ |𝑧 − 𝑤|
4

, 𝑧, 𝑤 ∈ C, lim
|𝑧|→∞

𝑡(𝑧) = 0.

Then there exists a sequence {𝑧𝑛} such that

(i) 𝑧𝑖 /∈ 𝐷(𝑧𝑛, 𝑡(𝑧𝑛)) for 𝑖 ̸= 𝑛, and ∪𝑛⩾1𝐷(𝑧𝑛, 𝑡(𝑧𝑛)) = C;
(ii) ∪𝑧∈𝐷(𝑧𝑛,𝑡(𝑧𝑛))𝐷(𝑧, 𝑡(𝑧)) ⊂ 𝐷(𝑧𝑛, 3𝑡(𝑧𝑛)) and a sequence {𝐷(𝑧𝑛, 3𝑡(𝑧𝑛))} is a covering of C

of finite multiplicity.

3. Boundedness and compactness

As it has been noted in the Introduction, the boundedness and compactness of the Volterra
companion operator 𝐽𝑔 on the weighted Fock spaces was studied in [6]. It was shown that, in
some cases, the structure of 𝐽𝑔 becomes poorer when the operator acts between such spaces in
comparison with the case of the classical Fock spaces. Our result in this paper shows that this
is also the case for the generalized composition operator 𝐽𝛷

𝑔 in general.
Before proving our main results, we state the next lemma, which gives the form of 𝛷 whenever

the function ℳ𝛷
𝑔 (𝑧) or ℳ𝛷

𝑔(𝛷)(𝑧) is uniformly bounded over C.

Lemma 3.1. Let 𝑔 and 𝛷 be nonconstant entire functions. If there exist a positive constant
𝐶 such that ℳ𝛷

𝑔 (𝑧) ⩽ 𝐶 or ℳ𝛷
𝑔(𝛷)(𝑧) ⩽ 𝐶 for all 𝑧 ∈ C, then 𝛷(𝑧) = 𝑎𝑧 + 𝑏 for some 𝑎, 𝑏 ∈ C

with |𝑎| ⩽ 1.

Proof. We first assume that ℳ𝛷
𝑔 is uniformly bounded over C. Then there exists a positive

constant 𝐶 such that

|𝑔(𝑧)| ⩽ 𝐶
(︀1 + 𝛹 ′(𝑧)

𝛹 ′(𝛷(𝑧))

)︀
(𝑒𝛹(𝛷(𝑧))−𝛹(𝑧))−1,

and since 𝑔 is nonconstant, we have 𝛹(𝛷(𝑧))− 𝛹(𝑧) < 0. This implies

lim sup
|𝑧|→∞

𝛹(𝛷(𝑧))− 𝛹(𝑧) ⩽ 0. (3.1)

Since 𝛷 has its own power series expansion, by (3.1) we conclude that 𝛷 reads as 𝛷(𝑧) = 𝑎𝑧+ 𝑏
for some 𝑎, 𝑏 ∈ C with |𝑎| ⩽ 1. The case when ℳ𝛷

ℎ(𝛷) is uniformly bounded can be treated in
the same way. The proof is complete.

Theorem 3.1. Let 0 < 𝑝 ⩽ 𝑞 ⩽ ∞, and let 𝑔 and 𝛷 be nonconstant entire functions. Then

(i) 𝐽𝛷
𝑔 : ℱ𝛹

𝑝 → ℱ𝛹
𝑞 is

(a) bounded if and only if sup𝑧∈C∆𝛹(𝑧)𝑠ℳ𝛷
𝑔 (𝑧) < ∞;

(b) compact if and only if lim|𝑧|→∞ ∆𝛹(𝑧)𝑠ℳ𝛷
𝑔 (𝑧) = 0,

where

𝑠 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑞 − 𝑝

𝑝𝑞
, 𝑝 ⩽ 𝑞 < ∞

1

𝑝
, 𝑝 < 𝑞 = ∞

0, 𝑝 = 𝑞 = ∞.

(ii) 𝐶𝛷
𝑔 : ℱ𝛹

𝑝 → ℱ𝛹
𝑞 is

(a) bounded if and only if sup𝑧∈C∆𝛹(𝑧)𝑠ℳ𝛷
𝑔(𝛷)(𝑧) < ∞;

(b) compact if and only if lim|𝑧|→∞ ∆𝛹(𝑧)𝑠ℳ𝛷
𝑔(𝛷)(𝑧) = 0.
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Proof. (𝑖) The proof for the case 𝑝 ⩽ 𝑞 = ∞ was given in Theorem 2.1 in [8]. Here we study
the case 𝑝 ⩽ 𝑞 < ∞. For 𝑓 ∈ ℱ𝛹

𝑝 , an application of the Littlewood-Paley type formula in (2.1)

to 𝐽𝛷
𝑔 𝑓 gives

‖𝐽𝛷
𝑔 𝑓‖

𝑞
ℱ𝛹

𝑞
≍
∫︁
C

|𝑓 ′(𝛷(𝑧))|𝑞|𝑔(𝑧)|𝑞

(1 + 𝛹 ′(𝑧))𝑞
𝑒−𝑞𝛹(𝑧)𝑑Λ(𝑧) =

∫︁
C

|𝑓 ′(𝑧)|𝑞𝑑𝜇(𝑞,𝛷,𝛹)(𝑧),

where 𝑑𝜇(𝑞,𝛷,𝛹) is a pull-back measure given by

𝜇(𝑞,𝛷,𝛹)(𝐵) =

∫︁
𝛷−1(𝐵)

|𝑔(𝑤)|𝑞

(1 + 𝛹 ′(𝑤))𝑞
𝑒−𝑞𝛹(𝑤)𝑑Λ(𝑤)

for every Borel subset 𝐵 of C. Then it is easy to observe that the operator 𝐽𝛷
𝑔 : ℱ𝛹

𝑝 → ℱ𝛹
𝑞

is bounded (respectively, compact) if and only if the embedding operator 𝐸 : 𝒪(𝑝,𝛹) → ℱ𝛹
𝑞 is

bounded (respectively, compact), where 𝒪(𝑝,𝛹) is space of entire functions such that∫︁
C

|𝑓(𝑧)|𝑝

(1 + 𝛹 ′(𝑧))𝑝
𝑒−𝑝𝛹(𝑧)𝑑Λ(𝑧)

is finite. But, by proposition 3.8 of [8], 𝐸 is bounded if and only if for some 𝛿 > 0

sup
𝑤∈C

1

𝜈(𝑤)
2𝑞
𝑝

∫︁
𝐷(𝑤,𝛿𝜈(𝑤))

(𝛹 ′(𝑧))𝑞𝑒𝑞𝛹(𝑧)𝑑𝜇(𝑞,𝛷,𝛹)(𝑧) (3.2)

is finite, and 𝐸 is compact if and only if

lim
|𝑤|→∞

1

𝜈(𝑤)
2𝑞
𝑝

∫︁
𝐷(𝑤,𝛿𝜈(𝑤))

(𝛹 ′(𝑧))𝑞𝑒𝑞𝛹(𝑧)𝑑𝜇(𝑞,𝛷,𝛹)(𝑧) = 0. (3.3)

Substituting back 𝜇(𝑞,𝛷,𝛹) into (3.2) and (3.3), we obtain that 𝐽𝛷
𝑔 is bounded if and only if

sup
𝑤∈C

1

𝜈(𝑤)
2𝑞
𝑝

∫︁
𝐷(𝑤,𝛿𝜈(𝑤))

(ℳ𝛷
𝑔 )

𝑞(𝑧)𝑑Λ(𝑧) < ∞, (3.4)

and the operator is compact if and only if

lim
|𝑤|→∞

1

𝜈(𝑤)
2𝑞
𝑝

∫︁
𝐷(𝑤,𝛿𝜈(𝑤))

(ℳ𝛷
𝑔 )

𝑞(𝑧)𝑑Λ(𝑧) = 0. (3.5)

Our next step to simplify these conditions.

(𝑎) First assume sup𝑧∈C∆𝛹(𝑧)
𝑞−𝑝
𝑝𝑞 ℳ𝛷

𝑔 (𝑧) is finite. From (3.4), using the fact that 𝜈(𝑤) ≍ 𝜈(𝑧)
for 𝑧 ∈ 𝐷(𝑤, 𝛿𝜈(𝑤)), we obtain

sup
𝑤∈C

1

𝜈(𝑤)
2𝑞
𝑝

∫︁
𝐷(𝑤,𝛿𝜈(𝑤))

(ℳ𝛷
𝑔 )

𝑞(𝑧)𝑑Λ(𝑧)

⩽
(︁
sup
𝑤∈C

∆𝛹(𝑤)
𝑞−𝑝
𝑝𝑞 ℳ𝛷

𝑔 (𝑤)
)︁(︁

sup
𝑤∈C

1

𝜈(𝑤)
2𝑞
𝑝

∫︁
𝐷(𝑤,𝛿𝜈(𝑤))

1

(𝜈(𝑧))
2(𝑝−𝑞)

𝑝

𝑑Λ(𝑧)
)︁

≲ sup
𝑤∈C

1

𝜈(𝑤)
2𝑞
𝑝

∫︁
𝐷(𝑤,𝛿𝜈(𝑤))

1

(𝜈(𝑧))
2(𝑝−𝑞)

𝑝

𝑑Λ(𝑧) < ∞.

(3.6)



GENERALIZED COMPOSITION OPERATORS 109

On the other hand, if (3.4) holds, then using the estimate in (2.3), the subharmonicity of
𝑔𝛹 ′(𝛷)𝑒𝛹(𝛷), and the fact that 1 + 𝛹 ′(𝑤) ≍ 1 + 𝛹 ′(𝑧) for 𝑤 ∈ 𝐷(𝑧, 𝛿𝜈(𝑧)), we get

sup
𝑧∈C

∆𝛹(𝑧)
𝑞−𝑝
𝑝 (ℳ𝛷

𝑔 )
𝑞(𝑧)

≲ sup
𝑧∈C

(︁ 𝜈(𝑧)
−2𝑞
𝑝

(1 + 𝛹 ′(𝑧))𝑞

∫︁
𝐷(𝑧,𝛿𝜈(𝑧))

|𝑔(𝑤)|𝑞(𝛹 ′(𝛷(𝑤)))𝑞𝑒𝑞𝛹(𝛷(𝑤))−𝑞𝛹(𝑤)𝑑Λ(𝑤)
)︁

≍ sup
𝑧∈C

1

𝜈(𝑧)
2𝑞
𝑝

∫︁
𝐷(𝑧,𝛿𝜈(𝑧))

(ℳ𝛷
𝑔 )

𝑞(𝑤)𝑑Λ(𝑤) < ∞.

(3.7)

These relations and (3.6) yield that 𝐽𝛷
𝑔 is bounded if and only if the function ∆𝛹(𝑧)

𝑞−𝑝
𝑝𝑞 ℳ𝛷

𝑔 (𝑧)
is uniformly bounded over C.

(𝑏) From (3.5), (3.6) and (3.7), it is easy to see that the operator is compact if and only if

the function ∆𝛹(𝑧)
𝑞−𝑝
𝑝𝑞 ℳ𝛷

𝑔 (𝑧) goes to zero as |𝑧| → ∞.
(𝑖𝑖) The proof of this part is very similar to the proof of part (𝑖) above and this is why we

omit it. The proof is complete.

The above theorem shows that, if 𝑝 is strictly less than 𝑞 and 𝐽𝛷
𝑔 : ℱ𝛹

𝑝 → ℱ𝛹
𝑞 (or 𝐶𝛷

𝑔 : ℱ𝛹
𝑝 →

ℱ𝛹
𝑞 ), then the unboundedness of the Laplacian of 𝛹 forces the operator to have poorer structure

compared with the classical Fock spaces case, cf. [7]. In particular, the operator 𝐽𝑔 : ℱ𝛹
𝑝 → ℱ𝛹

𝑞

is bounded if and only if {︃
∆𝛹(𝑧)

𝑞−𝑝
𝑝𝑞 |𝑔(𝑧)|, 𝑞 < ∞

∆𝛹(𝑧)
1
𝑝 |𝑔(𝑧)|, 𝑞 = ∞

is bounded. This holds true if and only if 𝑔 is the zero function and hence there is no nontrivial
bounded 𝐽𝑔 in this case. But, in the classical Fock spaces case the operator is bounded if and
only if 𝑔 is constant (see [4]). We may now proceed to the case 0 < 𝑞 < 𝑝 ⩽ ∞, in this
case, our next result shows that boundedness and compactness of the operator 𝐽𝛷

𝑔 : ℱ𝛹
𝑝 → ℱ𝛹

𝑞

(respectively, 𝐶𝛷
𝑔 : ℱ𝛹

𝑝 → ℱ𝛹
𝑞 ) are equivalent.

Theorem 3.2. Let 0 < 𝑞 < 𝑝 ⩽ ∞, and let 𝑔 and 𝛷 be nonconstant entire functions. Then

(i) 𝐽𝛷
𝑔 : ℱ𝛹

𝑝 → ℱ𝛹
𝑞 is bounded or compact if and only if

∫︀
C

(ℳ𝛷
𝑔 )

𝑟(𝑧)𝑑Λ(𝑧) is finite, where

𝑟 =

{︂ 𝑝𝑞
𝑝−𝑞

, 𝑝 < ∞
𝑞, 𝑝 = ∞.

(3.8)

(ii) 𝐶𝛷
𝑔 : ℱ𝛹

𝑝 → ℱ𝛹
𝑞 is bounded or compact if and only if

∫︀
C

(ℳ𝛷
𝑔(𝛷))

𝑟(𝑧)𝑑Λ(𝑧) is finite, where 𝑟

is as defined above.

Proof. (𝑖) As it has been shown in the proof of Theorem 3.1, 𝐽𝛷
𝑔 : ℱ𝛹

𝑝 → ℱ𝛹
𝑞 is bounded

(respectively, compact) if and only if the embedding operator 𝐸 : 𝒪(𝑝,𝛹) → ℱ𝛹
𝑞 is bounded

(respectively, compact). But, by Proposition 3.8 in [8], the boundedness and compactness of 𝐸
are equivalent to the condition that the function

𝑇 (𝑧) :=
1

𝜈(𝑤)2

∫︁
𝐷(𝑤,𝛿𝜈(𝑤))

(ℳ𝛷
𝑔 )

𝑞(𝑧)𝑑Λ(𝑧),

belongs to ℒ
𝑟
𝑞 (C, 𝑑Λ) for some 𝛿 > 0. Now we consider two different cases.
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Case 1: 𝑝 < ∞. Suppose 𝑇 is in ℒ
𝑟
𝑞 (C, 𝑑Λ), where 𝑟 = 𝑝𝑞

𝑝−𝑞
. Then using the estimate in

(2.3) and the fact that 1 + 𝛹 ′(𝑧) ≍ 1 + 𝛹 ′(𝑤), for 𝑧 ∈ 𝐷(𝑤, 𝛿𝜈(𝑤)), we obtain∫︁
C

(ℳ𝛷
𝑔 )

𝑟(𝑧)𝑑Λ(𝑧) =

∫︁
C

|𝑔(𝑧)|𝑟(𝛹 ′(𝛷(𝑧)))𝑟

(1 + 𝛹 ′(𝑧))𝑟
𝑒𝑟𝛹(𝛷(𝑧))−𝑟𝛹(𝑧)𝑑Λ(𝑧)

≲
∫︁
C

(︂
1

𝜈(𝑧)2(1 + 𝛹 ′(𝑧))𝑞

∫︁
𝐷(𝑧,𝛿𝜈(𝑧))

|𝑔(𝑤)|𝑞(𝛹 ′(𝛷(𝑧)))𝑞𝑒𝑞𝛹(𝛷(𝑤))−𝑞𝛹(𝑤)𝑑Λ(𝑤)

)︂ 𝑝
𝑝−𝑞

𝑑Λ(𝑧)

≲
∫︁
C

(︂
1

𝜈(𝑧)2

∫︁
𝐷(𝑧,𝛿𝜈(𝑧))

|𝑔(𝑤)|𝑞(𝛹 ′(𝛷(𝑧)))𝑞

(1 + 𝛹 ′(𝑤))𝑞
𝑒𝑞𝛹(𝛷(𝑤))−𝑞𝛹(𝑤)𝑑Λ(𝑤)

)︂ 𝑝
𝑝−𝑞

𝑑Λ(𝑧) < ∞.

On the other hand, if ℳ𝛷
𝑔 is in ℒ𝑟(C, 𝑑Λ), 𝑟 = 𝑝𝑞

𝑝−𝑞
, then (2.1) and the Hölder inequality give

‖𝐽𝛷
𝑔 𝑓‖

𝑞
ℱ𝛹

𝑞
≍
∫︁
C

|𝑓 ′(𝛷(𝑧))|𝑞|𝑔(𝑧)|𝑞

(1 + 𝛹 ′(𝑧))𝑞
𝑒−𝑞𝛹(𝑧)𝑑Λ(𝑧)

≲

(︂∫︁
C

|𝑓 ′(𝛷(𝑧))|𝑝

(1 + 𝛹 ′(𝛷(𝑧))𝑝
𝑒−𝑝𝛹(𝛷(𝑧))𝑑Λ(𝑧)

)︂ 𝑞
𝑝

×
(︂∫︁
C

|𝑔(𝑧)|𝑟(𝛹 ′(𝛷(𝑧)))𝑟

(1 + 𝛹 ′(𝑧))𝑟
𝑒𝑟𝛹(𝛷(𝑧))−𝑟𝛹(𝑧)𝑑Λ(𝑧)

)︂ 𝑞
𝑟

≲

(︂∫︁
C

|𝑓 ′(𝛷(𝑧))|𝑝

(1 + 𝛹 ′(𝛷(𝑧))𝑝
𝑒−𝑝𝛹(𝛷(𝑧))𝑑Λ(𝑧)

)︂ 𝑞
𝑝

≲ ‖𝑓‖𝑞ℱ𝛹
𝑝
,

where in the latter estimate we have employed a change of variable and the identity 𝛷(𝑧) = 𝑎𝑧+𝑏
with 0 < |𝑎| ⩽ 1 due to Lemma 3.1. Therefore, 𝐽𝛷

𝑔 is bounded and hence the function 𝑇 belongs

to ℒ
𝑟
𝑞 (C, 𝑑Λ).

Case 2: 𝑝 = ∞. Suppose 𝑇 is in ℒ(C, 𝑑Λ). Proceeding then as in Case 1, we get∫︁
C

(ℳ𝛷
𝑔 )

𝑞(𝑧)𝑑Λ(𝑧) =

∫︁
C

|𝑔(𝑧)|𝑞(𝛹 ′(𝛷(𝑧)))𝑞

(1 + 𝛹 ′(𝑧))𝑞
𝑒𝑞𝛹(𝛷(𝑧))−𝑞𝛹(𝑧)𝑑Λ(𝑧)

≲
∫︁
C

1

𝜈(𝑧)2𝑞(1 + 𝛹 ′(𝑧))𝑞

∫︁
𝐷(𝑧,𝛿𝜈(𝑧))

|𝑔(𝑤)|𝑞(𝛹 ′(𝛷(𝑧)))𝑞𝑒𝑞𝛹(𝛷(𝑤))−𝑞𝛹(𝑤)𝑑Λ(𝑤)𝑑Λ(𝑧)

≲
∫︁
C

1

𝜈(𝑧)2𝑞

∫︁
𝐷(𝑧,𝛿𝜈(𝑧))

|𝑔(𝑤)|𝑞(𝛹 ′(𝛷(𝑧)))𝑞

(1 + 𝛹 ′(𝑤))𝑞
𝑒𝑞𝛹(𝛷(𝑤))−𝑞𝛹(𝑤)𝑑Λ(𝑤)𝑑Λ(𝑧) < ∞.

On the other hand, if ℳ𝛷
𝑔 ∈ ℒ𝑞(C, 𝑑Λ), then ℳ𝛷

𝑔 is bounded and hence 𝛷(𝑧) = 𝑎𝑧 + 𝑏 with
0 < |𝑎| ⩽ 1 (see Lemma 3.1). Using this and the estimate in (2.2), we find:

‖𝐽𝛷
𝑔 𝑓‖

𝑞
ℱ𝛹

𝑞
≍
∫︁
C

|𝑓 ′(𝛷(𝑧))|𝑞|𝑔(𝑧)|𝑞

(1 + 𝛹 ′(𝑧))𝑞
𝑒−𝑞𝛹(𝑧)𝑑Λ(𝑧)

≲

(︂
sup
𝑧∈C

|𝑓 ′(𝛷(𝑧))|𝑞

(1 + 𝛹 ′(𝛷(𝑧))𝑞
𝑒−𝑞𝛹(𝛷(𝑧))

)︂(︂∫︁
C

|𝑔(𝑧)|𝑞(𝛹 ′(𝛷(𝑧)))𝑞

(1 + 𝛹 ′(𝑧))𝑞
𝑒𝑞𝛹(𝛷(𝑧))−𝑞𝛹(𝑧)𝑑Λ(𝑧)

)︂
≲ ‖𝑓‖𝑞ℱ𝛹

∞
.

Therefore, 𝐽𝛷
𝑔 is bounded and hence 𝑇 is in ℒ(C, 𝑑Λ). In view of Cases 1 and 2 we conclude

that the operator is bounded or compact if and only if
∫︀
C

(ℳ𝛷
𝑔 )

𝑟(𝑧)𝑑Λ(𝑧) is finite.

(𝑖𝑖) Here proof is very similar to the above proof and we omit it. The proof is complete.
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4. Schatten-class membership

The singular values of a compact operator 𝑇 on a Hilbert space ℋ are the square roots of the
positive eigenvalues of the operator 𝑇 *𝑇 , where 𝑇 * denotes the adjoint of 𝑇 . Given 0 < 𝑝 < ∞,
the Schatten class of a Hilbert space ℋ, denoted by 𝑆𝑝(ℋ), is the space of all compact operators
𝑇 on ℋ with its singular value sequence {𝛽𝑛} belonging to the sequence space 𝑙𝑝. The space
𝑆𝑝(ℋ) is Banach space for 1 ⩽ 𝑝 < ∞ with the norm

‖𝑇‖𝑆𝑝 =
(︁∑︁

𝑛

|𝛽𝑛|𝑝
)︁ 1

𝑝
.

In particular, 𝑆1(ℋ) is called the trace class and 𝑆2(ℋ) is called the Hilbert-Schmidt class. We
next characterize the Schatten class membership of 𝐽𝛷

𝑔 and 𝐶𝛷
𝑔 on ℱ𝛹

2 . Our next theorem gives

necessary condition for these operators to belong to 𝑆𝑝(ℱ𝛹
2 ) and sufficient condition will be

provided later.

Theorem 4.1. Let 0 < 𝑝 < ∞ and (𝑔, 𝛷) be pair of nonconstant entire functions. If 𝐽𝛷
𝑔 (re-

spectively, 𝐶𝛷
𝑔 ) is in the class 𝑆𝑝(ℱ𝛹

2 ), then ℳ𝛷
𝑔 (respectively, ℳ𝛷

𝑔(𝛷)) belongs to ℒ𝑝(C,∆𝛹𝑑Λ).

Proof. We will prove the statement for the operator 𝐽𝛷
𝑔 , and a similar procedure works for the

operator 𝐶𝛷
𝑔 . Firs, we define a scalar product ⟨ · , · ⟩* on ℱ𝛹

2 by

⟨𝑓, 𝑔⟩* := 𝑓(0)𝑔(0) +

∫︁
C

𝑓(𝑧)𝑔(𝑧)

(1 + 𝛹 ′(𝑧))2
𝑒−2𝛹(𝑧)𝑑Λ(𝑧), (4.1)

which by (2.1) gives an equivalent norm on ℱ𝛹
2 , and divide the proof into two cases.

Case 1: 0 < 𝑝 < 2. Since the operator 𝐽𝛷
𝑔 is in 𝑆𝑝(ℱ𝛹

2 ), then the operator (𝐽𝛷
𝑔 )

*(𝐽𝛷
𝑔 ) is in

𝑆 𝑝
2
(ℱ𝛹

2 ) and has a canonical decomposition:

(𝐽𝛷
𝑔 )

*(𝐽𝛷
𝑔 )𝑓 =

∑︁
𝑛

𝛽𝑛⟨𝑓, 𝑒𝑛⟩*𝑒𝑛,

where {𝑒𝑛} is an orthonormal basis in ℱ𝛹
2 and {𝛽𝑛} is the sequence of singular values of a

positive operator (𝐽𝛷
𝑔 )

*(𝐽𝛷
𝑔 ). Moreover,

‖(𝐽𝛷
𝑔 )

*(𝐽𝛷
𝑔 )‖

𝑝
2
𝑆 𝑝

2

=
∑︁
𝑛

|𝛽𝑛|
𝑝
2 .

Using the estimate in (2.5) and the Hölder’s inequality, we then obtain∫︁
C

(ℳ𝛷
𝑔 )

𝑝(𝑤)∆𝛹(𝑤)𝑑Λ(𝑤) =

∫︁
C

|𝑔(𝑤)|𝑝(𝛹 ′(𝛷(𝑤)))𝑝

(1 + 𝛹 ′(𝑤))𝑝
𝑒𝑝𝛹(𝛷(𝑤))−𝑝𝛹(𝑤)∆𝛹(𝑤)𝑑Λ(𝑤)

≍
∫︁
C

|𝑔(𝑤)|𝑝(𝛹 ′(𝛷(𝑤)))𝑝−2‖ 𝜕

𝜕𝛷(𝑤)
𝐾(𝛷(𝑤),𝛹)(𝛷(𝑤))‖2ℱ𝛹

2

(1 + 𝛹 ′(𝑤))𝑝
𝑒(𝑝−2)𝛹(𝛷(𝑤))−𝑝𝛹(𝑤)𝑑Λ(𝑤)

=
∑︁
𝑛

∫︁
C

|𝑔(𝑤)|𝑝(𝛹 ′(𝛷(𝑤)))𝑝−2|𝑒′𝑛(𝛷(𝑤))|2

(1 + 𝛹 ′(𝑤))𝑝
𝑒(𝑝−2)𝛹(𝛷(𝑤))−𝑝𝛹(𝑤)𝑑Λ(𝑤)

⩽
∑︁
𝑛

(︃∫︁
C

|𝑔(𝑤)|2|𝑒′𝑛(𝛷(𝑤))|2

(1 + 𝛹 ′(𝑤))2
𝑒−2𝛹(𝑤)𝑑Λ(𝑤)

)︃ 𝑝
2

·

(︃∫︁
C

|𝑒′𝑛(𝛷(𝑤))|2

(𝛹 ′(𝛷(𝑤)))2
𝑒−2𝛹(𝛷(𝑤))𝑑Λ(𝑤)

)︃ 2−𝑝
2

.

(4.2)
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Since 𝐽𝛷
𝑔 is compact, by Theorem 3.1 and Lemma 3.1 the function 𝛷 has the form 𝛷(𝑧) = 𝑎𝑧+𝑏

for some 𝑎, 𝑏 ∈ C with 0 < |𝑎| ⩽ 1. Then a change of variable gives∫︁
C

|𝑒′𝑛(𝛷(𝑤))|2

(𝛹 ′(𝛷(𝑤)))2
𝑒−2𝛹(𝛷(𝑤))𝑑Λ(𝑤) ≲

∫︁
C

|𝑒′𝑛(𝛷(𝑤))|2

(1 + 𝛹 ′(𝛷(𝑤)))2
𝑒−2𝛹(𝛷(𝑤))𝑑Λ(𝑤)

=
1

|𝑎|2

∫︁
C

|𝑒′𝑛(𝜁)|2

(1 + 𝛹 ′(𝜁))2
𝑒−2𝛹(𝜁)𝑑Λ(𝜁) ≍ ‖𝑒𝑛‖2ℱ𝛹

2
= 1,

and ∑︁
𝑛

(︃∫︁
C

|𝑔(𝑤)|2|𝑒′𝑛(𝛷(𝑤))|2

(1 + 𝛹 ′(𝑤))2
𝑒−2𝛹(𝑤)𝑑Λ(𝑤)

)︃ 𝑝
2

=
∑︁
𝑛

⟨(𝐽𝛷
𝑔 )

*(𝐽𝛷
𝑔 )𝑒𝑛, 𝑒𝑛⟩

𝑝
2
*

=
∑︁
𝑛

|𝛽𝑛|
𝑝
2 = ‖(𝐽𝛷

𝑔 )
*(𝐽𝛷

𝑔 )‖
𝑝
2
𝑆 𝑝

2

.

By (4.2) and the above two estimates we obtain∫︁
C

(ℳ𝛷
𝑔 )

𝑝(𝑤)∆𝛹(𝑤)𝑑Λ(𝑤) ≲ ‖(𝐽𝛷
𝑔 )

*(𝐽𝛷
𝑔 )‖

𝑝
2
𝑆 𝑝

2

< ∞

and this is the desired inequality.
Case 2: 2 ⩽ 𝑝 < ∞. Let {𝑧𝑛} be the sequence as in Lemma 2.2 and {𝑒𝑛} be an orthonormal

basis in ℱ𝛹
2 . Let 𝑇 be an operator taking 𝑒𝑛(𝑧) to 𝑓(𝑧𝑛,𝑅)(𝑧) =

𝐹(𝑧𝑛,𝑅)(𝑧)

𝜈(𝑧𝑛)
. By Proposition 9 in

[1], 𝑇 is bounded operator and 𝐽𝛷
𝑔 𝑇 is in 𝑆𝑝(ℱ𝛹

2 ), and by Theorem 1.33 of [9],∑︁
𝑛

‖𝐽𝛷
𝑔 𝑓(𝑧𝑛,𝑅)‖𝑝ℱ𝛹

2
=
∑︁
𝑛

‖𝐽𝛷
𝑔 𝑇𝑒𝑛‖

𝑝

ℱ𝛹
2
< ∞. (4.3)

Using (2.3) and the estimate 𝜈(𝑧) ≍ 𝜈(𝑧𝑛) for 𝑧 ∈ 𝐷(𝑧𝑛, 𝛿𝜈(𝑧𝑛)), we get∫︁
C

(ℳ𝛷
𝑔 )

𝑝(𝑧)∆𝛹(𝑧)𝑑Λ(𝑧) =
∑︁
𝑛

∫︁
𝐷(𝑧𝑛,𝛿𝜈(𝑧𝑛))

|𝑔(𝑧)|𝑝(𝛹 ′(𝛷(𝑧)))𝑝

(1 + 𝛹 ′(𝑧))𝑝
𝑒𝑝𝛹(𝛷(𝑧))−𝑝𝛹(𝑧)∆𝛹(𝑧)𝑑Λ(𝑧)

≲
∑︁
𝑛

𝜈(𝑧𝑛)
−𝑝

∫︁
𝐷(𝑧𝑛,𝛿𝜈(𝑧𝑛))

(𝐻(𝑧))
𝑝
2 𝜈(𝑧)−2𝑑Λ(𝑧),

where

𝐻(𝑧) =

∫︁
𝐷(𝑧,𝛿𝜈(𝑧))

|𝑔(𝑤)|2(𝛹 ′(𝛷(𝑤)))2

(1 + 𝛹 ′(𝑤))2
𝑒2𝛹(𝛷(𝑤))−2𝛹(𝑤)𝑑Λ(𝑤).

Using the estimate in (2.6), we proceed as follows:∑︁
𝑛

𝜈(𝑧𝑛)
−𝑝

(︃ ∫︁
𝐷(𝑧𝑛,𝛿𝜈(𝑧𝑛))

|𝑔(𝑧)|2(𝛹 ′(𝛷(𝑧)))2

(1 + 𝛹 ′(𝑧))2
𝑒2𝛹(𝛷(𝑧))−2𝛹(𝑧)𝑑Λ(𝑧)

)︃ 𝑝
2

≲
∑︁
𝑛

(︃ ∫︁
𝐷(𝑧𝑛,𝛿𝜈(𝑧𝑛))

|𝑔(𝑧)|2|𝐹 ′
(𝑧𝑛,𝑅)(𝛷(𝑧))|2

(1 + 𝛹 ′(𝑧))2
𝑒−2𝛹(𝑧)𝑑Λ(𝑧)

)︃ 𝑝
2

≲
∑︁
𝑛

‖𝐽𝛷
𝑔 𝑓(𝑧𝑛,𝑅)‖𝑝ℱ𝛹

2

which, by (4.3), is finite, and therefore,ℳ𝛷
𝑔 belongs to ℒ𝑝(C,∆𝛹𝑑Λ). The proof is complete.

Theorem 4.2. Let 1 < 𝑝 < ∞ and (𝑔, 𝛷) be a pair of nonconstant entire functions. If ℳ𝛷
𝑔

(respectively, ℳ𝛷
𝑔(𝛷)) is in ℒ𝑝(C,∆𝛹(𝛷)𝑑Λ), then 𝐽𝛷

𝑔 (respectively, 𝐶𝛷
𝑔 ) is in the class 𝑆𝑝(ℱ𝛹

2 ).
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Proof. The proof of the theorem for the two operators is very similar. This is why we provide
the proof only for the operator 𝐽𝛷

𝑔 . We consider two cases.

Case 1: 1 < 𝑝 < 2. Let {𝑒𝑛} be an orthonormal basis of ℱ𝛹
2 . Then by Theorem 1.27 in [9],

𝐽𝛷
𝑔 is in the class 𝑆𝑝(ℱ𝛹

2 ) if and only if∑︁
𝑛

|⟨𝐽𝛷
𝑔 𝑒𝑛, 𝑒𝑛⟩*|𝑝 < ∞,

where ⟨ · , · ⟩* was defined in (4.1). Since 𝑝 > 1, the Hölder inequality yields

∑︁
𝑛

|⟨𝐽𝛷
𝑔 𝑒𝑛, 𝑒𝑛⟩*|𝑝 ≲

∑︁
𝑛

(︃∫︁
C

|𝑔(𝑧)𝑒′𝑛(𝛷(𝑧))𝑒′𝑛(𝑧)|
(1 + 𝛹 ′(𝑧))2

𝑒−2𝛹(𝑧)𝑑Λ(𝑧)

)︃𝑝

⩽
∑︁
𝑛

∫︁
C

|𝑔(𝑧)|𝑝

(1 + 𝛹 ′(𝑧))2𝑝
|𝑒′𝑛(𝛷(𝑧))|𝑝|𝑒′𝑛(𝑧)|2−𝑝𝑒−2𝛹(𝑧)𝑑Λ(𝑧)

·
(︁∫︁
C

|𝑒′𝑛(𝑧)|2

(1 + 𝛹 ′(𝑧))2
𝑒−2𝛹(𝑧)𝑑Λ(𝑧)

)︁𝑝−1

≍
∫︁
C

|𝑔(𝑧)|𝑝

(1 + 𝛹 ′(𝑧))2𝑝
(︀∑︁

𝑛

|𝑒′𝑛(𝛷(𝑧))|𝑝|𝑒′𝑛(𝑧)|2−𝑝
)︀
𝑒−2𝛹(𝑧)𝑑Λ(𝑧).

(4.4)

Since 𝑝 < 2, applying the Hölder inequality, using (2.5) and the estimate(︀
𝛹 ′(𝑧)

)︀2(1−𝑝)
≲

𝜈(𝑧)2−𝑝

𝜈(𝛷(𝑧))2−𝑝
,

which follows from definition of 𝜈, we obtain∑︁
𝑛

|𝑒′𝑛(𝛷(𝑧))|𝑝|𝑒′𝑛(𝑧)|2−𝑝 ⩽
(︁∑︁

𝑛

|𝑒′𝑛(𝛷(𝑧))|2
)︁ 𝑝

2
(︁∑︁

𝑛

|𝑒′𝑛(𝑧)|2
)︁ 2−𝑝

2

= ‖ 𝜕

𝜕𝑧
𝐾(𝛷(𝑧),𝛹)‖𝑝ℱ𝛹

2
‖ 𝜕

𝜕𝑧
𝐾(𝑧,𝛹)‖2−𝑝

ℱ𝛹
2

≍ ‖𝐾(𝛷(𝑧),𝛹)‖𝑝ℱ𝛹
2

(︀
𝛹 ′(𝛷(𝑧))

)︀𝑝‖𝐾(𝑧,𝛹)‖2−𝑝

ℱ𝛹
2

(︀
𝛹 ′(𝑧)

)︀2−𝑝

≍
(︀
𝛹 ′(𝛷(𝑧))

)︀𝑝(︀
𝛹 ′(𝑧)

)︀2−𝑝
𝑒𝑝𝛹(𝛷(𝑧))+(2−𝑝)𝛹(𝑧)

𝜈(𝛷(𝑧))𝑝𝜈(𝑧)2−𝑝

≲

(︀
𝛹 ′(𝛷(𝑧))

)︀𝑝(︀
𝛹 ′(𝑧)

)︀𝑝
𝑒𝑝𝛹(𝛷(𝑧))+(2−𝑝)𝛹(𝑧)

𝜈(𝛷(𝑧))2
.

Substituting this estimate into (4.4), we get∑︁
𝑛

|⟨𝐽𝛷
𝑔 𝑒𝑛, 𝑒𝑛⟩*|𝑝 ≲

∫︁
C

|𝑔(𝑧)|𝑝
(︀
𝛹 ′(𝛷(𝑧))

)︀𝑝
(𝛹 ′(𝑧))𝑝

(1 + 𝛹 ′(𝑧))2𝑝𝜈(𝛷(𝑧))2
𝑒𝑝𝛹(𝛷(𝑧))−𝑝𝛹(𝑧)𝑑Λ(𝑧)

≍
∫︁
C

(︁
ℳ𝛷

𝑔 (𝑧)
)︁𝑝
∆𝛹(𝛷(𝑧))𝑑Λ(𝑧) < ∞.

Case 2: 2 ⩽ 𝑝 < ∞. Similarly, let {𝑒𝑛} be an orthonormal basis of ℱ𝛹
2 . By Theorem

1.33 [9], it is sufficient to show that
∑︀
𝑛

‖𝐽𝛷
𝑔 𝑒𝑛‖

𝑝

ℱ𝛹
2
< ∞. For 𝑝 = 2, by estimates (2.1) and (2.5)
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we find ∑︁
𝑛

‖𝐽𝛷
𝑔 𝑒𝑛‖2ℱ𝛹

2
≍
∑︁
𝑛

∫︁
C

|𝑒′𝑛(𝛷(𝑧))|2|𝑔(𝑧)|2

(1 + 𝛹 ′(𝑧))2
𝑒−2𝛹(𝑧)𝑑Λ(𝑧)

≍
∫︁
C

|𝑔(𝑧)|2(𝛹 ′(𝛷(𝑧)))2

(1 + 𝛹 ′(𝑧))2𝜈(𝛷(𝑧))2
𝑒2𝛹(𝛷(𝑧))−2𝛹(𝑧)𝑑Λ(𝑧)

=

∫︁
C

(︁
ℳ𝛷

𝑔 (𝑧)
)︁𝑝
∆𝛹(𝛷(𝑧))𝑑Λ(𝑧).

(4.5)

For 𝑝 > 2, by the estimate in (2.1), the Hölder’s inequality and the norm estimate in (2.5) we
obtain∑︁

𝑛

‖𝐽𝛷
𝑔 𝑒𝑛‖

𝑝

ℱ𝛹
2
≍
∑︁
𝑛

(︁∫︁
C

|𝑒′𝑛(𝛷(𝑧))|2|𝑔(𝑧)|2

(1 + 𝛹 ′(𝑧))2
𝑒−2𝛹(𝑧)𝑑Λ(𝑧)

)︁ 𝑝
2

⩽
∑︁
𝑛

(︁∫︁
C

|𝑒′𝑛(𝛷(𝑧))|2|𝑔(𝑧)|𝑝(1 + 𝛹 ′(𝛷(𝑧))𝑝−2

(1 + 𝛹 ′(𝑧))2
𝑒−𝑝𝛹(𝑧)+(𝑝−2)𝛹(𝛷(𝑧))𝑑Λ(𝑧)

)︁
×
(︁∫︁
C

|𝑒′𝑛(𝛷(𝑧))|2

(1 + 𝛹 ′(𝛷(𝑧)))2
𝑒−2𝛹(𝛷(𝑧))𝑑Λ(𝑧)

)︁ 𝑝−2
2

≲
∑︁
𝑛

(︁∫︁
C

|𝑒′𝑛(𝛷(𝑧))|2|𝑔(𝑧)|𝑝(1 + 𝛹 ′(𝛷(𝑧))𝑝−2

(1 + 𝛹 ′(𝑧))2
𝑒−𝑝𝛹(𝑧)+(𝑝−2)𝛹(𝛷(𝑧))𝑑Λ(𝑧)

)︁

≲
∫︁
C

(︀∑︀
𝑛

|𝑒′𝑛(𝛷(𝑧))|2
)︀
|𝑔(𝑧)|𝑝(𝛹 ′(𝛷(𝑧))𝑝−2

(1 + 𝛹 ′(𝑧))2
𝑒−𝑝𝛹(𝑧)+(𝑝−2)𝛹(𝛷(𝑧))𝑑Λ(𝑧)

≍
∫︁
C

|𝑔(𝑧)|𝑝(𝛹 ′(𝛷(𝑧))𝑝

(1 + 𝛹 ′(𝑧))2𝜈(𝛷(𝑧))2
𝑒−𝑝𝛹(𝑧)+𝑝𝛹(𝛷(𝑧))𝑑Λ(𝑧)

=

∫︁
C

(︁
ℳ𝛷

𝑔 (𝑧)
)︁𝑝
∆𝛹(𝛷(𝑧))𝑑Λ(𝑧) ≲

∫︁
C

(︁
ℳ𝛷

𝑔 (𝑧)
)︁𝑝
∆𝛹(𝑧)𝑑Λ(𝑧).

(4.6)

By the above relations and (4.5) we conclude that 𝐽𝛷
𝑔 ∈ 𝑆𝑝(ℱ𝛹

2 ). The proof is complete.

Our next proposition gives another characterization of Schatten class membership of 𝐽𝛷
𝑔 and

𝐶𝛷
𝑔 on ℱ𝛹

2 . It holds for any compact operator 𝑇 on ℱ𝛹
2 .

Proposition 4.3. Let 0 < 𝑝 < ∞ and (𝑔, 𝛷) be a pair of nonconstant entire functions such
that 𝐽𝛷

𝑔 (respectively, 𝐶𝛷
𝑔 ) is compact on ℱ𝛹

2 . Then

(i) if 2 ⩽ 𝑝 < ∞ and 𝐽𝛷
𝑔 (respectively, 𝐶𝛷

𝑔 ) is in 𝑆𝑝(ℱ𝛹
2 ), then the function ‖𝐽𝛷

𝑔 𝑘(𝑤,𝛹)‖ℱ𝛹
2

(respectively, ‖𝐶𝛷
𝑔 𝑘(𝑤,𝛹)‖ℱ𝛹

2
) belongs to ℒ𝑝(C,∆𝛹𝑑Λ).

(ii) if 0 < 𝑝 < 2 and the function ‖𝐽𝛷
𝑔 𝑘(𝑤,𝛹)‖ℱ𝛹

2
(respectively, ‖𝐶𝛷

𝑔 𝑘(𝑤,𝛹)‖ℱ𝛹
2
) belongs to

ℒ𝑝(C,∆𝛹𝑑Λ), then 𝐽𝛷
𝑔 (respectively, 𝐶𝛷

𝑔 ) is in 𝑆𝑝(ℱ𝛹
2 ).

Proof. We again prove for the operator 𝐽𝛷
𝑔 only. Since 𝐽𝛷

𝑔 is compact, it has a canonical
decomposition,

𝐽𝛷
𝑔 𝑓 =

∑︁
𝑛

𝛽𝑛⟨𝑓, 𝑒𝑛⟩𝑒𝑛, (4.7)
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where {𝛽𝑛} is a sequence of real numbers tending to 0 as 𝑛 goes to infinity and {𝑒𝑛} is an
orthonormal basis of ℱ𝛹

2 (see, Theorem 1.20 in [9]). Moreover,

‖𝐽𝛷
𝑔 ‖

𝑝
𝑆𝑝

=
∑︁
𝑛

|𝛽𝑛|𝑝.

Applying (4.7) to the normalized kernel function 𝑘(𝑤,𝛹), we obtain

‖𝐽𝛷
𝑔 𝑘(𝑤,𝛹)‖2ℱ𝛹

2
= ‖𝐾(𝑤,𝛹)‖−2

ℱ𝛹
2

∑︁
𝑛

|𝛽𝑛|2||𝑒𝑛(𝑤)|2 ≍ 𝜈(𝑤)2𝑒−2𝛹(𝑤)
∑︁
𝑛

|𝛽𝑛|2||𝑒𝑛(𝑤)|2. (4.8)

(𝑖) If 𝑝 = 2, then using the estimate in (4.8), we find∫︁
C

‖𝐽𝛷
𝑔 𝑘(𝑤,𝛹)‖𝑝ℱ𝛹

2
∆𝛹(𝑤)𝑑Λ(𝑤) ≍

∫︁
C

𝑒−2𝛹(𝑤)
(︀∑︁

𝑛

|𝛽𝑛|2||𝑒𝑛(𝑤)|2
)︀
𝑑Λ(𝑤)

=
∑︁
𝑛

|𝛽𝑛|2
∫︁
C

|𝑒𝑛(𝑤)|2𝑒−2𝛹(𝑤)𝑑Λ(𝑤) =
∑︁
𝑛

|𝛽𝑛|2 = ‖𝐽𝛷
𝑔 ‖2𝑆2

< ∞.

If 𝑝 > 2, then again using the estimate in (4.8), applying Hölder’s inequality and using∑︁
𝑛

|𝑒𝑛(𝑤)|2 = 𝐾(𝑤,𝛹)(𝑤) = ‖𝐾(𝑤,𝛹)‖2ℱ𝛹
2

together with estimate (2.4), we get∫︁
C

‖𝐽𝛷
𝑔 𝑘(𝑤,𝛹)‖𝑝ℱ𝛹

2
∆𝛹(𝑤)𝑑Λ(𝑤) ≍

∫︁
C

𝜈(𝑤)𝑝−2𝑒−𝑝𝛹(𝑤)
(︀∑︁

𝑛

|𝛽𝑛|2||𝑒𝑛(𝑤)|2
)︀ 𝑝

2𝑑Λ(𝑤)

⩽
∫︁
C

𝜈(𝑤)𝑝−2𝑒−𝑝𝛹(𝑤)
(︀∑︁

𝑛

|𝛽𝑛|𝑝||𝑒𝑛(𝑤)|2
)︀(︀∑︁

𝑛

|𝑒𝑛(𝑤)|2
)︀ 𝑝−2

2 𝑑Λ(𝑤)

≍
∑︁
𝑛

|𝛽𝑛|𝑝
∫︁
C

|𝑒𝑛(𝑤)|2𝑒−2𝛹(𝑤)𝑑Λ(𝑤)

=
∑︁
𝑛

|𝛽𝑛|𝑝 = ‖𝐽𝛷
𝑔 ‖

𝑝
𝑆𝑝

< ∞.

(𝑖𝑖) Using the estimate in (2.4), applying Hölder’s inequality and the estimate in (4.8), we
obtain

‖𝐽𝛷
𝑔 ‖

𝑝
𝑆𝑝

=
∑︁
𝑛

|𝛽𝑛|𝑝 =
∑︁
𝑛

|𝛽𝑛|𝑝‖𝑒𝑛‖2ℱ𝛹
2
=
∑︁
𝑛

|𝛽𝑛|𝑝
∫︁
C

|𝑒𝑛(𝑧)|2𝑒−2𝛹(𝑧)𝑑Λ(𝑧)

≍
∑︁
𝑛

|𝛽𝑛|𝑝
∫︁
C

|𝑒𝑛(𝑧)|2
‖𝐾(𝑧,𝛹)‖−2

ℱ𝛹
2

𝜈(𝑧)2
𝑑Λ(𝑧)

⩽
∫︁
C

(︁∑︁
𝑛

|𝛽𝑛|2|𝑒𝑛(𝑧)|2
)︁ 𝑝

2
(︁∑︁

𝑛

|𝑒𝑛(𝑧)|2
)︁ 2−𝑝

2
‖𝐾(𝑧,𝛹)‖−2

ℱ𝛹
2

𝜈(𝑧)2
𝑑Λ(𝑧)

=

∫︁
C

(︁∑︁
𝑛

|𝛽𝑛|2|𝑒𝑛(𝑧)|2
)︁ 𝑝

2
‖𝐾(𝑧,𝛹)‖−𝑝

ℱ𝛹
2

𝜈(𝑧)2
𝑑Λ(𝑧)

≍
∫︁
C

‖𝐽𝛷
𝑔 𝑘(𝑧,𝛹)‖𝑝ℱ𝛹

2
∆𝛹(𝑧)𝑑Λ(𝑧) < ∞,

from which the conclusion follows. The proof is complete.
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