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ON ZEROS AND TAYLOR COEFFICIENTS OF

ENTIRE FUNCTION OF LOGARITHMIC GROWTH

G.G. BRAICHEV

Abstract. In the paper for an important class of entire functions of zero order we find out straight-
forward relations between the increasing rate of the sequences of zeroes and the decay rate of the
Taylor coefficients. Applying the coefficient characterization of the growth of entire functions and
some Tauberian theorems from the convex analysis, we obtain asymptotically sharp estimates relat-

ing the zeroes 𝜆𝑛 and Hadamard rectified Taylor coefficients 𝑓𝑛 for entire functions of the logarithmic
growth. In the cases, when the function possesses a regular behavior of some kind, the mentioned
estimates become asymptotically sharp formulas. For instance, if an entire function has a Borel reg-
ular growth and the point 𝑎 = 0 is not its Borel exceptional value, then as 𝑛 → ∞ the asymptotic

identity ln |𝜆𝑛| ∼ ln(𝑓𝑛−1/𝑓𝑛) holds true. The result is true for the functions of perfectly regular

logarithmic growth and in the latter case we can additionally state that ln |𝜆1𝜆2 . . . 𝜆𝑛| ∼ ln 𝑓𝑛
−1

as 𝑛 → ∞.
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1. Introduction and preliminaries

This paper is a continuation of a series of papers [1], [2], in which we studied a joint behavior of
zeros and Taylor coefficients of an entire function. Here we begin with considering entire functions
of positive order in order to show similar issues in the class of functions of zero order requires an
independent study. As in [1], [2], we are interesting in obtaining two–sided estimates and asymptotics
identities, which relate the zeros and Taylor coefficients of the considered entire functions.

Each entire function is represented by its Taylor series

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑓𝑛 𝑧
𝑛, 𝑓𝑛 =

𝑓 (𝑛)(0)

𝑛!
, 𝑧 ∈ C, (1.1)

which converges everywhere in the complex plane.
An entire function of a finite order 𝜌 (we provide the definition of the order below) with a sequence

of zeros Λ = Λ𝑓 = {𝜆𝑛}∞𝑛=1 can be represented as the Hadamard product

𝑓(𝑧) = 𝑧𝑚𝑒𝑃 (𝑧)
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜆𝑛

)︂
𝑒

𝑧
𝜆𝑛

+ 𝑧2

2𝜆2𝑛
+ ...+ 𝑧𝑝

𝑝𝜆
𝑝
𝑛 , 𝑧 ∈ C, (1.2)

where 𝑚 is the multiplicity of the zero at the point 𝑧 = 0, 𝑝 ⩽ 𝜌, and 𝑃 (𝑧) is a polynomial of degree
not exceeding 𝜌, see [3]. In what follows we suppose that 𝑓 possesses infinitely many zeros, they are
arranged in the ascending order of their absolute values counting the multiplicities. For simplicity we
suppose that 𝑓0 = 𝑓(0) = 1.

By 𝑀𝑓 (𝑟) we denote the maximum of the absolute value of a function 𝑓 in the circle |𝑧| ⩽ 𝑟, that
is, the quantity

𝑀𝑓 (𝑟) = max
|𝑧|⩽𝑟

|𝑓(𝑧)| = max
|𝑧|=𝑟

|𝑓(𝑧)|, 𝑟 > 0.
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As it is known, the function 𝑀𝑓 (𝑟) is increasing and convex with respect to ln 𝑟. The rate of its growth
to infinity is related with the asymptotic behavior of the sequence of the Taylor coefficients {𝑓𝑛}𝑛∈N0

and the sequence of zeros {𝜆𝑛}𝑛∈N of the function 𝑓 .
Borel [4] introduced the notion of the order and lower order of a function and proposed to calculate

these characteristics by the formulas

𝜌 = 𝜌𝑓 = lim
𝑟→+∞

ln ln𝑀𝑓 (𝑟)

ln 𝑟
, 𝜆 = 𝜆𝑓 = lim

𝑟→+∞

ln ln𝑀𝑓 (𝑟)

ln 𝑟
.

If these orders coincide, that is, 𝜌𝑓 = 𝜆𝑓 , then one says that 𝑓 has a Borel regular growth of order 𝜌.
The order of an entire function can be calculated by the coefficients of its Taylor series via the known
formula

𝜌 = lim
𝑛→∞

𝑛 ln𝑛

ln |𝑓𝑛|−1
.

A similar formula for the lower order with replacing the upper limit by the lower fails in the general case
since the sequence of the Taylor coefficients 𝑓𝑛 can involve an infinite zero subsequence; for instance,
this happens in the series for even functions and in lacunary series. In order to overcome this obstacle
and to obtain the formulas not only for the lower order but also for other lower characteristics of
the growth of entire functions considered below, as in work [2], we introduced Hadamard rectified
(straightened, regularized) Taylor coefficients of the power series.

Let us briefly describe the procedure of straightening the coefficients 𝑓𝑛. On the plane we mark
the points (𝑛,− ln |𝑓𝑛|), where 𝑛 ∈ N0 = N ∪ {0}, and by Γ we denote a polygonal line, which is the
boundary of the convex hull of the set of these points. This polygonal line is called Newton–Hadamard
polygonal line of the entire function 𝑓(𝑧). If 𝑦 = 𝐺(𝑥), 𝑥 ⩾ 0, is the equation for Γ, then the Hadamard
rectified coefficients are defined by the identities

𝑓𝑛 = 𝑒−𝐺(𝑛), 𝑛 ∈ N0.

By the definition, the points (𝑛,− ln 𝑓𝑛), 𝑛 ∈ N0, are located on the polygonal line Γ. This is why

the sequence {1/𝑓𝑛}𝑛∈N0 is logarithmically convex. If the sequence {1/|𝑓𝑛|}𝑛∈N0 is logarithmically

convex, then the identities 𝑓𝑛 = |𝑓𝑛|, 𝑛 ∈ N0, obviously hold true. For instance, see [5, Th. 2.11.8*],
this happens if an entire function has an order not exceeding one and only negative zeros. In the
general case for all 𝑛 ∈ N0 the inequality |𝑓𝑛| ⩽ 𝑓𝑛 holds and it becomes the identity at the abscissas
of the vertices of the Newton–Hadamard polygonal line.

Entire functions of finite order

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑓𝑛 𝑧
𝑛, 𝑓(𝑧) =

∞∑︁
𝑛=0

𝑓𝑛 𝑧
𝑛

satisfy the relation

ln𝑀𝑓 (𝑟) ∼ ln𝑀𝑓 (𝑟), 𝑟 → +∞.

This is why classical growth characteristics of such pair of entire functions coincide. In particular, 𝑓
and 𝑓 has the same orders and same lower orders. Thus, we can write

𝜌 = lim
𝑛→∞

𝑛 ln𝑛

ln |𝑓−1
𝑛 |

= lim
𝑛→∞

𝑛 ln𝑛

ln 𝑓−1
𝑛

, 𝜆 = lim
𝑛→∞

𝑛 ln𝑛

ln 𝑓−1
𝑛

. (1.3)

The origination of the first part of the above formula for the order of the function is clear from the
above discussion. The second part of the formula for the lower order can be proved by usual methods
taking into consideration the logarithmic convexity of the sequence {1/𝑓𝑛}𝑛∈N0 , see [6].

We shall make use of less known formulas. We denote

𝑅𝑛 = 𝑓𝑛−1/𝑓𝑛, 𝑛 ∈ N, 𝑅0 = 1.

As we make sure later, exactly the sequence 𝑅𝑛 is most of all related with the sequence of zeros (more
precisely, of the absolute values of zeros) defined by series (1.1). The logarithmic convexity of the
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sequence {1/𝑓𝑛} implies the growth of the sequence 𝑅𝑛. We apply a specification of Stolz theorem [7,

Thm. 2.7] to the convex sequences 𝑥𝑛 = 𝑛 ln𝑛 and 𝑦𝑛 = − ln 𝑓𝑛. According to this theorem we have

𝜌 = lim
𝑛→∞

𝑛 ln𝑛

ln 𝑓−1
𝑛

= lim
𝑛→∞

(𝑛+ 1) ln(𝑛+ 1)− 𝑛 ln𝑛

ln 𝑓𝑛−1 − ln 𝑓𝑛
= lim

𝑛→∞

ln𝑛

ln𝑅𝑛
.

Similar identities also hold for the lower limit. Thus, the following formulas hold1

𝜌 = lim
𝑛→∞

ln𝑛

ln𝑅𝑛
, 𝜆 = lim

𝑛→∞

ln𝑛

ln𝑅𝑛
. (1.4)

We proceed to the growth characteristics for the sequence of zeros of an entire function. Let

𝑛(𝑟) =
∑︁

|𝜆𝑛|⩽𝑟

1

be a counting function of the sequence Λ = {𝜆𝑛}𝑛∈N, and

𝑁(𝑟) =

𝑟∫︁
0

𝑛(𝑡)

𝑡
𝑑𝑡

be its averaged counting function under the earlier assumption 𝑓(0) = 1. The convergence exponent
of the sequence of the zeros of an entire function 𝑓 is defined by the identity

𝜏 = inf

{︃
𝛼 > 0 :

∞∑︁
𝑛=1

1

|𝜆𝑛|𝛼
< +∞

}︃
.

This exponent can be found by the formulas

𝜏 = lim
𝑟→+∞

ln𝑛(𝑟)

ln 𝑟
= lim

𝑛→∞

ln𝑛

ln |𝜆𝑛|
. (1.5)

We also define a lower characteristics of the growth of the sequence of zeros

𝜇 = lim
𝑟→+∞

ln𝑛(𝑟)

ln 𝑟
= lim

𝑛→∞

ln𝑛

ln |𝜆𝑛|
. (1.6)

The quantities 𝜏 and 𝜇 are called upper and lower logarithmic densities of the sequence Λ = {𝜆𝑛} .
We shall say that Λ is logarithmically measurable if 𝜏 = 𝜇. We note that the introduced densities of
the sequence remain the same if in their definitions, identities (1.5) and (1.6), we replace the counting
function 𝑛(𝑟) by the averaged counting function 𝑁(𝑟). Such replacement is based on the estimates

𝑁(𝑟) =

𝑟∫︁
𝑐

𝑛(𝑡)

𝑡
𝑑𝑡 ⩽ 𝑛(𝑟) ln

𝑟

𝑐
, 0 < 𝑐 < |𝜆1|, 𝑟 > 𝑐, (1.7)

𝑁(𝑟) ⩾

𝑟∫︁
𝑟𝛼

𝑛(𝑡)

𝑡
𝑑𝑡 ⩾ 𝑛(𝑟𝛼) ln 𝑟1−𝛼, 0 < 𝛼 < 1, 𝑟 > 1. (1.8)

Applying now the Stolz theorem, we obtain useful formulas

𝜏 = lim
𝑟→+∞

ln𝑁(𝑟)

ln 𝑟
= lim

𝑛→∞

𝑛 ln𝑛

ln |𝜆1𝜆2 · . . . · 𝜆𝑛|
, (1.9)

𝜇 = lim
𝑟→+∞

ln𝑁(𝑟)

ln 𝑟
= lim

𝑛→∞

𝑛 ln𝑛

ln |𝜆1𝜆2 · . . . · 𝜆𝑛|
. (1.10)

Let 𝑎 ∈ C be a given number. As usually, 𝑎–points of an entire function 𝑓 is the roots of the equation
𝑓(𝑧) = 𝑎 and by 𝜏𝑎 we denote the convergence exponent of its sequence of 𝑎–points. For each 𝑎 ∈ C the
inequality 𝜏𝑎 ⩽ 𝜌 holds, where 𝜌 is the order of 𝑓 . Borel showed that except for possibly a single value

1A possibility of using the first formula in (1.4) for calculating the order 𝜌 was pointed out in Problem 52 in classical
book [8].
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𝑎 the identity 𝜏𝑎 = 𝜌 holds. The value, for which this identity fails, is called Borel exceptional1. We
note that entire functions of non–integer order has no Borel exceptional values. We also note that the
Borel regular growth does not imply the logarithmic measurability of its zeros and vice versa. In order
to make sure, it is sufficient to consider an entire function given by infinite product (1.2), the external
exponential factor of which contains a polynomial 𝑃 of degree exceeding the convergence exponent of
the sequence of zeros.

Now we are in position to prove the main result of this section.

Theorem 1.1. Let 𝑓 be an entire function of order 𝜌 > 0 and lower order 𝜆, while 𝜏 and 𝜇 be the

upper and lower logarithmic densities of the sequence of its zeros. Then the Hadamard rectified Taylor

coefficients and the zeros of the function 𝑓 are related by the inequalities

𝜆

𝜏
⩽ lim

𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩽ min

{︂
𝜆

𝜇
,
𝜌

𝜏

}︂
, (1.11)

max

{︂
𝜆

𝜇
,
𝜌

𝜏

}︂
⩽ lim

𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩽
𝜌

𝜇
, (1.12)

where 𝑅𝑛 = 𝑓𝑛−1/𝑓𝑛 for all 𝑛 ∈ N.

Proof. The checking of the stated inequalities is based on comparing the formulas for the logarithmic
densities of the sequence of zeros of the function with the corresponding formulas for coefficient cal-
culation of the order and lower order of this function. For instance, applying formulas (1.4)–(1.6), we
obtain

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

= lim
𝑛→∞

ln𝑛
ln𝑅𝑛

ln𝑛
ln |𝜆𝑛|

⩾
lim
𝑛→∞

ln𝑛
ln𝑅𝑛

lim
𝑛→∞

ln𝑛
ln |𝜆𝑛|

=
𝜆

𝜏
.

An upper bound for the lower limit of the quotient via the lower limits of the numerator and denomi-
nator gives

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩽
lim
𝑛→∞

ln𝑛
ln𝑅𝑛

lim
𝑛→∞

ln𝑛
ln |𝜆𝑛|

=
𝜆

𝜇
.

A similar estimate by the upper limits leads to the relation

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩽
lim
𝑛→∞

ln𝑛
ln𝑅𝑛

lim
𝑛→∞

ln𝑛
ln |𝜆𝑛|

=
𝜌

𝜏
.

This proves inequalities (1.11). In the same way we get

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩽
lim
𝑛→∞

ln𝑛
ln𝑅𝑛

lim
𝑛→∞

ln𝑛
ln |𝜆𝑛|

=
𝜌

𝜇
,

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩾
lim
𝑛→∞

ln𝑛
ln𝑅𝑛

lim
𝑛→∞

ln𝑛
ln |𝜆𝑛|

=
𝜌

𝜏
, lim

𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩾
lim
𝑛→∞

ln𝑛
ln𝑅𝑛

lim
𝑛→∞

ln𝑛
ln |𝜆𝑛|

=
𝜆

𝜇
,

and this proves inequalities (1.12). The proof is complete.

As a corollary we get the following statement.

Theorem 1.2. Let the assumptions of Theorem 1.1 be satisfied.

I. If a function has a Borel regular growth, then the identities

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

=
𝜌

𝜏
, lim

𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

=
𝜌

𝜇

hold.

1A value 𝑎 ∈ C is called Borel exceptional for an entire function 𝑓 , if the growth category of the counting function
of the sequence of its 𝑎–points is below the growth category of the logarithm of the absolute value of this function, for
more details see [3].
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II. If the sequence of the zeroes of a function is logarithmically measurable, then the identities

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

=
𝜆

𝜏
, lim

𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

=
𝜌

𝜏

hold true.

III. If the assumptions of the items 𝐼 and 𝐼𝐼, then there exists the limit

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

=
𝜌

𝜏
.

If in addition 𝑎 = 0 is not a Borel exceptional value, then the asymptotics

ln |𝜆𝑛| ∼ ln𝑅𝑛 , 𝑛 → ∞
is valid.

Proof. It is sufficient to apply Theorem 1.1 and take into consideration that 𝜌 = 𝜆 when the function
has a Borel regular growth, 𝜏 = 𝜇 when the sequence of the zeros of a function is logarithmically
measurable, and finally 𝜌 = 𝜏 when the value 𝑎 = 0 is not Borel exceptional for an entire function.
The proof is complete.

Theorem 1.2 indicates that the estimates in Theorem 1.1 are sharp and provide the classes of
functions, on which these estimates are attained. We recall that entire functions of non–integer and
zero order have no Borel exceptional values. We also point out that in the case of entire function of
zero order, that is, as 𝜌 = 0, the above result make no sense. This case is considered in the next
section.

2. Entire functions of logarithmic growth

First asymptotics relating the zeros of entire function with its Taylor coefficients was given by
Valiron [9]. He proved that if the Taylor coefficients of an entire function are non–zero and satisfy the
condition

𝑓𝑛−1𝑓𝑛+1

𝑓2
𝑛

→ 0, 𝑛 → ∞, (2.1)

then the asymptotic formula

𝜆𝑛 ∼ − 𝑓𝑛−1

𝑓𝑛
, 𝑛 → ∞, (2.2)

holds true. We note that a rather restrictive condition (2.1) is not necessary for the validity of asymp-
totic relation (2.2). Indeed, an entire function

𝑓(𝑧) =

∞∏︁
𝑛=1

(︂
1 +

𝑧

𝑞𝑛

)︂
, |𝑞| > 1, (2.3)

satisfy the equation
𝑓(𝑞𝑧) = (1 + 𝑧) 𝑓(𝑧), 𝑧 ∈ C.

Expanding 𝑓(𝑧) into the power series and equating the Taylor coefficients, we successively obtain

𝑓(0) = 𝑓0 = 1, 𝑞𝑛𝑓𝑛 = 𝑓𝑛 + 𝑓𝑛−1, 𝑓𝑛 =
𝑓𝑛−1

𝑞𝑛 − 1
, 𝑛 ∈ N .

This yields

𝜆𝑛 = −𝑞𝑛 ∼ −(𝑞𝑛 − 1) = −𝑓𝑛−1

𝑓𝑛
, 𝑛 → ∞,

and condition (2.2) holds, while condition (2.1) fails since

𝑓𝑛−1𝑓𝑛+1

𝑓2
𝑛

=
𝑞𝑛 − 1

𝑞𝑛+1 − 1
→ 1

𝑞
̸= 0, 𝑛 → ∞.

Entire functions, the coefficients of which obey restriction (2.1), have a slow growth, more precisely,
they satisfy the condition

lim
𝑟→+∞

ln𝑀𝑓 (𝑟)

ln2 𝑟
= 0.



20 G.G. BRAICHEV

The function defined by product (2.3) satisfies a weaker than (2.1) condition

|𝑓𝑛|2

|𝑓𝑛−1||𝑓𝑛+1|
⩾ 𝐴 > 0, 𝑛 ⩾ 𝑛0(𝐴) . (2.4)

Restriction (2.4) for the Taylor coefficients of an entire function is equivalent to a weakened restriction
(the symbol 𝑜 is replaced by the symbol 𝑂)

ln𝑀𝑓 (𝑟) = 𝑂(ln2 𝑟), 𝑟 → +∞

for the growth of the function itself.
Here we consider wider classes of entire functions of logarithmic growth fixed by the condition

ln𝑀𝑓 (𝑟) = 𝑂(ℎ(𝑟)), 𝑟 → +∞,

in which the function ℎ(𝑟), called a weight in what follows, is defined, grows unboundedly and differ-
entiable on (0, +∞) and is such that

lim
𝑟→+∞

𝑟ℎ′(𝑟) ln 𝑟

ℎ(𝑟)
= 𝑞, 1 ⩽ 𝑞 < +∞ , (2.5)

as, for instance, a model weight ℎ(𝑟) = ln𝑞 𝑟 with 𝑞 ⩾ 1 or the Lindelöf weight, which is finite products
of form ℎ(𝑟) = ln𝑞 𝑟 · ln𝑠(ln 𝑟) · . . . involving the powers of iterations of the logarithm.

We introduce the growth characteristics of entire functions (and sequences of its zeros) from the
classes defined by weights with property (2.5). We first give auxiliary definitions. A logarthmic
order (briefly, ln–order) and lower logarithmic order (briefly, lower ln–order) of an entire function are
quantities

𝛾 = 𝛾𝑓 = lim
𝑟→+∞

ln ln𝑀𝑓 (𝑟)

ln ln 𝑟
, 𝜂 = 𝜂𝑓 = lim

𝑟→+∞

ln ln𝑀𝑓 (𝑟)

ln ln 𝑟
.

If these quantities coincide, that is, 𝛾𝑓 = 𝜂𝑓 , then we say that 𝑓 has a regular logarithmic growth.
It follows from the well–known Liouville theorem that an entire function with a lower logarithmic
order 𝜂𝑓 < 1 is constant. This is why a transcendental (not coinciding with a polynomial) entire
function of logarithmic order 𝛾𝑓 = 1 possesses a regular logarithmic growth. A logarithmic growth and
lower logarithmic growth of an entire function represented by the Taylor series (1.1) can be found by
formulas, see [6], [10],

𝛾 − 1 = lim
𝑛→∞

ln𝑛

ln ln |𝑓𝑛|−
1
𝑛

= lim
𝑛→∞

ln𝑛

ln ln 𝑓𝑛
− 1

𝑛

, (2.6)

𝜂 − 1 = lim
𝑛→∞

ln𝑛

ln ln 𝑓𝑛
− 1

𝑛

. (2.7)

Let us define density growth characteristics for the sequence of the zeros {𝜆𝑛} of an entire function
of a finite logarithmic growth. An upper bilogarithmic density (briefly, an upper ln2–density) of the
sequence {𝜆𝑛} is the upper limit

Δ ln2 = lim
𝑛→∞

ln𝑛

ln ln |𝜆𝑛|
= lim

𝑟→+∞

ln𝑛(𝑟)

ln ln 𝑟
, (2.8)

and a lower bilogarithmic density of this sequence (lower ln2–density) is the corresponding lower limit

Δ ln2 = lim
𝑛→∞

ln𝑛

ln ln |𝜆𝑛|
= lim

𝑟→+∞

ln𝑛(𝑟)

ln ln 𝑟
. (2.9)

We saythat a sequence is bilogarithmically measurable if its upper and lower densities coincide, that
is, Δ ln2 = Δ ln2 .

Averaged upper and lower bilogarithmic densities of a sequence are defined by formulas similar
to (2.8), (2.9), but with replacing the counting function 𝑛(𝑟) by its averaged counting function 𝑁(𝑟).
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Namely,

Δ
*
ln2 = lim

𝑟→+∞

ln𝑁(𝑟)

ln ln 𝑟
, (2.10)

Δ*
ln2 = lim

𝑟→+∞

ln𝑁(𝑟)

ln ln 𝑟
. (2.11)

Quantities (2.8) and (2.10), as well as (2.9) and (2.11) are pairwise related by simple identities

Δ ln2 = Δ
*
ln2 − 1, Δ ln2 = Δ*

ln2 − 1. (2.12)

The derivation of the above formulas is based on estimates (1.7), (1.8), see also [10]. In order to
understand the matter, it is useful to compare (2.8)–(2.12) with (1.5)–(1.10).

Applying formulas (2.6)–(2.9), we arrive at the following result.

Theorem 2.1. Let 𝑓 be an entire function of logarithmic order 𝛾 and lower logarithmic order 𝜂 > 1,
while Δ ln2 and Δ ln2 be the upper and lower logarithmic densities of the sequence of its zeros. Then

the Hadamard rectified Taylor coefficients and zeros of this function are related by the inequalities

𝜂 − 1

Δ ln2

⩽ lim
𝑛→∞

ln ln |𝜆𝑛|

ln ln 𝑓
− 1

𝑛
𝑛

⩽ min

{︂
𝜂 − 1

Δ ln2

,
𝛾 − 1

Δ ln2

}︂
, (2.13)

max

{︂
𝜂 − 1

Δ ln2

,
𝛾 − 1

Δ ln2

}︂
⩽ lim

𝑛→∞

ln ln |𝜆𝑛|

ln ln 𝑓
− 1

𝑛
𝑛

⩽
𝛾 − 1

Δ ln2

. (2.14)

I. If a function has a regular logarithmic growth, then the identities

lim
𝑛→∞

ln ln |𝜆𝑛|

ln ln 𝑓
− 1

𝑛
𝑛

=
𝛾 − 1

Δ ln2

, lim
𝑛→∞

ln ln |𝜆𝑛|

ln ln 𝑓
− 1

𝑛
𝑛

=
𝛾 − 1

Δ ln2

hold true.

II. If a sequence of zeros of the function is bilogarithmically measurable, then the identities

lim
𝑛→∞

ln ln |𝜆𝑛|

ln ln 𝑓
− 1

𝑛
𝑛

=
𝜂 − 1

Δ ln2

, lim
𝑛→∞

ln ln |𝜆𝑛|

ln ln 𝑓
− 1

𝑛
𝑛

=
𝛾 − 1

Δ ln2

hold true.

III. If the assumptions of Items I and II are satisfied, then there exists the limit

lim
𝑛→∞

ln ln |𝜆𝑛|

ln ln 𝑓
− 1

𝑛
𝑛

=
𝛾 − 1

Δ ln2

.

Formulas (2.13), (2.14) are appropriate analogues of formulas (1.11), (1.12). The proof of Theo-
rem 2.1 reproduces the arguing from the proofs of Theorems 1.1, 1.2 and this is why we omit it.

Let us introduce more gentle characteristics of an entire function of logarithmic growth and of the
sequence of its zeros. Let a weight ℎ(𝑟) satisfies condition (2.5). A type and a lower type of entire
function with respect to ℎ(𝑟) (briefly, ℎ–type and lower ℎ–type) are defined respectively by the formulas

𝑇ℎ = 𝑇ℎ(𝑓) = lim
𝑟→+∞

ln𝑀𝑓 (𝑟)

ℎ(𝑟)
, 𝑡ℎ = 𝑡ℎ(𝑓) = lim

𝑟→+∞

ln𝑀𝑓 (𝑟)

ℎ(𝑟)
. (2.15)

Following the Valiron terminology [9], we say that an entire function has a perfectly regular growth or,
more precisely, perfectly regular ℎ–growth if its ℎ–type and lower ℎ-type coincide, that is, if 𝑇ℎ = 𝑡ℎ.

The following quantities characterise the growth of the sequence Λ of the zeros of an entire function
𝑓 . Upper and lower ℎ–densities of Λ, as well as averaged upper and lower ℎ–densities Λ are respectively
defined by the formulas

Δℎ = Δℎ(Λ) = lim
𝑟→+∞

𝑛(𝑟)

𝑟ℎ′(𝑟)
, Δℎ = Δℎ(Λ) = lim

𝑟→+∞

𝑛(𝑟)

𝑟ℎ′(𝑟)
,

Δ
*
ℎ = Δ

*
ℎ(Λ) = lim

𝑟→+∞

𝑁(𝑟)

ℎ(𝑟)
, Δ*

ℎ = Δ*
ℎ(Λ) = lim

𝑟→+∞

𝑁(𝑟)

ℎ(𝑟)
.
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Let 𝑞 ⩾ 1 be the value of the limit in (2.5). For 𝑞 > 1 the introduced characteristics satisfy the
inequalities

𝑎1Δ
*
ℎ ⩽ Δℎ ⩽ Δ*

ℎ , Δ
*
ℎ ⩽ Δℎ ⩽ 𝑎2Δ

*
ℎ ,

where 𝑎1, 𝑎2 are the roots of the equation

𝑞𝑎+ (1− 𝑞) 𝑎 𝑞/(𝑞−1) = Δ*
ℎ / Δ

*
ℎ . (2.16)

For 𝑞 = 1 we have

Δℎ = Δ*
ℎ , Δℎ = Δ

*
ℎ .

IfΔℎ(Λ) = Δℎ(Λ), which is equivalent toΔ
*
ℎ(Λ) = Δ*

ℎ(Λ), we say that the sequence Λ is ℎ–measurable.
We note that an idea to measure density growth characteristics of the sequence of zeros by compar-
ing the counting and averaged counting function with a single growth function ℎ(𝑟) turns out to be

inappropriate. Indeed, considering the upper limit lim
𝑟→+∞

𝑛(𝑟)
ℎ(𝑟) = 𝛿 similarly to the averaged ℎ–density

Δ
*
ℎ , for entire functions of zero order with a finite ℎ–type we have the identity 𝛿 = 0. Indeed, for each

𝑘 > 1 we successively obtain (cf. [11]) the relations

𝑁(𝑘𝑟) ⩾

𝑘𝑟∫︁
𝑟

𝑛(𝑡)

𝑡
𝑑𝑡 ⩾ 𝑛(𝑟) ln 𝑘,

𝑁(𝑘𝑟)

ℎ(𝑘𝑟)

ℎ(𝑘𝑟)

ℎ(𝑟)
⩾

𝑛(𝑟)

ℎ(𝑟)
ln 𝑘.

Since ℎ(𝑘𝑟) ∼ ℎ(𝑟) as 𝑟 → +∞, the passage to the upper limit gives Δ
*
ℎ ⩾ 𝛿 ln 𝑘 with an arbitrary

𝑘 > 1 and this implies 𝛿 = 0.
The next inequalities establishing relations between the growth of a function and the growth of its

sequence of zeros are immediately implied by the Jensen formula. Here we mean the relations

Δ
*
ℎ ⩽ 𝑇ℎ, Δ*

ℎ ⩽ 𝑡ℎ.

As it was shown in thesis [12, Thms. 2.11, 2.12], for the functions of zero order with a finite ℎ–type
both estimates become identities. This implies the following fact.

Proposition 2.1. Let the weight ℎ(𝑟) satisfies condition (2.5), and the sequence of zeros of an

entire function of a finite ℎ–type 𝑇ℎ and lower ℎ–type 𝑡ℎ has averaged upper and lower ℎ–densities Δ
*
ℎ

and Δ*
ℎ, respectively. Then the identities

Δ
*
ℎ = 𝑇ℎ, Δ*

ℎ = 𝑡ℎ (2.17)

hold true. Moreover, if 𝑞 = 1 in condition (2.5), then we additionally have

Δℎ = 𝑇ℎ, Δℎ = 𝑡ℎ. (2.18)

Identities (2.17) and (2.18) play a key role in establishing the results on joint variation of zeros and
Taylor coefficients of an entire function. Here we need formulas for calculating the ℎ–type and lower
ℎ–type of an entire function (the definitions of which are given in (2.15)) by its Taylor coefficients, see,
for instance, [6].

Theorem A. Let a weight ℎ(𝑟) satisfy condition (2.5) with a constant 𝑞 > 1 and 𝑘(𝜁) be an inverse

function for ℎ(𝑒𝑟)/𝑟. Let the entire function 𝑓 represented by series (1.1) has ℎ–type 𝑇ℎ = 𝑇 ∈ (0,+∞)
and lower ℎ–type 𝑡ℎ = 𝑡. Then its Hadamard rectified Taylor coefficients satisfy the identities

lim
𝑛→∞

𝑛𝑘(𝑛)

ln 𝑓𝑛
−1 =

𝑞

𝑞 − 1
(𝑇𝑞)

1
𝑞−1 , (2.19)

lim
𝑛→∞

𝑛𝑘(𝑛)

ln 𝑓𝑛
−1 =

𝑞

𝑞 − 1
(𝑡𝑞)

1
𝑞−1 . (2.20)

The next two theorems are the main results of this paper.
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Theorem 2.2. Let the assumptions of Theorem A be satisfied. If 𝑞 > 1 in (2.5), then the inequalities(︂
𝑡

𝑇

)︂ 1
𝑞−1

⩽ lim
𝑛→∞

ln 𝑓𝑛
−1

ln |𝜆1𝜆2 . . . 𝜆𝑛|
⩽ 1 ⩽ lim

𝑛→∞

ln 𝑓𝑛
−1

ln |𝜆1𝜆2 . . . 𝜆𝑛|
⩽

(︂
𝑇

𝑡

)︂ 1
𝑞−1

, (2.21)(︂
𝑎1
𝑎2

)︂ 1
𝑞−1

⩽ lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩽ lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩽

(︂
𝑎2
𝑎1

)︂ 1
𝑞−1

, (2.22)

hold true, where 𝑅𝑛 = 𝑓𝑛−1/𝑓𝑛 and 𝑎1, 𝑎2, 𝑎1 ⩽ 1 ⩽ 𝑎2, are the roots of equation (2.16), which reads

as

𝑞𝑎+ (1− 𝑞) 𝑎 𝑞/(𝑞−1) = 𝑡/𝑇.

If the function has a perfectly regular ℎ–growth, or, equivalently, the sequence of its zeros is ℎ–
measurable, then the asymptotic identities

ln |𝜆1𝜆2 . . . 𝜆𝑛| ∼ ln 𝑓𝑛
−1

, 𝑛 → ∞,

ln |𝜆𝑛| ∼ ln𝑅𝑛, 𝑛 → ∞,

hold.

Proof. It was shown in work [2] that the upper and lower averaged ℎ–densities Δ
*
ℎ = Δ

*
and Δ*

ℎ = Δ*

of the sequence of zeros of the function 𝑓 coincide respectively with the upper and lower ℎ–type of an
auxiliary function

𝐹 (𝑧) =

∞∑︁
𝑛=0

𝑧𝑛

𝜆1𝜆2 . . . 𝜆𝑛

constructed by the zeros of the original function 𝑓(𝑧). This is why for calculating the needed quantities

we use formulas similar to (2.19), (2.20), where 𝑓𝑛
−1

is replaced by the logarithmically convex sequence
|𝜆1𝜆2 . . . 𝜆𝑛|. Namely,

lim
𝑛→∞

𝑛𝑘(𝑛)

ln |𝜆1𝜆2 . . . 𝜆𝑛|
=

𝑞

𝑞 − 1

(︁
Δ

*
𝑞
)︁ 1

𝑞−1
, (2.23)

lim
𝑛→∞

𝑛𝑘(𝑛)

ln |𝜆1𝜆2 . . . 𝜆𝑛|
=

𝑞

𝑞 − 1
(Δ*𝑞)

1
𝑞−1 . (2.24)

Let us estimate the upper and lower limits of the quotient in (2.21) in the usual way by using
formulas (2.19), (2.20), (2.23), (2.24) and identity (2.17) from Proposition 2.1. We get

lim
𝑛→∞

ln 𝑓𝑛
−1

ln |𝜆1𝜆2 . . . 𝜆𝑛|
= lim

𝑛→∞

𝑛𝑘(𝑛)
ln |𝜆1𝜆2 ... 𝜆𝑛|

𝑛𝑘(𝑛)

ln 𝑓𝑛
−1

⩽
lim
𝑛→∞

𝑛𝑘(𝑛)
ln |𝜆1𝜆2 ... 𝜆𝑛|

lim
𝑛→∞

𝑛𝑘(𝑛)

ln 𝑓𝑛
−1

=

(︂
𝑇

𝑡

)︂ 1
𝑞−1

,

lim
𝑛→∞

ln 𝑓𝑛
−1

ln |𝜆1𝜆2 . . . 𝜆𝑛|
⩾

lim
𝑛→∞

𝑛𝑘(𝑛)
ln |𝜆1𝜆2 ... 𝜆𝑛|

lim
𝑛→∞

𝑛𝑘(𝑛)

ln 𝑓𝑛
−1

=
𝑡

𝑡
= 1.

The lower limit in (2.21) can be treated in the same way and this is why we omit the details.
In order to obtain (2.22), we employ estimates(︁

Δ
*
𝑞
)︁ 1

𝑞−1
⩽ lim

𝑛→∞

𝑘(𝑛)

ln |𝜆𝑛|
⩽

(︁
𝑎2Δ

*
𝑞
)︁ 1

𝑞−1
, (2.25)(︁

𝑎1Δ
*
𝑞
)︁ 1

𝑞−1
⩽ lim

𝑛→∞

𝑘(𝑛)

ln |𝜆𝑛|
⩽ (Δ*𝑞)

1
𝑞−1 . (2.26)

which were proved in [6]. In accordance with the Valiron formula [9], the logarithm of the maximal
term 𝜇(𝑟) of the Taylor series of an entire function has the same representations via the central index
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𝜈(𝑟) as the averaged counting function of the sequence of zeros 𝑁(𝑟) via the counting function 𝑛(𝑟).
More precisely,

ln𝜇(𝑟) =

𝑟∫︁
0

𝜈(𝑡)

𝑡
𝑑𝑡.

Since the central index 𝜈(𝑟) is the counting function of the sequence 𝑅𝑛, it satisfies analogues of
formulas (2.25), (2.26), in which the averaged ℎ–densities of the sequence of the zeros of the entire
function are to be replaced by ℎ–types. Thus,

(𝑇𝑞)
1

𝑞−1 ⩽ lim
𝑛→∞

𝑘(𝑛)

ln𝑅𝑛
⩽ (𝑎2𝑇𝑞)

1
𝑞−1 , (2.27)

(𝑎1𝑇𝑞)
1

𝑞−1 ⩽ lim
𝑛→∞

𝑘(𝑛)

ln𝑅𝑛
⩽ (𝑡𝑞)

1
𝑞−1 . (2.28)

Now result (2.22) can be easily obtained by using estimates (2.25)–(2.28). Indeed, the right inequality
in (2.22) is derived by the scheme

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩽
lim
𝑛→∞

𝑘(𝑛)
ln𝑅𝑛

lim
𝑛→∞

𝑘(𝑛)
ln |𝜆𝑛|

⩽
(𝑎2𝑇𝑞)

1
𝑞−1(︁

𝑎1Δ
*
𝑞
)︁ 1

𝑞−1

=

(︂
𝑎2
𝑎1

)︂ 1
𝑞−1

.

In order to get the left estimate in (2.22), we write

lim
𝑛→∞

ln |𝜆𝑛|
ln𝑅𝑛

⩾
lim
𝑛→∞

𝑘(𝑛)
ln𝑅𝑛

lim
𝑛→∞

𝑘(𝑛)
ln |𝜆𝑛|

⩾
(𝑎1𝑇𝑞)

1
𝑞−1(︁

𝑎2Δ
*
𝑞
)︁ 1

𝑞−1

=

(︂
𝑎1
𝑎2

)︂ 1
𝑞−1

.

We have taken into consideration Proposition 2.1, according to which the identity 𝑇 = Δ
*
holds true.

Under the made assumptions the identities 𝑇 = 𝑡 = Δ* = Δ
*
hold and the roots of equation (2.16)

coincide and are equal to one. This implies the last statement of the theorem. And finally we observe
that the last asymptotic identity in the statement of the theorem implies the previous identity by the
Stolz theorem [7].

It remains to consider the case of a very slow growth of an entire function, when its logarithmic
order is equal to one. Here we need an independent study since the previous arguing fails. In this case
the weight reads as ℎ(𝑟) = ln 𝑟 · ℎ1(𝑟), where for the function ℎ1(𝑒

𝑟) the limit in (2.5) is greater than
zero. For the sake of clarity we choose a model weight ℎ(𝑟) = ln 𝑟 · ln𝑠(ln 𝑟) with an exponent 𝑠 > 0.

Theorem 2.3. Let ℎ(𝑟) = ln 𝑟 · ln𝑠(ln 𝑟), where 𝑠 > 0, and an entire function 𝑓 has a finite ℎ–type
𝑇ℎ = 𝑇 and lower ℎ–type 𝑡ℎ = 𝑡 > 0. Then its Hadamard rectified Taylor coefficients and zero satisfy

the inequalities (︂
𝑡

𝑇

)︂ 1
𝑠

⩽ lim
𝑛→∞

ln(ln𝑅𝑛)

ln(ln |𝜆𝑛|)
⩽ 1 ⩽ lim

𝑛→∞

ln(ln𝑅𝑛)

ln(ln |𝜆𝑛|)
⩽

(︂
𝑇

𝑡

)︂ 1
𝑠

. (2.29)

If an entire function 𝑓 has a perfectly regular ℎ–growth or the sequence of its zeros is ℎ–measurable,

then the Hadamard rectified Taylor coefficients {𝑓𝑛} and zeros {𝜆𝑛} are related by the asymptotic

formula

ln(ln |𝜆𝑛|) ∼ ln(ln𝑅𝑛), 𝑛 → ∞.

As above, here we denote 𝑅𝑛 = 𝑓𝑛−1/𝑓𝑛.

Proof. Since the weight ℎ(𝑟) satisfies condition (2.5) with constant 𝑞 = 1, then according to Proposi-

tion 2.1 the identities 𝑇 = Δ, 𝑡 = Δ hold. In the consider case, when 𝑟ℎ′(𝑟) ∼ ℎ(𝑟)
ln 𝑟 as 𝑟 → +∞, they

can be written as

𝑇 = lim
𝑟→+∞

ln𝑀𝑓 (𝑟)

ln 𝑟 ln𝑠(ln 𝑟)
= lim

𝑟→+∞

𝑛(𝑟)

ln𝑠(ln 𝑟)
= lim

𝑛→∞

𝑛

ln𝑠(ln |𝜆𝑛|)
= Δ ,

𝑡 = lim
𝑟→+∞

ln𝑀𝑓 (𝑟)

ln 𝑟 ln𝑠(ln 𝑟)
= lim

𝑟→+∞

𝑛(𝑟)

ln𝑠(ln 𝑟)
= lim

𝑛→∞

𝑛

ln𝑠(ln |𝜆𝑛|)
= Δ .
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The calculation of ℎ–types of the function by the Taylor coefficients lead to the formulas

𝑇 = lim
𝑛→∞

𝑛

ln𝑠(ln𝑅𝑛)
, 𝑡 = lim

𝑛→∞

𝑛

ln𝑠(ln𝑅𝑛)
.

Now it is easy to estimate

𝑇 = lim
𝑛→∞

𝑛

ln𝑠(ln |𝜆𝑛|)
⩾ lim

𝑛→∞

𝑛

ln𝑠(ln𝑅𝑛)
lim
𝑛→∞

ln𝑠(ln𝑅𝑛)

ln𝑠(ln |𝜆𝑛|)
= 𝑡 lim

𝑛→∞

ln𝑠(ln𝑅𝑛)

ln𝑠(ln |𝜆𝑛|)
.

Therefore,

lim
𝑛→∞

ln𝑠(ln𝑅𝑛)

ln𝑠(ln |𝜆𝑛|)
⩽

𝑇

𝑡
.

Estimating from above, we get

𝑇 = lim
𝑛→∞

𝑛

ln𝑠(ln |𝜆𝑛|)
⩽ lim

𝑛→∞

𝑛

ln𝑠(ln𝑅𝑛)
lim
𝑛→∞

ln𝑠(ln𝑅𝑛)

ln𝑠(ln |𝜆𝑛|)
= 𝑇 lim

𝑛→∞

ln𝑠(ln𝑅𝑛)

ln𝑠(ln |𝜆𝑛|)
,

and this implies

lim
𝑛→∞

ln𝑠(ln𝑅𝑛)

ln𝑠(ln |𝜆𝑛|)
⩾ 1.

Swapping the sequences 𝑅𝑛 and |𝜆𝑛| in the above arguing, we get the estimates in the left hand
side (2.29). Finally, the last statement of the theorem is implied by its main part for 𝑡 = 𝑇 . The proof
is complete.
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