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UNKNOWN COEFFICIENT PROBLEM FOR MIXED

EQUATION OF PARABOLIC-HYPERBOLIC TYPE WITH

NON-LOCAL BOUNDARY CONDITIONS ON

CHARACTERISTICS

D.K. DURDIEV

Abstract. For an equation of a mixed parabolic-hyperbolic type with a characteristic line
of type change, we study the inverse problem associated with the search for an unknown
coefficient at the lowest term of the parabolic equation. In the direct problem, we consider
an analog of the Tricomi problem for this equation with a nonlocal condition on the char-
acteristics in the hyperbolic part and the Dirichlet condition in the parabolic part of the
domain. In order to determine the unknown coefficient by the solution on the parabolic
part of the domain, the integral overdetermination condition is proposed. Global results
on the unique solvability of the inverse problem in the sense of the classical solution are
proved.
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1. Formulation of problem

Let Ω𝑙𝑇 be a domain in the plane of variables 𝑥, 𝑦, consisting of the union of two subdomains,
i.e. Ω𝑙𝑇 = Ω1𝑙𝑇 ∪ Ω2𝑙, where

Ω1𝑙𝑇 =
{︁
(𝑥, 𝑦) : 0 < 𝑥 < 𝑙, 0 < 𝑦 ⩽ 𝑇

}︁
,

Ω2𝑙 =
{︁
(𝑥, 𝑦) : −𝑦 < 𝑥 ⩽ 𝑦 + 𝑙, − 𝑙

2
< 𝑦 < 0

}︁
,

and 𝑙, 𝑇 are fixed positive numbers. In this domain we consider the equation

𝜕2𝑢

𝜕𝑥2
− 1− sign 𝑦

2

𝜕2𝑢

𝜕𝑦2
− 1 + sign 𝑦

2

𝜕𝑢

𝜕𝑦
− 1 + sign 𝑦

2
𝑞(𝑥)𝑢(𝑥, 𝑦) = 0. (1.1)

Equation (1.1) is of a mixed parabolic–hyperbolic type. For this equation, the line of change
of type 𝑦 = 0 is a characteristic (parabolic degeneration of the second kind [1]).

Direct problem. In the domain Ω𝑙𝑇 find the solution of equation (1.1) satisfying the following
boundary conditions:

𝑢(0, 𝑦) = 𝜙1(𝑦), 𝑢(𝑙, 𝑦) = 𝜙2(𝑦), 𝑦 ∈ [0, 𝑇 ], (1.2)

𝑢
(︁𝑥
2
,−𝑥

2

)︁
+ 𝑢

(︂
𝑥+ 𝑙

2
,
𝑥− 𝑙

2

)︂
= 𝜓(𝑥), 𝑥 ∈ [0, 𝑙] , (1.3)

where 𝜙1 = 𝜙1(𝑦), 𝜙2 = 𝜙2(𝑦), 𝜓 = 𝜓(𝑥) are given functions.
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A classical solution to direct problem (1.1)–(1.3) is a function 𝑢(𝑥, 𝑦) in the class 𝐶
(︀
Ω𝑙𝑇

)︀
∩

𝐶1 (Ω𝑙𝑇 )∩𝐶1,2
𝑥,𝑦 (Ω1𝑙𝑇 )∩𝐶2 (Ω2𝑙) , which solves equation (1.1) and satisfies conditions (1.2), (1.3).

An inverse problem is on finding a pair of functions 𝑢 = 𝑢(𝑥, 𝑦), 𝑞 = 𝑞(𝑥), in the classes

𝑢 ∈ 𝐶
(︀
Ω𝑙𝑇

)︀
∩ 𝐶1 (Ω𝑙𝑇 ) ∩ 𝐶1,2

𝑥,𝑦 (Ω1𝑙𝑇 ) ∩ 𝐶2 (Ω2𝑙) , 𝑞 ∈ 𝐶[0, 𝑙],

such that these functions solve equation (1.1) and satisfy boundary conditions (1.2), (1.3) and
the following overdetermination condition:

𝑇∫︁
0

ℎ(𝑦)𝑢(𝑥, 𝑦) 𝑑𝑦 = 𝑓(𝑥), 𝑥 ∈ [0, 𝑙] , (1.4)

where ℎ = ℎ(𝑦), 𝑓 = 𝑓(𝑥) are given sufficiently smooth functions.

Direct and inverse problems for mixed type equations are not studied in so many details
as similar problems for classical equations. Nevertheless, such problems are relevant from the
point of view of applications. The importance of considering equations of mixed type, where
the equation is of parabolic type in one part of the domain and hyperbolic in the other, was
first pointed out by Gel’fand in his work [2]. Another example is the following phenomenon
in electrodynamics: a mathematical study of the tension of an electromagnetic field in an
inhomogeneous medium consisting of a dielectric and a conducting medium leads to a system
consisting of a wave equation and a heat equation, see [3]. There are many examples of such
kind.
For the first time, an analogue of the Tricomi problem for a hyperbolic–parabolic equation

was studied in [4]. Further, such problems with different boundary and non–local conditions
for parabolic–hyperbolic equations with both characteristic and non–characteristic type change
lines were formulated and studied in [5]–[8].
Methods for solving direct and inverse problems for finding the solution of an initial boundary

value problem for equations of the parabolic-hyperbolic type and the unknown right–hand side
(linear problem) of the equation in a rectangular domain were proposed in [9]–[11]. In this
direction, we also point out work [12], in which such problems were studied for equations of
mixed parabolic–hyperbolic type with the time fractional derivative in the parabolic part of
the equation.
Various inverse problems for particular second order equations of hyperbolic and parabolic

types can be found in monographs [13]–[16], see also the references therein.
For equations of mixed parabolic–hyperbolic type, inverse coefficient problems were not stud-

ied before. This article continues the study of the author [17], in which the local unique solv-
ability of the inverse problem on determining the variable coefficient at the lowest term of a
hyperbolic equation for a mixed hyperbolic–parabolic equation with a noncharacteristic line of
type change was investigated. Note that the problems considered below, in addition to their
independent interest, are also of interest from the point of view of studying the solvability of
inverse coefficient problems for parabolic equations.
Throughout this paper we shall assume that the following conditions are satisfied:

(B1) (𝜙1(𝑦), 𝜙2(𝑦)) ∈ 𝐶1[0, 𝑇 ], 𝜓(𝑥) ∈ 𝐶3 [0, 𝜆] ;
(B2) 𝜙1(0) = 𝜙2(0), 𝜙1(0)− 𝜙2(0) = 𝜓(0)− 𝜓(𝑙);

(B3) ℎ(𝑦) ∈ 𝐶1[0, 𝑇 ], ℎ(0) = ℎ(𝑇 ) = 0, 𝑓(𝑥) ∈ 𝐶3[0, 𝑙],
𝑇∫︀
0

ℎ(𝑦)𝜙1(𝑦)𝑑𝑦 = 𝑓(0),

𝑇∫︁
0

ℎ(𝑦)𝜙2(𝑦)𝑑𝑦 = 𝑓(𝑙), 𝑓(𝑥) ̸= 0 for all 𝑥 ∈ [0, 𝑙].
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2. Direct problem

Assume that the function 𝑞(𝑥) is known.

Theorem 2.1. Let conditions B1, B2, 𝑞(𝑥) ∈ 𝐶1 [0, 𝑙] be satisfied. Then there exists an
unique solution to direct problem (1.1)–(1.3) in the domain Ω𝑙𝑇 .

We denote 𝜏(𝑥) := 𝑢(𝑥, 0), 𝜈(𝑥) = 𝜕
𝜕𝑦
𝑢(𝑥, 0). Due to the unique solvability of the Cauchy

problem for the wave equation, the solution to equation (1.1) in the domain Ω2𝑙 can be written
using the d’Alembert formula:

𝑢(𝑥, 𝑦) =
1

2
[𝜏(𝑥+ 𝑦) + 𝜏(𝑥− 𝑦)]− 1

2

∫︁ 𝑥−𝑦

𝑥+𝑦

𝜈(𝑠) 𝑑𝑠. (2.1)

Taking into account condition (1.3) and the identities 𝜏(0) = 𝜙1(0), 𝜏(𝑙) = 𝜙2(0) (a conse-
quence of the definition of the classical solution), we obtain the identity

2𝜏(𝑥) + 𝜙1(0) + 𝜙2(0)−
𝑙∫︁

0

𝜈(𝑠)𝑑𝑠 = 2𝜓(𝑥), 𝑥 ∈ [0, 𝑙]. (2.2)

It follows from (1.3) at 𝑥 = 𝑙, 𝑦 = −𝑙 that

𝑢

(︂
𝑙

2
,− 𝑙

2

)︂
= 𝜓(𝑙)− 𝜙2(0).

Comparing this with (2.1) at 𝑥 = 𝑙
2
, 𝑦 = − 𝑙

2
, we have

𝑙∫︁
0

𝜈(𝑠) 𝑑𝑠 = 𝜙1(0) + 3𝜙2(0)− 2𝜓(𝑙).

Substituting this into identity (2.2), we find

𝜏(𝑥) = 𝜓(𝑙)− 𝜙2(0) + 𝜓(𝑥). (2.3)

Thus, we have found the function 𝜏(𝑥).
In order to find 𝜈(𝑥) we use equation (1.1) in domain Ω1𝑙𝑇 and calculate lim𝑦→+0. Then we

easily obtain 𝜈(𝑥) = 𝜏 ′′(𝑥)− 𝑞(𝑥)𝜏(𝑥) and the same

𝜈(𝑥) = 𝜓′′(𝑥)− 𝑞(𝑥) (𝜓(𝑙)− 𝜙2(0) + 𝜓(𝑥)) .

It is clear that for known 𝜏(𝑥) and 𝜈(𝑥) the solution to direct problem (1.1)–(1.3) in Ω2𝑙 is
given by formula (2.1). Under the assumptions of Theorem 2.1 we have 𝑢 ∈ 𝐶2 (Ω2𝑙) .
It is known [1] that the Green’s function of the first initial boundary value problem for the

equation

𝑢𝑥𝑥 − 𝑢𝑦 = 0, 𝑥 ∈ (0, 𝑙), 𝑦 > 0,

is of the form

𝐺(𝑥, 𝜉, 𝑦) =
1

2
√
𝜋𝑦

∞∑︁
𝑛=−∞

[︃
exp

(︂
−(𝑥− 𝜉 + 2𝑛)2

4𝑦

)︂
− exp

(︂
−(𝑥+ 𝜉 + 2𝑛)2

4𝑦

)︂]︃
.

In view of this, we rewrite equation (1.1) in the domain Ω1𝑙𝑇 with conditions (1.2) to an integral
equation
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𝑢(𝑥, 𝑦) =

𝑙∫︁
0

𝐺(𝑥, 𝜉, 𝑦)𝜏(𝜉) 𝑑𝜉 +

𝑦∫︁
0

𝐺𝜉(𝑥, 0, 𝑦 − 𝜂)𝜙1(𝜂) 𝑑𝜂

−
𝑦∫︁

0

𝐺𝜉(𝑥, 𝑙, 𝑦 − 𝜂)𝜙2(𝜂) 𝑑𝜂 −
𝑦∫︁

0

𝑙∫︁
0

𝐺(𝑥, 𝜉, 𝑦 − 𝜂)𝑞(𝜉)𝑢(𝜉, 𝜂) 𝑑𝜉𝑑𝜂.

(2.4)

We also note that integral equation (2.4) is of Volterra type since 𝜏(𝑥) is known. In view of the
conditions imposed on 𝜙1, 𝜙2 in (B1), this equation determines the function 𝑢 ∈ 𝐶1,2

𝑥,𝑦 (Ω1𝑙𝑇 ) ,
that is, the solution to problem (1.1), (1.2) in the domain Ω1𝑙𝑇 .
Thus, the constructed functions in Ω1𝑙𝑇 and Ω2𝑙 is the classical solution to direct problem

(1.1)–(1.3) in the domain Ω𝑙𝑇 . This completes the proof of Theorem 2.1.

3. Inverse problem

Assume that conditions (B3) are satisfied. Multiplying equation (1.1) in the domain Ω1𝑙𝑇 by
the function ℎ(𝑦), integrating over the segment [0, 𝑇 ] and taking into consideration (1.4), we
find

𝑞(𝑥) =
𝑓 ′′(𝑥)

𝑓(𝑥)
+

1

𝑓(𝑥)

𝑇∫︁
0

ℎ′(𝑦)𝑢(𝑥, 𝑦) 𝑑𝑦, 𝑥 ∈ [0, 𝑙]. (3.1)

Using this formula, we eliminate the function 𝑞(𝑥) in (2.4) and write the resulting equation in
the operator form:

𝑢(𝑥, 𝑦) = 𝑈 [𝑢](𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω1𝑙𝑇 , (3.2)

where the operator 𝑈 is defined by the identity

𝑈𝑢(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) +

𝑦∫︁
0

𝑙∫︁
0

𝐺(𝑥, 𝜉, 𝑦 − 𝜂)

⎡⎣𝑓 ′′(𝜉)

𝑓(𝜉)
+

1

𝑓(𝜉)

𝑇∫︁
0

ℎ′(𝑠)𝑢(𝜉, 𝑠) 𝑑𝑠

⎤⎦𝑢(𝜉, 𝜂) 𝑑𝜉𝑑𝜂, (3.3)

and here 𝑢0 denotes the sum of terms of integral equation, which do not involve the unknown
function:

𝑢0(𝑥, 𝑦) :=

𝑙∫︁
0

𝐺(𝑥, 𝜉, 𝑦)𝜏(𝜉)𝑑𝜉 +

𝑦∫︁
0

𝐺𝜉(𝑥, 0, 𝑦 − 𝜂)𝜙1(𝜂)𝑑𝜂 −
𝑦∫︁

0

𝐺𝜉(𝑥, 𝑙, 𝑦 − 𝜂)𝜙2(𝜂)𝑑𝜂.

We recall that the function 𝜏(𝑥) has been defined by formula (2.3).
The main result of this section is the following theorem.

Theorem 3.1. Let conditions (B1)–(B3) be satisfied. Then, there exist positives numbers 𝑇 *

such that equation (3.2) has an unique continuous solution in the domain Ω1𝑙𝑇 for 𝑇 ∈ (0, 𝑇 *).

Proof. Owing to (3.3) it is clear that under the assumptions of the theorem the operator 𝑈
maps a function 𝑢 ∈ 𝐶

(︀
Ω1𝑙𝑇

)︀
into a function belonging to the same space. We define the norm

in 𝐶
(︀
Ω1𝑙𝑇

)︀
as follows:

‖𝑣‖𝑙𝑇 = max
(𝑥,𝑦)∈Ω1𝑙𝑇

|𝑢(𝑥, 𝑦)| .

For the sake of brevity, we introduce notations

𝑓0 := min
𝑥∈[0,𝑙]

|𝑓(𝑥)| , 𝑓1 := max
𝑥∈[0,𝑙]

|𝑓 ′′(𝑥)| , ℎ0 := max
𝑥∈[0,𝑇 ]

|ℎ′(𝑦)| .

We are going to show that for sufficiently small 𝑇 the operator 𝑈 is a contraction of the ball

𝑆 (𝑢0, 𝑟) :=
{︀
𝑢 ∈ 𝐶

(︀
Ω1𝑙𝑇

)︀
: ‖𝑢− 𝑢0‖𝑙𝑇 ⩽ 𝑟

}︀
⊂ 𝐶

(︀
Ω1𝑙𝑇

)︀
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into itself, where a radius 𝑟 is a known number and a center is an element 𝑢0 = 𝑢0(𝑥, 𝑦) of the
functional space 𝐶

(︀
Ω1𝑙𝑇

)︀
. This fact will prove that in the domain Ω1𝑙𝑇 equation (3.2) has an

unique continuous solution satisfying the inequality ‖𝑢− 𝑢0‖𝑙𝑇 ⩽ 𝑟.
It is obvious that each element 𝑢 ∈ 𝑆 (𝑢0, 𝑟) satisfies an estimate

‖𝑢‖𝑙𝑇 ⩽ ‖𝑢0‖𝑙𝑇 + 𝑟 =: 𝑅,

where 𝑅 denotes a known positive number.
Let us estimate ‖𝑢0‖𝑙𝑇 . In order to do this, we need estimates for integrals involving the

functions 𝐺, 𝐺𝜉 in the definitions of the function 𝑢0(𝑥, 𝑦). In this case, we use the identity

𝑙∫︁
0

𝐺(𝑥, 𝜉, 𝑦)𝑑𝜉 = 1,

which follows from the definition of the function 𝐺. Taking this into account and explicit form
(2.3) of the function 𝜏(𝑥), the first term of 𝑢0(𝑥, 𝑦) can be easily estimated:⃒⃒⃒⃒

⃒⃒
𝑙∫︁

0

𝐺(𝑥, 𝜉, 𝑦)𝜏(𝜉)𝑑𝜉

⃒⃒⃒⃒
⃒⃒ ⩽ ‖𝜙2‖𝐶[0,𝑇 ] + 2 ‖𝜓‖𝐶[0,𝑙] . (3.4)

We then observe that 𝐺 has an expression [3]:

𝐺(𝑥, 𝜉, 𝑦) =
2

𝑙

∞∑︁
𝑛=1

exp

[︂
−
(︁𝑛𝜋
𝑙

)︁2

𝑦

]︂
sin

𝑛𝜋𝑥

𝑙
sin

𝑛𝜋𝜉

𝑙
.

In view of this expression we have the identities

𝐺𝜉(𝑥, 0, 𝑦 − 𝜂) =
2

𝑙

∞∑︁
𝑛=1

exp

[︂
−
(︁𝑛𝜋
𝑙

)︁2

(𝑦 − 𝜂)

]︂
𝑛𝜋

𝑙
sin

𝑛𝜋𝑥

𝑙
=

1

𝑙

𝑙∫︁
0

𝐺𝜂(𝑥, 𝜉, 𝑦 − 𝜂) (𝑙 − 𝜉) 𝑑𝜉,

which can be confirmed straightforwardly. Using these relations, we transform the following
integral:

𝑦∫︁
0

𝐺𝜉(𝑥, 0, 𝑦 − 𝜂)𝜙1(𝜂)𝑑𝜂 =
1

𝑙

𝑙∫︁
0

(𝑙 − 𝜉)

𝑦∫︁
0

𝐺𝜂(𝑥, 𝜉, 𝑦 − 𝜂)𝜙1(𝜂) 𝑑𝜂𝑑𝜉

=
1

𝑙

𝑙∫︁
0

(𝑙 − 𝜉)

⎧⎨⎩[︁
𝐺(𝑥, 𝜉, 𝑦 − 𝜂)𝜙1(𝜂)

]︁𝑦
0
−

𝑦∫︁
0

𝐺(𝑥, 𝜉, 𝑦 − 𝜂)𝜙′
1(𝜂) 𝑑𝜂

⎫⎬⎭ 𝑑𝜉

=
𝑙 − 𝑥

𝑙
𝜙1(𝑦)

− 1

𝑙

𝑙∫︁
0

(𝑙 − 𝜉)

⎡⎣𝐺(𝑥, 𝜉, 𝑦)𝜙1(0) +

𝑦∫︁
0

𝐺(𝑥, 𝜉, 𝑦 − 𝜂)𝜙′
1(𝜂) 𝑑𝜂

⎤⎦ 𝑑𝜉.

Here in the intermediate calculations we have used the relation lim𝜂→𝑦 𝐺(𝑥, 𝜉, 𝑦−𝜂) = 𝛿(𝑥−𝜉),
where 𝛿(·) is the Dirac delta function and

𝑙∫︁
0

𝑎(𝜉)𝛿(𝑥− 𝜉) 𝑑𝜉 = 𝑎(𝑥),

which is valid for each continuous function 𝑎(𝑥) on the interval (0, 𝑙).
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These relations for (𝑥, 𝑦) ∈ 𝐶
(︀
Ω1𝑙𝑇

)︀
yield the estimate⃒⃒⃒⃒

⃒⃒
𝑦∫︁

0

𝐺𝜉(𝑥, 0, 𝑦 − 𝜂)𝜙1(𝜂) 𝑑𝜂

⃒⃒⃒⃒
⃒⃒ ⩽ (2 + 𝑇 ) ‖𝜙1‖𝐶1[0,𝑇 ] . (3.5)

For 𝐺𝜉(𝑥, 𝑙, 𝑦 − 𝜂) we then have

𝐺𝜉(𝑥, 𝑙, 𝑦 − 𝜂) =
2

𝑙

∞∑︁
𝑛=1

exp

[︂
−
(︁𝑛𝜋
𝑙

)︁2

(𝑦 − 𝜂)

]︂
(−1)𝑛

𝑛𝜋

𝑙
sin

𝑛𝜋𝑥

𝑙
= −1

𝑙

𝑙∫︁
0

𝐺𝜂(𝑥, 𝜉, 𝑦 − 𝜂)𝜉 𝑑𝜉.

Using this, we transform the last term of 𝑢0(𝑥, 𝑦) as follows:

𝑦∫︁
0

𝐺𝜉(𝑥, 𝑙, 𝑦 − 𝜂)𝜙2(𝜂) 𝑑𝜂 =− 1

𝑙

𝑙∫︁
0

𝜉

𝑦∫︁
0

𝐺𝜂(𝑥, 𝜉, 𝑦 − 𝜂)𝜙2(𝜂) 𝑑𝜂𝑑𝜉

=− 1

𝑙

𝑙∫︁
0

𝜉

⎧⎨⎩[︁
𝐺(𝑥, 𝜉, 𝑦 − 𝜂)𝜙2(𝜂)

]︁𝑦
0
−

𝑦∫︁
0

𝐺(𝑥, 𝜉, 𝑦 − 𝜂)𝜙′
2(𝜂) 𝑑𝜂

⎫⎬⎭ 𝑑𝜉

=− 𝑥

𝑙
𝜙2(𝑦) +

1

𝑙

𝑙∫︁
0

𝜉

⎡⎣𝐺(𝑥, 𝜉, 𝑦)𝜙2(0) +

𝑦∫︁
0

𝐺(𝑥, 𝜉, 𝑦 − 𝜂)𝜙′
2(𝜂)𝑑𝜂

⎤⎦ 𝑑𝜉.

For (𝑥, 𝑦) ∈ 𝐶
(︀
Ω1𝑙𝑇

)︀
we also have the estimate⃒⃒⃒⃒
⃒⃒

𝑦∫︁
0

𝐺𝜉(𝑥, 𝑙, 𝑦 − 𝜂)𝜙2(𝜂)𝑑𝜂

⃒⃒⃒⃒
⃒⃒ ⩽ (2 + 𝑇 ) ‖𝜙2‖𝐶1[0,𝑇 ] . (3.6)

Then inequalities (3.4)–(3.6) imply the estimate

‖𝑢0‖𝑙𝑇 ⩽ (2 + 𝑇 ) ‖𝜙1‖𝐶1[0,𝑇 ] + (3 + 𝑇 ) ‖𝜙2‖𝐶1[0,𝑇 ] + 2 ‖𝜓‖𝐶[0,𝑙] . (3.7)

We observe that the right side of estimate (3.7) is independent of 𝑙.
We now proceed to obtaining conditions for 𝑇 , under which it is possible to apply the fixed

point theorem to the operator 𝑈. Let 𝑢 ∈ 𝑆 (𝑢0, 𝑟) , then, for all (𝑥, 𝑦) ∈ Ω1𝑙𝑇 we have the
inequalities

|𝑈𝑢− 𝑢0| ⩽
𝑦∫︁

0

𝑙∫︁
0

𝐺(𝑥, 𝜉, 𝑦 − 𝜂)

⎡⎣ |𝑓 ′′(𝜉)|
|𝑓(𝜉)|

+
1

|𝑓(𝜉)|

𝑇∫︁
0

|ℎ′(𝑠)| |𝑢(𝜉, 𝑠)| 𝑑𝑠

⎤⎦ |𝑢(𝜉, 𝜂)| 𝑑𝜉𝑑𝜂

⩽
𝑅2ℎ0
𝑓0

𝑇 2 +
𝑓1𝑅

𝑓0
𝑇 =: 𝑚1(𝑇 ).

Condition ‖𝑢 − 𝑢0‖𝑙𝑇 ⩽ 𝑟 (that is, 𝑈𝑢 ∈ 𝑆(𝑢0, 𝑟)) is satisfied if 𝑇 is chosen by the condition
𝑚1(𝑇 ) < 𝑟. Let 𝑇1 be a positive root of the quadratic equation 𝑚1(𝑇 )− 𝑟 = 0, that is

𝑇1 =
1

2𝑅ℎ0

[︂√︁
𝑓 2
1 + 4𝑟𝑓0ℎ0 − 𝑓1

]︂
.

It is easy to see that 𝑚1(𝑇 ) increases monotonically in 𝑇 ∈ (0, 𝑇1) , 𝑚1(𝑇 ) → 0 at 𝑇 → 0 and
𝑚1(𝑇 ) < 𝑟 for 𝑇 ∈ (0, 𝑇1) . This means that 𝑈𝑢 ∈ 𝑆(𝑢0, 𝑟) for 𝑇 < 𝑇1.
Let us now to show that the operator 𝑈 contracts the distance between elements of the ball

𝑆(𝑢0, 𝑟). To prove this, we take any two elements (𝑢1, 𝑢2) ∈ 𝑆(𝑢0, 𝑟) and estimate the norm
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of the difference between their images 𝑈𝑢1, 𝑈𝑢2. For this purpose, using (3.3) we have the
inequality

⃦⃦
𝑈𝑢1 − 𝑈𝑢2

⃦⃦
𝑙𝑇

⩽

𝑦∫︁
0

𝑙∫︁
0

𝐺(𝑥, 𝜉, 𝑦 − 𝜂)

[︃ ⃒⃒⃒⃒
𝑓 ′′(𝜉)

𝑓(𝜉)

⃒⃒⃒⃒ ⃒⃒
𝑢1(𝜉, 𝜂)− 𝑢2(𝜉, 𝜂)

⃒⃒

+
1

|𝑓(𝜉)|

𝑇∫︁
0

|ℎ′(𝑠)|
⃒⃒
𝑢1(𝜉, 𝑠)𝑢1(𝜉, 𝜂)− 𝑢2(𝜉, 𝑠)𝑢2(𝜉, 𝜂)

⃒⃒
𝑑𝑠

]︃
𝑑𝜉𝑑𝜂.

(3.8)

Here to estimate the expression |𝑢1(𝜉, 𝑠)𝑢1(𝜉, 𝜂)− 𝑢2(𝜉, 𝑠)𝑢2(𝜉, 𝜂)|, we use inequality⃒⃒
𝑢1(𝜉, 𝑠)𝑢1(𝜉, 𝜂)− 𝑢2(𝜉, 𝑠)𝑢2(𝜉, 𝜂)

⃒⃒
⩽
⃒⃒
𝑢1(𝜉, 𝑠)

⃒⃒ ⃒⃒
𝑢1(𝜉, 𝜂)− 𝑢2(𝜉, 𝜂)

⃒⃒
+
⃒⃒
𝑢2(𝜉, 𝜂)

⃒⃒ ⃒⃒
𝑢1(𝜉, 𝑠)− 𝑢2(𝜉, 𝑠)

⃒⃒
⩽2𝑅

⃦⃦
𝑢1 − 𝑢2

⃦⃦
𝑙𝑇
, (𝑠, 𝜉, 𝜂) ∈ [0, 𝑇 ]× [0, 𝑙]× [0, 𝑦],

which holds for all (𝑢1, 𝑢2) ∈ 𝑆 (𝑢0, 𝑟) . Continuing estimating in (3.8), we get⃦⃦
𝑈𝑢1 − 𝑈𝑢2

⃦⃦
𝑙𝑇

⩽

[︂
2𝑅ℎ0
𝑓0

𝑇 2 +
𝑓1
𝑓0
𝑇

]︂ ⃦⃦
𝑢1 − 𝑢2

⃦⃦
𝑙𝑇

=: 𝑚2(𝑇 )
⃦⃦
𝑢1 − 𝑢2

⃦⃦
𝑙𝑇
.

We choose 𝑇 so that the inequality𝑚2(𝑇 ) < 1 holds, then the operator 𝑈 contracts the distance
between elements of the ball 𝑆(𝑢0; 𝑟). It is clear that this condition is satisfied by 𝑇 ∈ (0, 𝑇2),
where

𝑇2 =
1

4𝑅ℎ0

[︂√︁
𝑓 2
1 + 8𝑅𝑓0ℎ0 − 𝑓1

]︂
is a positive root of the quadratic equation 𝑚2(𝑇 )− 1 = 0.
Let 𝑇 * = min (𝑇1, 𝑇2) . Then the operator 𝑈 with 𝑇 ∈ (0, 𝑇 *) is a contraction mapping of

the ball 𝑆(𝑢0, 𝑟) into itself. Hence, according to the contraction mapping principle, equation
(3.2) possesses a unique solution 𝑢(𝑥, 𝑦) ∈ 𝑆(𝑢0, 𝑟). The proof is complete.

Once we have found the function 𝑢(𝑥, 𝑦), the function 𝑞(𝑥) is determined by formula (3.1).
In this formula 𝑇 ∈ (0, 𝑇 *) and 𝑙 > 0 is an arbitrary fixed number. We also note that 𝑇 * does
depend on 𝑙.
Thus the following theorem is valid.

Theorem 3.2. Let conditions (B1)–(B3) be satisfied and 𝑇 ∈ (0, 𝑇 *). Then formula (3.1)
determines 𝑞(𝑥) ∈ 𝐶1[0, 𝑙] for each fixed 𝑙 > 0.
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