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ON THE ASYMPTOTIC BEHAVIOR OF CAUCHY-STIELTJES
INTEGRAL IN THE POLYDISC

O.A. ZOLOTA

Abstract. In the paper the asymptotic behavior of Cauchy-Stieltjes integral of a complex-
valued Borel measure on the skeleton in the polydisc is described. The main result holds
outside a set of zero w-capacity. It generalizes the theorem for the one-dimensional case.

Keywords: modulus of continuity, Cauchy-Stieltjes integral, polydisc, set of zero w-
capacity, non-tangential limit.

For 2 = (z1,...,2,) € C", n € N, let 2] = max{|]z;] : 1 < j < n}
be the polydisc norm. Denote by U" = {z € C" : |z| < 1} the unit polydisc
with the distinguished boundary 7" = {z € C* : |z = 1,1 < j < n}, and
T = [-m 7). For z€U" z; =rje%i,w=(w,...,w,) €T w; =e% 1< j<n we write
Ca (Z,U)):H;L:1 W,Wherea:(al,...,an), a; >O, 1§j§n, Caj (Zj,w]'):w

is the generalized Cauchy kernel for the unit disc, Cy, (0,w;) = 1. The symbol K will denote a
constant not necessary the same in each occurrence.
The function in U™ defined by the equality

f(zl,...,zn):/Ca(z,w)d,u(w), zeU" (1)
T?’L
with || (T™) < +o0, where |u] is the total variation of y, is called the Cauchy-Stieltjes integral
of a complex-valued Borel measure p. The function f(z1,..., z,) is analytic in U™.
For v = (¢1,...,%,) € ™, v = (71,.---,7m) € [0;7)" we define the Stolz angle
S (¥,7) =5 (W1,7) X ... X S (¥n,7n) in the polydisc, where S (¢;,7;) is the Stolz angle for
the unit disc with the vertex e?¥s,

SWy) =]z —e™| <A@ 1—rp}, 1<j<n,

A (’}/]) =4/ 1 + 4tg2’y?]

In the case of the unit disc (n = 1), there is a strong dependence between local smoothness
of the measure p and the growth of f in the direction of e (see |1]-[3]). In particular,
differentiability of p implies boundedness of the Poisson-Stieltjes integral [4]. The idea of such
results goes back to P. Fatou [4], and G. Hardy and J. Littlewood [5].

However, in the case n > 1 local differentiability of u need not imply boundedness of Poisson-
Stieltjes integral (see [6, Section 2.3]). In 7], |8] an interplay between smoothness and the growth
of the Poisson-Stieltjes integral was considered. In particular, the growth of such integrals was
characterized in terms of smoothness of the corresponding (positive) measure .

Let w: R} — R, be a semi-additive continuous increasing function in each variable vanishing
if at least one of the arguments equals zero. We call w a modulus of continuity.

A Borel set E C T" is called a set of positive w-capacity if there exists a nonnegative measure

v on 1" such that
/wz/wz1 (2)
E T
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and

dv (et ... e'tn)
sup/ ( < +400. (3)

zeR” w |t1—$1|,,|tn—l’n|)

Otherwise, F is called a set of zero w-capacity.

The following properties of sets of zero w-capacity are easy to check:

1) If By and E, are Borel subsets of 7", By C Es, and Es has w-capacity zero, then E; has
w-capacity zero.

2) If Borel sets F;,i = 1,2, ... have w-capacity zero, then the set £ = (J E; has w-capacity

i=1

zero too.

3) If wy and w, are moduli of continuity, wi(t) < wa(t), t € RY, and a Borel subset £ of T
has positive w1 capacity, then E has positive wy-capacity.

) If f f diy di’;) < oo and a set £ C T™ has zero w-capacity, then E has zero n-

dlmenswnal Lebesgue measure.
Let us prove the last property. Indeed, if m is the Lebesgue on T" and m(E) > 0, let

dv ( wLoL ,eix”) = (XE (em, e em”) /m(E)) dm (em, . ,eix”) ,

where Xg (€1, ..., €"n) is the characteristic function of E. Thus,
/ dv (e™1) ... e'*n) 1 /XE (e, ... ety dm (e, ... e'n) <
w(|x1—t1|,...,\xn—tn|) |21 — t1], ..o, |20 — tn]) -
1 / dty...dt, / / dty ..
< < 0.
m<E)nW(‘l’1—t1’,...,|$n—n tl,...,

Therefore, w-capacity of E is positive.

The notion of zero w-capacity for Borel subsets of T" provides a useful measure of finiteness of
exceptional sets for the radial (non-tangential) growth of functions of the form (1) (see Theorem
B ([3]) below, [1], and [2]). In the case n = 1, w(t) = t°, 3 € (0, 1), the definition and properties
of w-capacity are given in |9, Chapter 3.

Theorem A ([3]). Let a >0, ¥ € [—m; 7|, g be a function of bounded variation on [—7; ],
and a modulus of continuity w satisfies the condition

/ t= 1w (t) dt = oo. (4)

If

then

has the non-tangential limit zero at e'™.

Theorem B ([3]). Let a > 0, g be a function of bounded variation on [—m; |, and a modulus
of continuity w satisfies condition (4). Then (5) has the non-tangential limit zero at all v in
[—7; 7], except, possibly, a set of zero w-capacity.
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We give an example of a set of zero w-capacity that will be used later. Fora e R, 1 <7< n
we denote

Téj) = {(eiel,...,ewn) eT": 0= a},

79 ={(0,,...,0,) € : 6; = a(mod 27)} .
Let e; = {ajl-, SN } s € N. We are to prove that the set F; = Ua€ej
w-capacity. Suppose the contrary. Then the conditions (2) and (3) hold. It follows from (2) that

Elajf DU <T(7)> > 0.

T is of positive

Consequently, using (3) and the definition of w, we get
N / dv (e, ... e") N
00 > sup
cerr ) w (|01 — 21|, 00 — 0])

n
dl/( ‘91,...,6’9")
> sup/ >
ay=as ) w0 — 1], 05 — 5], |0 — T])
T'n.

- / dv (6191,...,6i0">
= 00.
) w(y—x],...,0,...,]0, —z4))

o)

Hence, the set E; has w-capacity zero. In particular, Téj ) has w-capacity zero.

Theorem 1. Let a; > 0,8, >0, 1 <j<n, ne€N,w be amodulus of continuity satisfying

ty. oot
/ /to‘l“ i di = oo,

Let pu be a complez-valued Borel measure on T™ with |u| (T™") < 400, and e € T™.

If

Il (fe” € T2 10; =yl <t 1 < j < n}) = o(w (b tn)), mint; — 0+,

then
1 1 ( d p
n1 wtl,...,tn tl tn
/C’a(z,w)d,u(w) =o | log 5 / / t?1+1~...~t3n+1 ;
" ren]  feacen]

1
where 6 — 0, |z;| =1—0%, z€ S (¢,7).
Theorem 2. Let a; >0 6]- >0, 1<7<n,neN,wbeamodulus of continuity satisfying

wty,. .. ty)

and p be a complex-valued Borel measure on T™ with |u| (T™) < +o00. Then

1 1
nl w(tl,...,tn)dtl...dtn
/Ca (27 w) dlu’ (U)) =0 1Og S ’ / tee / ta1+1 . . tan+l )
1 R )
" ‘zl—ewl ’ ‘zn—ew”‘

gl . 4
where 0 — 0, |z;| =1—-0%, z € S(¢,7), for (ewl, . ,e“l’") € T" except, possibly, a set of
Zero w-capacity.



ON THE ASYMPTOTIC BEHAVIOR OF CAUCHY-STIELTJES INTEGRAL IN THE POLYDISC... 169

The proof of Theorem 1, as a matter of fact, is contained in that of Theorem 2, which
generalizes Theorem B.

Corollary 1. Let w(ty,...,t,) = 7" - ... -t be a modulus of continuity, s; > 0,
a;j > 0,8 >0, 1 <j <nmne€&N,and 3jo : o, > 2, u be a complex-valued Borel
measure on T™ with |u| (T™) < +o00. Then

1 1
/Ca (z,w)dp (w)| =o | log 5 / / ol et |
n ‘Zl_eiwll ‘Zn—e“/’n‘ 1 n

1 , A
as 6 — 0, where |z;| =1—0%, z€ S(¢,7), for (e“*bl, . ew") € T™ except, possibly, a set of
zero w-capacity.

Corollary 2. Let »; € (0;1),0; > 0,68, >0, 1 < j <nneN, and Jjo : oy, > 3,

Wty ..., ty) =t .-t Let p be a complex-valued Borel measure on T™ with |u| (T™) < 400.
Then
1 1 . i
nl ty...dt,
/C’a (z,w)dp (w)| = o | log 5 / . / A qonm |
: rei] el

1
as 6 — 0, where |z;| =1—6%, z € S(¢,7), except, possibly, a set of zero Lebesque measure.
Corollary 2 follows from property 4 of the sets of zero w-capacity and Corollary 1.

Corollary 3. Let 5; > 0, w(ty,...,t,) = I - ... - ton -logh% C 1ogl"i, a; > 0,

1<j<n,neN, l; € R, Jjo:1l;;, > —1. Let p be a complex-valued Borel measure on T"
with |u| (T™) < +00. Then

1 1 I In 1

/Ca(z,w)du(w)zo log” / / — ,

" |z1—e“/’1| |zn—e“¢’n|

1 . .
as 6 — 0, where |z;| =1—0%, z€ S(¢,~), for (e“‘”, . e“p”) € T™ except, possibly, a set of
zero w-capacity.

Unfortunately, the author does not know whether it is possible to omit the factor log" % in
the assertion of the theorem.

To prove Theorem 1 we need the following lemma due to Prof. I.Chyzhykov who has kindly
allowed to use it.

Lemma 1. Let w (t1,...,t,) be a modulus of continuity and pu be a complex-valued Borel
measure, |p| (T") < +o00. Then
ul ({e? € T 10, — o5l <15, 1< j<n}) =o0(w(t,... t)), (6)
as mint; — 0+, except, possibly, a set of zero w-capacity of values (€1, ... e"n).
j

Proof of the lemma. Let e; = {a eR: |y (Ta(j)> > 0}. For arbitrary j the set e; is at most

countable. Denote E; = J T, As it was proved above, every set E; has zero w-capacity.
ace;

Thus E = |J E; has w-capacity zero as well.
7j=1
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Let now e¥ € T\ E. Then |y (Tg)) =0,1<j<n.
Let mint; — 0+. Passing, if necessary, to a subsequence, we may assume that ¢; — 0+.
J

Fixing ¢, we consider the set

A , 1
G21:{<62917--'7619n)eTn: |S01_01|<E}, k‘EN

Then GEM' C G% and ) Gf = 1 By countable additivity,
keN

Jim (] (G5,) = [ul (T5)) = 0.

Assume that

|dp| (e, e")
< +00.
/w(’(pl_91|7"-7|(10n_0n‘)

TTL

Denotegf;1 = {(91,...,0n) <0, <m2<j<n, ele Gl«fw
countable additivity of the Lebesgue integral, we obtain

01 0
i / dul (e, ..., en) 0.
w (

k—o0 |(,01—91|,~~-7|§0n_9n|)

lo; — 05| < +}. Then, using

91

Let to,...,t, € [0;7]. Then Ve >0 ko € N Vk >ko [|ti] < 1 we have

0, 0
€>/ |dp| (e, ... en)
w (

|901_91|7""’90n_9n|> N
o1
dpl (e, .., et
w(|¢1_91|a7|@n_9n|)
|591701|§t1 ‘ipnfen‘gtn
> |#’| ({eiﬁ : |(701 - 91| S tla ER) |Q0n - 9n| S tn})
o w(tl,...,tn) )

Hence,
il ({(, ™) €T 10 — s < ty, 1<j<n}) =o(w(t,...,ta), 1 — 0+,

The lemma is proved.

Now we can prove Theorem 1.

Proof of Theorem 1. By Lemma 1, there exists a set E of zero w-capacity with the following
property. Given ¢ € T™ \ E, for arbitrary € > 0 there exists 7. such that

‘M’ ({619’0J—¢J’ <tj, 1§j§n}) §€W(t1,,tn), Oglrgl’ljlélnt]<775 (7)
Forﬁxedé,0<(5<%,m:(ml,...,mn)GZCLr we denote
, 1 0. — 1.
efeTr.2 %< 10; = ¥l — <1, ifm;>0;
R e 24() - (2716)" |
105 — ¥yl

<1

- , ifm; =0 1<35<n
2A () - (2mi5) h !

where 3; > 0, v; € [0; 7).
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For z; € S(¥j,7;), € € R,,, m; > 0, we obtain

|7 — €] = e — %] — [ — 2| > = !% =0 = Aly) (1 =7y) 2
m;—1 m; —1

4 L mi=t 1
> —A()2 Y 5% — Aly;)o% > ;LA(%‘)Q 5o,

. . 1
If z; € S(¢y,7;), € € R, mj =0, we have |z; — €®%| > 1 —r; = §% . Therefore, we can
write both inequality in the form

|2 — €] > KQ%(W%‘, zj € S(¥;,75), €Y € Ry, (8)
where K = K (3;,7;) is a constant depending on (3; and ~; only.
For m = (my,...,m,) € Z} we consider two cases:
V) 24() - @0)F =
2)3j: 24() - @)Y <.
In the first case we have |C,, (25, w;)| <

Tle
We denote F' = F(3,v,0,¢) = Um:l) R,,. Then using the last estimate of the Cauchy kernel
we deduce

(/ijaj)
- a; -

/ G (2, w) dpt (w)| < l(T™) - WL (9)

F
We now consider the second case. By (7) we have

] (B n,) < 20 (24 () - (728)0,. 24 () - (27657 ) (10)

Then, using (8) we deduce

> [ e wyduu)| <
mRm
1

< sz (2A (1) (27™8) 71, ... 2A () (2%5%) ﬁ— (11)
j=1 K<2m35)ﬁﬂ

where the sum is taken over m = (my, ..., m,) satisfying the condition from the second case.
On the other hand

1 1

W(tl,,tn)dtldtn >
petl. et S

2A()- 28T 2A(ya)-(2mn ) P

Kw (zA( ) - (2m8) . .,2,4(%)-(2%5)%)

[Ti= (270)%
where K = K(«, 3,7). From (11) and (12), we obtain

> (12)

)

1 1
« W(tl,,tn)dtldtn
Z / (z,w)dp (w)| <e-N*- / / P

le Mmn

1 1
A('Yl)"; P1 A(’Yn)'éﬁn
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1
where |z;| =1 —0%, 1 < j < n, N*is the number of m satisfying the condition from the
second case. It is easy to see that

N* < 1 ™ ' < K -log" !

maxlog, ————— -log" =.

S\ RAm)Ts) ST

Then
1 1

1 Wty ... ta)dty ... dt,
Z/Ca(z,w)du(w) < Kelog 5 / / fotl L antl
™ R e B "
A(m)sPL A(yn)-6Pn
Finally, using the definition of the Stolz angle, we get

1 1
n]' w(tl,,tn)dtldtn
< 2Kelog 5 / / PR S (13)
|Z1,ez‘w1 | |zn,ewn |

The assertion of Theorem 2 follows from (9) and (13).
I wish to thank Prof. I. Chyzhykov for guidance of the work.
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