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ON DENSITY OF POLYNOMIALS IN ALGEBRA OF

HOLOMORPHIC FUNCTIONS OF EXPONENTIAL TYPE

ON LINEAR LIE GROUP

O.Yu. ARISTOV

Abstract. The question of the density of the algebra of polynomials (regular functions)

in the algebra of holomorphic functions of exponential type on a complex Lie group arose

in the study of duality for Hopf algebras of holomorphic functions. It was shown by the

author in [J . Lie Theory, 29:4, 1045–1070 (2019)] that the answer is affirmative in the

connected linear case. However, the argument is quite involved and here we present a short

proof. It contains two ingredients. The first is the existences of a finite–dimensional faithful

holomorphic representation with closed range. To prove it, we use an approach developed by

Djoković. The second is a lower bound for the norm of a one–parameter matrix subgroup,

which is based on some elementary linear algebra consideration. The rest of the proof is

close to the original one and uses a decomposition of the group into a semidirect product

of a simply connected solvable and linearly complex reductive factors.
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1. Problem and main result

Following [1, Sect. 5.3.1], we say that a holomorphic function 𝑓 on a complex Lie group 𝐺
is of exponential type if there is a submultiplicative weight 𝜔 such that |𝑓(𝑔)| ⩽ 𝜔(𝑔) for
each 𝑔 ∈ 𝐺. A submultiplicative weight is a locally bounded non–negative function such that
𝜔(𝑔ℎ) ⩽ 𝜔(𝑔)𝜔(ℎ) for every 𝑔, ℎ ∈ 𝐺. By 𝒪𝑒𝑥𝑝(𝐺) we denote the set of holomorphic functions of
exponential type. Being endowed with the inductive topology and the point–wise multiplication,
𝒪𝑒𝑥𝑝(𝐺) is a complete locally convex algebra with jointly continuous multiplication [3, Lm. 5.2].
We recall that a complex Lie group 𝐺 is said to be linear if it admits a finite–dimensional

faithful holomorphic representation. Suppose additionally that 𝐺 is connected. Then 𝐺 is
a connected Stein group and hence admits a canonical structure of complex algebraic affine
variety [9, Thm. 2]. Thus we can consider the algebra ℛ(𝐺) of regular functions (polynomials)
on 𝐺. It is well known that 𝐺 is a semidirect product, 𝐵 ⋊ 𝐿, where 𝐵 is simply connected
and solvable, and 𝐿 is connected and linearly complex reductive; see, e.g., [6, Thm. 16.3.7].
Moreover, 𝐿 admits a unique structure of affine algebraic group [9, App.] and 𝐵, while it may
be non–algebraic, is biholomorphically equivalent to C𝑛 for some 𝑛 ∈ N. Hence 𝐺 can be
identified with the affine variety C𝑛 × 𝐿 and ℛ(𝐺) with ℛ(𝐵)⊗ℛ(𝐿), where ℛ(𝐵) = ℛ(C𝑛).
Although the decomposition in the form 𝐵 ⋊ 𝐿 is not unique, see, e.g., [6, Exm. 16.3.12],
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it is easy to see that the structure of affine variety is independent of this decomposition and
coincides with the canonical structure given in [9].
Our aim is to give a short proof of the following result.

Theorem 1. [3, Cor. 5.11] Let 𝐺 be a connected linear complex Lie group. Then ℛ(𝐺) is

contained and dense in 𝒪𝑒𝑥𝑝(𝐺).

This result is a key step in proving the holomorphic reflexivity of the algebra of holomorphic
functions on a connected linear Lie group; see [4] and a discussion in the second paragraph of
the Introduction in [3]. But the proof given in [3] is based on a complete description of 𝒪𝑒𝑥𝑝(𝐺),
which is quite complicated. In particular, it needs the concept of exponential radical and some
facts on analysis on nilpotent Lie groups contained in [2]. Here we suggest a shorter argument.

2. Proof

We first prove some auxiliary assertions.

Proposition 2. A connected linear complex Lie group admits a finite–dimensional faithful

holomorphic representation with closed range.

The variant of this result for real Lie groups and continuous (automatically differentiable)
representations is proved in [7, Thm. 9]; see also [5, Prop. 5] or [6, Thm. 16.2.10]. In the
complex case, we need a lemma, which is not straightforward in contrast to the real case.
Note that when 𝐺 is connected, the commutator subgroup (𝐺,𝐺) is normal and integral; see,

e.g., [6, Prop. 11.2.4]. If, in addition, 𝐺 is linear, then (𝐺,𝐺) is closed [8, Prop. 4.37]. Hence,
𝐺/(𝐺,𝐺) is a complex Lie group.

Lemma 3. Let 𝐺 be a connected linear complex Lie group. Then 𝐺/(𝐺,𝐺) admits a finite–

dimensional faithful holomorphic representation with closed range.

Proof. By [8, Thm. 4.38(iii)], the group 𝐺/Rad(𝐺,𝐺) is linear and hence, it is a Stein group.
Then Lemma 8 in [9] implies that 𝐺/(𝐺,𝐺) is also a Stein group. Being an abelian Stein group,
𝐺/(𝐺,𝐺) is a product of finitely many copies of C and C× (the group of units) [10, Prop. 4]; see

also [11, Thm. XIII.5.9]. We note that the representation of C given by 𝑧 ↦→
(︂
1 𝑧
0 1

)︂
is faithful

and holomorphic and has closed range. Also, the tautological representation of C× evidently
has closed range. Therefore, 𝐺/(𝐺,𝐺) also admits a finite–dimensional faithful holomorphic
representation with closed range. The proof is complete.

For technical reasons, in what follows we sometimes use homomorphisms to the general linear
group GL(C,𝑚) instead of 𝑚–dimensional representations.

Proof of Proposition 2. We argue as in the proof of [5, Prop. 5] but with the use of Lemma 3.
The idea is to take two representations, the first being faithful and the second having closed
range, with additional assumptions to ensure that their sum satisfies both properties.
Let 𝜋 : C → GL(C,𝑚) be a faithful holomorphic homomorphism. By Lemma 3, there is

a faithful holomorphic homomorphism 𝐺/(𝐺,𝐺) → GL(C, 𝑛) with closed range. Denote the
composition of the quotient map 𝐺 → 𝐺/(𝐺,𝐺) with this homomorphism by 𝜎. We let

𝜌 : 𝐺 → GL(C,𝑚)×GL(C, 𝑛), 𝑔 ↦→ (𝜋(𝑔), 𝜎(𝑔)).

It is clear that 𝜌 is faithful and holomorphic. To show that the range of 𝜌 is closed, we apply [5,
Thm. 1] (instead of the last result, which concerns real Lie groups, a generalization concerning
general locally compact groups [12, Thm.] can be applied). We let 𝐻 := GL(C,𝑚) × {1}.
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Then by [5, Thm. 1] it suffices to show that 𝜌(𝐺)𝐻 and 𝜌(𝐺) ∩ 𝐻 are closed and that 𝜌(𝐺)
normalizes 𝐻.
It is clear that 𝜌(𝐺)𝐻 = GL(C,𝑚)× 𝜎(𝐺). This set is closed because 𝜎(𝐺) is closed. Also,

𝜌(𝐺)∩𝐻 = 𝜋((𝐺,𝐺))×{1}. Treating GL(C,𝑚) as a subgroup of GL(R, 2𝑚), we can apply [5,
Prop. 2], which then implies that 𝜋((𝐺,𝐺)) is closed in GL(C,𝑚). Hence, 𝜌(𝐺) ∩𝐻 is closed.
The fact that 𝜌(𝐺) normalizes 𝐻 is trivial. Thus, 𝜌(𝐺) is closed. The proof is complete.

Let ‖ · ‖ denote the Hilbert space operator norm on the algebra of complex 𝑚×𝑚 matrices
and

𝜔(𝑎) := max{‖𝑎‖, ‖𝑎−1‖}, 𝑎 ∈ GL(C,𝑚). (1)

Lemma 4. Let 𝑚 ∈ N and 𝜋 : C→ GL(C,𝑚) be a faithful holomorphic homomorphism with

closed range. Then there is 𝐶 > 0 such that |𝑧| ⩽ 𝐶 𝜔(𝜋(𝑧)) for every 𝑧 ∈ C.

Proof. Since 𝜋 is holomorphic, it is not hard to see that there is a generator, i.e., a matrix 𝑎
such that 𝜋(𝑧) = exp(𝑧𝑎) for every 𝑧 ∈ C. We can assume that 𝑎 is in a Jordan normal form.
The following three cases may occur.
(1) Suppose that 𝑎 is diagonal and all the eigenvalues are collinear over R. This means that

there is 𝜆 ∈ C such that the eigenvalues are 𝑡1𝜆, . . . , 𝑡𝑚𝜆 for some 𝑡1, . . . , 𝑡𝑚 ∈ R.
Let 𝜃 : R → C : 𝑥 ↦→ 𝑖𝑥�̄�. Since the eigenvalues of exp(𝑖𝑥�̄�𝑎) have modulus 1 for every

𝑥 ∈ R, we can treat 𝜋 ∘ 𝜃 as a continuous homomorphism from R to T𝑚. Since the range of
𝜋 is closed and 𝜃 is topologically injective, the range of 𝜋 ∘ 𝜃 is also closed. Moreover, it is
compact because T𝑚 is compact. Hence, we have a continuous bijective homomorphism from
a 𝜎–compact group onto a compact group. It is easy to see from the Baire category theorem
that every such homomorphism is a topological isomorphism; see, e.g., [12, Lm.]. Since R is
not compact, we get a contradiction and thus this case is impossible.
(2) Suppose that 𝑎 is diagonal and there are two eigenvalues 𝜆1 and 𝜆2 that are not collinear

over R. Then

𝜔(𝜋(𝑧)) ⩾ exp(max{|Re(𝜆1𝑧)|, |Re(𝜆2𝑧)|}) ⩾ max{|Re(𝜆1𝑧)|, |Re(𝜆2𝑧)|}

for every 𝑧 ∈ C. Since 𝜆1 and 𝜆2 that are not collinear, the formula on the right–hand side
defines a norm on C as a vector space over R. Since all such norms are equivalent, there is
𝐶 > 0 such that |𝑧| ⩽ 𝐶𝜔(𝜋(𝑧)) for every 𝑧 ∈ C and this completes the proof of the assertion
of the lemma in this case.
(3) Suppose that 𝑎 is not diagonal. Taking a suitable Jordan block, we can assume without

loss of generality that the upper–left corner of 𝑎 is

(︂
𝜆 1
0 𝜆

)︂
with some 𝜆 ∈ C. Then the upper–

left corner of exp(𝑧𝑎) has the form exp(𝑧𝜆)

(︂
1 𝑧
0 1

)︂
. Considering the upper–right entry, we

have

𝜔(𝜋(𝑧)) ⩾ max{|𝑧 exp(𝜆𝑧)|, |𝑧 exp(−𝜆𝑧)|} = |𝑧| exp |Re(𝜆𝑧)| ⩾ |𝑧|
for every 𝑧 ∈ C. Thus the assertion of the lemma holds also in this case. The proof is
complete.

To prove Theorem 1 we need the following notation and terminology. Let 𝐺 be a complex
Lie group and 𝜐 : 𝐺 → (0,+∞) a locally bounded function. Then we consider the Banach space

𝒪𝜐(𝐺) :=
{︁
𝑓 is holomorphic on 𝐺 and |𝑓 |𝜐 := sup

𝑔∈𝐺
𝜐(𝑔)−1|𝑓(𝑔)| < ∞

}︁
. (2)

We also let 𝒪𝜐∞(𝐺) :=
⋃︀

𝑛∈N𝒪𝜐𝑛(𝑀) and endow it with the inductive topology.
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We say that a function 𝜂1 on 𝐺 is dominated by a function 𝜂2 if there are 𝐾, 𝛼 > 0 such that

𝜂1(𝑔) ⩽ 𝐾 𝜂2(𝑔)
𝛼 for all 𝑔 ∈ 𝐺.

If, in addition, 𝜂2 is dominated by 𝜂1, then 𝜂1 and 𝜂2 is said to be equivalent.
Recall also that if 𝐺 is compactly generated, i.e., generated by a relatively compact neigh-

bourhood 𝑈 of the identity, then

𝜂(𝑔) := min{2𝑛 : 𝑔 ∈ 𝑈𝑛}, (3)

where 𝑈0 = {1}) defines a submultiplicative weight, which is called a word weight. If, in
addition, 𝑈−1 = 𝑈 , then 𝜂 is symmetric, i.e., 𝜂(𝑔−1) = 𝜂(𝑔) for every 𝑔.

Proof of Theorem 1. Fix a decomposition 𝐺 = 𝐵 ⋊ 𝐿 as above. Let 𝜂 and 𝜂1 be symmetric
word weights on 𝐺 and 𝐿, respectively. The restriction of 𝜂 to 𝐵 is also denoted by 𝜂. Since
𝐺 is a semidirect product, it follows from [3, Prop. 4.2] that the functions (𝑏, 𝑙) → 𝜂(𝑏𝑙) and
(𝑏, 𝑙) → 𝜂(𝑏)𝜂1(𝑙) are equivalent on 𝐵 × 𝐿. Then by [3, Prop. 5.5(B)], we have 𝒪𝜂∞(𝐺) ∼=
𝒪𝜂∞(𝐵) ̂︀⊗ 𝒪𝜂∞1

(𝐿), where ̂︀⊗ denotes the complete projective tensor product. Moreover, since
𝜂 and 𝜂1 are symmetric word weights, it follows from [1, Thm. 5.3] that 𝒪𝑒𝑥𝑝(𝐺) = 𝒪𝜂∞(𝐺)
and 𝒪𝑒𝑥𝑝(𝐿) = 𝒪𝜂∞1

(𝐿) as locally convex algebras. Therefore, 𝒪𝑒𝑥𝑝(𝐺) ∼= 𝒪𝜂∞(𝐵) ̂︀⊗𝒪𝑒𝑥𝑝(𝐿).
Since 𝐿 is connected and linearly complex reductive, 𝒪𝑒𝑥𝑝(𝐿) = ℛ(𝐿) [3, Thm. 5.9]. Since

𝒪𝜂∞(𝐵)⊗𝒪𝑒𝑥𝑝(𝐿) is dense in 𝒪𝜂∞(𝐵) ̂︀⊗𝒪𝑒𝑥𝑝(𝐿) and ℛ(𝐺) = ℛ(𝐵)⊗ℛ(𝐿), to complete the
proof it suffices to show that ℛ(𝐵) is contained and dense in 𝒪𝜂∞(𝐵).
Proposition 2 implies that there are 𝑚 ∈ N and a faithful holomorphic homomorphism

𝜋 : 𝐺 → GL(C,𝑚) with closed range. Since 𝐵 is simply connected and solvable, it can
be represented as an iterated semidirect product of subgroups 𝐹1, . . . , 𝐹𝑛 each of which is
isomorphic to C. For every 𝑗 fix an isomorphism C → 𝐹𝑗 and denote by 𝜌𝑗 its composition
with the embedding 𝐹𝑗 → 𝐺. Then 𝜋 ∘ 𝜌𝑗 : C → GL(C,𝑚) is also a faithful holomorphic
homomorphism with closed range .
Define 𝜔 as in (1). It is well known that every submultiplicative weight is dominated by

every word weight; see, e.g., [1, Thm. 5.3]. Since 𝜔 ∘ 𝜋 is a submultiplicative weight on 𝐺, this
means that there exist 𝐾 > 0 and 𝛼 > 0 such that 𝜔(𝜋(𝑔)) ⩽ 𝐾𝜂(𝑔)𝛼 for all 𝑔 ∈ 𝐺. Applying
Lemma 4, we conclude that there is 𝐾 ′ > 0 such that

|𝑧| ⩽ 𝐾 ′𝜂(𝜌𝑗(𝑧))
𝛼 for all 𝑗 = 1, . . . , 𝑛 and 𝑧 ∈ C. (4)

Since 𝐺 is biholomorphically equivalent to 𝐹1 × · · ·𝐹𝑛 × 𝐿, every element 𝑔 of 𝐺 can be
identified with (𝑧1, . . . , 𝑧𝑛, 𝑙), where 𝑧𝑗 ∈ C and 𝑙 ∈ 𝐿. It follows from (4) that the function 𝑔 ↦→
𝑧𝑗 is in 𝒪𝜂∞(𝐵) for every 𝑗 and so the whole ℛ(𝐵), which can be identified with C[𝑧1, . . . , 𝑧𝑛],
is contained in 𝒪𝜂∞(𝐵).
Finally, note that every 𝑓 ∈ 𝒪𝜂∞(𝐵) is an entire function in the variables 𝑧1, . . . , 𝑧𝑛. Using

the bound in Lemma 4, we conclude that 𝑓 can be approximated in the topology of 𝒪𝜂∞(𝐵) by
partial sums of its Taylor series. Thus, ℛ(𝐵) is dense in 𝒪𝜂∞(𝐵). The proof is complete.
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