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ON (𝑘0)-TRANSLATION-INVARIANT AND (𝑘0)-PERIODIC

GIBBS MEASURES FOR POTTS MODEL ON CAYLEY TREE

J.D. DEKHKONOV

Abstract. As a rule, the solving of problem arising while studying the thermodynami-
cal properties of physical and biological system is made in the framework of the theory
of Gibbs measure. The Gibbs measure is a fundamental notion defining the probability
of a microscopic state of a given physical system defined by a given Hamiltonian. It is
known that to each Gibbs measure one phase of a physical system is associated to, and
if this Gibbs measure is not unique then one says that a phase transition is present. In
view of this the study of the Gibbs measure is of a special interest. In this paper we study
(𝑘0)-translation-invariant (𝑘0)-periodic Gibbs measures for the Potts model on the Cayley
tree. Such measures are constructed by means of translation-invariant and periodic Gibbs
measures. For the ferromagnetic Potts model, in the case 𝑘0 = 3 we prove the existence of
(𝑘0)-translation-invariant, that is, (3)-translation-invariant Gibbs measures. For antiferro-
magnetic Potts model and also in the case 𝑘0 = 3 we prove the existence of (𝑘0)-periodic
((3)-periodic) Gibbs measures on the Cayley tree.

Keywords: Cayley tree, Gibbs measure, Potts model, (𝑘0)-translation-invariant Gibbs
measure, (𝑘0)-periodic Gibbs measure.
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1. Introduction

The notion of the Gibbs measure for the Potts model on the Cayley tree is introduced in a
standard way, see [1]-[4]. In [5] the ferromagnetic Potts model with three states on a second
order Cayley tree was studied and there was shown the existence of a critical temperature 𝑇𝑐

such that for 𝑇 < 𝑇𝑐 there are three translationally invariant Gibbs measures and uncountably
many Gibbs measures, which are not translation invariant. In [6], the results of [5] were
generalized for the Potts model with a finite number of states on a Cayley tree of arbitrary
(finite) order.
It is proved in [7] that the translation-invariant Gibbs measure of the antiferromagnetic Potts

model with an external field is unique on the Cayley tree. Work [8] was devoted to the Potts
model with countably many states and a nonzero external field on the Cayley tree. It was
proved that this model has a unique translation-invariant Gibbs measure.
In work [9] the Potts model (𝑞 = 3) on a triangular lattice was studied taking into account

the interaction of the second nearest neighbors. In this work, the effects of frustration in various
magnetic systems were studied. To determine the presence of frustrations in the three-vertex
antiferromagnetic Potts model on a triangular lattice, the study was made on the base of the
Wang-Landau algorithm by the Monte Carlo method. It was shown in [10] that the transition
from the antiferromagnetic and collinear phases to the paramagnetic one is a first-order phase
transition, while the transition from the frustrated region to the paramagnetic one is a second-
order phase transition. In [11] the Potts ferromagnet model was studied on a quadratic lattice
with spin value (1, 𝑞) and alsothe Monte Carlo method was used.
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In [12], the Potts vector model with spin value 𝑞 = 3, 𝑞 = 4 was studied and one ground state
of the Potts model was considered in a magnetic field. It was also shown that the magnetization
of a ferromagnet is directly proportional to the temperature. In [13], phase transitions were
studied in a three-dimensional weakly diluted ferromagnetic Potts model with 𝑞 = 5 spin states
on a simple cubic lattice.
In [15], all translationally invariant split Gibbs measures (TISGM) were found on the Cayley

tree for the Potts model, in particular, it was shown that at sufficiently low temperatures their
number is equal to 2𝑞 − 1. It was proved that there were [𝑞/2] critical temperatures and the
exact amount of TISGM for each intermediate temperature was given.
In [18], explicit formulae were obtained for the translation-invariant Gibbs measures of the

ferromagnetic Potts model with three states on the Cayley tree of order 𝑘 = 3. In addition, it
was proved that on some invariant under certain conditions on the parameters of the antifer-
romagnetic Potts model with 𝑞-states with zero external field on the Cayley tree 𝑘 ⩾ 3, there
were exactly two periodic (non-translationally invariant) Gibbs measures with period two.
In [19], a weakly periodic Gibbs measure was introduced and some such measures were found

for the Ising model, and in [20], weakly periodic ground states and weakly periodic Gibbs
measures were studied for the Potts model. In papers [26], [27] weakly periodic Gibbs measures
for the Potts model with an external field were studied.
In a recent paper [16] an extensive analysis of the uniqueness and non-uniqueness of the

TISGM of the Potts model with a random and constant external field was given. In some
special cases, it is proved that the upper bound on the number of such measures was equal to
2𝑞 − 1.
A detailed survey of the results and application of the Potts model can be found in [17].
In work [21], the authors constructed some Gibbs measures (hereinafter referred to as the

Gibbs measures obtained by the ART-construction) for the Ising model on the Cayley tree. In
papers [22], [23] for the Ising model by means of the translation-invariant Gibbs measure on
the Cayley tree of order 𝑘0, a new Gibbs measure on the Cayley tree of order 𝑘, 𝑘0 < 𝑘, was
constructed and it was called a (𝑘0)-translation-invariant Gibbs measure.
It work [24], there was proved the existence of Gibbs measures constructed by a similar

method from [21] (hereinafter referred to as the measure obtained by the ART-construction)
and in the case of 𝑘0 = 2, there was proved the existence of (𝑘0)-translation-invariant Gibbs
measures for the Potts model on the Cayley tree.
The aim of this article is to construct (𝑘0)-translation-invariant and (𝑘0)-periodic Gibbs

measures for the Potts model in the case 𝑘0 = 3. The work has the following structure: in
the Section 2 we introduce the main definitions and known facts; in Section 3 we present the
results obtained for (𝑘0)-translation-invariant Gibbs measures in the case 𝑘0 = 3; in Section 4
we present the results obtained for (𝑘0)-periodic Gibbs measures in the case 𝑘0 = 3.

2. Definitions and known facts

The Cayley tree 𝑇 𝑘 of order 𝑘 ⩾ 1 is an infinite tree, that is, a graph without cycles, to each
vertex of which exactly 𝑘 + 1 edges are incident. Let 𝑇 𝑘 = (𝑉, 𝐿, 𝑖), where 𝑉 is the set of the
vertices 𝑇 𝑘, 𝐿 is the set of its edges, 𝑖 is the incidence function mapping each edge 𝑙 ∈ 𝐿 into its
end points 𝑥, 𝑦 ∈ 𝑉 . If 𝑖(𝑙) = {𝑥, 𝑦}, then 𝑥 and 𝑦 are called nearest neighbours of the vertices
and are denoted 𝑙 = ⟨𝑥, 𝑦⟩.
The distance 𝑑(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑉 on the Cayley tree is determined by the formula

𝑑(𝑥, 𝑦) = min{𝑑|∃𝑥 = 𝑥0, 𝑥1, . . . , 𝑥𝑑−1, 𝑥𝑑 = 𝑦 ∈ 𝑉 such that ⟨𝑥0, 𝑥1⟩, . . . , ⟨𝑥𝑑−1, 𝑥𝑑⟩}.

For a fixed 𝑥0 ∈ 𝑉 we denote 𝑊𝑛 = {𝑥 ∈ 𝑉 | 𝑑(𝑥, 𝑥0) = 𝑛},

𝑉𝑛 = {𝑥 ∈ 𝑉 | 𝑑(𝑥, 𝑥0) ⩽ 𝑛}, 𝐿𝑛 = {𝑙 = ⟨𝑥, 𝑦⟩ ∈ 𝐿 | 𝑥, 𝑦 ∈ 𝑉𝑛}.

For 𝑥 ∈ 𝑊𝑛 we let 𝑆(𝑥) = {𝑦 ∈ 𝑊𝑛+1 : 𝑑(𝑥, 𝑦) = 1}.
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It is known that there exists a one-to-one correspondence between the set 𝑉 of the vertices
of the Cayley tree of order 𝑘 ⩾ 1 and the group 𝐺𝑘 being a free product of 𝑘 + 1 cyclic groups
of the second order with the generators 𝑎1, 𝑎2, . . . , 𝑎𝑘+1, respectively, see [4].
We consider a model, where the spin variables take the values from the set Φ = {1, 2, . . . , 𝑞},

𝑞 ⩾ 2 and are located at the vertices of the tree. Then a configuration 𝜎 on 𝑉 is defined as a
function 𝑥 ∈ 𝑉 → 𝜎(𝑥) ∈ Φ; the set of all configurations coincides with Ω = Φ𝑉 .
The Hamiltonian of the Potts model is defined as

𝐻(𝜎) = −𝐽
∑︁

⟨𝑥,𝑦⟩∈𝐿

𝛿𝜎(𝑥)𝜎(𝑦), (2.1)

where 𝐽 ∈ R, ⟨𝑥, 𝑦⟩ are nearest neighbours and 𝛿𝑖𝑗 is the Kronecker delta:

𝛿𝑖𝑗 =

{︂
0, if 𝑖 ̸= 𝑗,

1, if 𝑖 = 𝑗.

We define a finite-dimensional distribution of a probability measure 𝜇 in a volume 𝑉𝑛 as

𝜇𝑛(𝜎𝑛) = 𝑍−1
𝑛 exp

{︃
−𝛽𝐻𝑛(𝜎𝑛) +

∑︁
𝑥∈𝑊𝑛

ℎ̃𝜎(𝑥),𝑥

}︃
, (2.2)

where 𝛽 = 1/𝑇 , 𝑇 > 0 is a temperature, 𝑍−1
𝑛 is a normalized factor,

{ℎ𝑥 = (ℎ1,𝑥, . . . , ℎ𝑞,𝑥) ∈ R𝑞, 𝑥 ∈ 𝑉 }
is a set of the vectors and

𝐻𝑛(𝜎𝑛) = −𝐽
∑︁

⟨𝑥,𝑦⟩∈𝐿𝑛

𝛿𝜎(𝑥)𝜎(𝑦).

We say that probability distribution (2.2) is consistent if for all 𝑛 ⩾ 1 and 𝜎𝑛−1 ∈ Φ𝑉𝑛−1∑︁
𝜔𝑛∈Φ𝑊𝑛

𝜇𝑛(𝜎𝑛−1 ∨ 𝜔𝑛) = 𝜇𝑛−1(𝜎𝑛−1); (2.3)

here 𝜎𝑛−1 ∨ 𝜔𝑛 is the union of the configuration. In this case there exists a unique measure 𝜇
on Φ𝑉 such that for all 𝑛 and 𝜎𝑛 ∈ Φ𝑉𝑛

𝜇({𝜎|𝑉𝑛 = 𝜎𝑛}) = 𝜇𝑛(𝜎𝑛).

Such measure is called a split Gibbs measure corresponding to Hamiltonian (2.1) and the vector
function ℎ𝑥, 𝑥 ∈ 𝑉 .
The following statement describes a condition on ℎ𝑥 ensuring the consistence of 𝜇𝑛(𝜎𝑛).

Theorem 2.1 (see [4]). The probability distribution 𝜇(𝜎𝑛), 𝑛 = 1, 2, . . . in (2.2) is consistent
if and only if for each 𝑥 ∈ 𝑉 the identity

ℎ𝑥 =
∑︁

𝑦∈𝑆(𝑥)

𝐹 (ℎ𝑦, 𝜃) (2.4)

holds, where the function 𝐹 : ℎ = (ℎ1, . . . , ℎ𝑞−1) ∈ R𝑞−1 → 𝐹 (ℎ, 𝜃) = (𝐹1, . . . , 𝐹𝑞−1) ∈ R𝑞−1 is
defined as

𝐹𝑖 = ln

(︃
(𝜃 − 1)𝑒ℎ𝑖 +

∑︀𝑞−1
𝑗=1 𝑒

ℎ𝑗 + 1

𝜃 +
∑︀𝑞−1

𝑗=1 𝑒
ℎ𝑗

)︃
, 𝜃 = exp(𝐽𝛽),

𝑆(𝑥) is the set of direct descendants of a point 𝑥 and ℎ𝑥 = (ℎ1,𝑥, . . . , ℎ𝑞−1,𝑥) with the condition

ℎ𝑖,𝑥 = ℎ̃𝑖,𝑥 − ℎ̃𝑞,𝑥, 𝑖 = 1, . . . , 𝑞 − 1.

Each solution ℎ𝑥 to functional equation (2.4) is associated with a single Gibbs measure and
vice versa.
Let ̂︀𝐺𝑘 be a subgroup of the group 𝐺𝑘.
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Definition 2.1. The set of vectors ℎ = {ℎ𝑥, 𝑥 ∈ 𝐺𝑘} is called ̂︀𝐺𝑘-periodic if ℎ𝑦𝑥 = ℎ𝑥 for

all 𝑥 ∈ 𝐺𝑘, 𝑦 ∈ ̂︀𝐺𝑘.

𝐺𝑘-periodic sets are called translation-invariant.

Definition 2.2. A measure 𝜇 is called ̂︀𝐺𝑘-periodic if it corresponds to a ̂︀𝐺𝑘-periodic set of
vectors ℎ.

3. (𝑘0)-translation-invariant Gibbs measure

We consider ferromagnetic Potts models, that is, 𝐽 > 0, 𝜃 > 1. Translation-invariant Gibbs
measures for the Potts model were studied in work [18] for all 𝑘 and 𝑞.
In the case 𝑘 = 3, 𝑞 = 3, for the translation-invariant sets of the vectors ℎ𝑥 = ℎ = (ℎ1, ℎ2) in

(2.4) we obtain the following system of equations:⎧⎪⎪⎨⎪⎪⎩
ℎ1 = 3 ln

𝜃𝑒ℎ1 + 𝑒ℎ2 + 1

𝜃 + 𝑒ℎ1 + 𝑒ℎ2
,

ℎ2 = 3 ln
𝜃𝑒ℎ2 + 𝑒ℎ1 + 1

𝜃 + 𝑒ℎ1 + 𝑒ℎ2
.

(3.1)

It was shown in work [18] that this system has the following solutions:

(ℎ
(𝑖)
1 , 0), (0, ℎ

(𝑖)
1 ), (−ℎ

(𝑖)
1 ,−ℎ

(𝑖)
1 ), (0, 0), 𝑖 = 1, 2,

where

ℎ
(𝑖)
1 = 3 ln 𝑥𝑖,

𝑥1 =
2
√
𝜃2 + 𝜃 − 2

3
cos

(︂
1

3
arctan

3
√
3𝜃4 + 24𝜃3 + 18𝜃2 − 120𝜃 − 249

2𝜃3 + 3𝜃2 − 12𝜃 − 47
− 𝜋

3

)︂
+

𝜃 − 1

3
,

𝑥2 =
2
√
𝜃2 + 𝜃 − 2

3
cos

(︂
1

3
arctan

3
√
3𝜃4 + 24𝜃3 + 18𝜃2 − 120𝜃 − 249

2𝜃3 + 3𝜃2 − 12𝜃 − 47
+

𝜋

3

)︂
+

𝜃 − 1

3
. (3.2)

In [22], [23], for the Ising model, using translation-invariant Gibbs measures on a Cayley tree
of order 𝑘0, a new Gibbs measure was constructed on a Cayley tree of order 𝑘 (𝑘0 < 𝑘) called
(𝑘0)-translation-invariant Gibbs measure. In this section, for the Potts model, by means of the
translation-invariant Gibbs measure on the Cayley tree of third order (𝑘0 = 3) as a construction
from [22], [23], we prove the existence of new Gibbs measures on the Cayley tree of the seventh
order, which we also call (𝑘0)-translation-invariant.
Let 𝑉 𝑘 be the set of all vertices 𝑇 𝑘 and 𝜃𝑐 = 2.809107468.
The following theorem holds.

Theorem 3.1. For a ferromagnetic Potts model on the seventh order Cayley tree, as 𝑞 = 3
and 𝜃 = 𝜃𝑐, there exist at least six (3)-translation-invariant Gibbs measure.

Proof. We consider a seventh order Cayley tree. We recall that for 𝑥 ∈ 𝑉 𝑘 by 𝑆𝑘0(𝑥) we denote

arbitrary 𝑘0, 1 ⩽ 𝑘0 ⩽ 𝑘, elements of 𝑆(𝑥). First by means of (ℎ
(1)
1 , 0) and (ℎ

(2)
1 , 0) we construct

a set of vectors ℎ𝑥 on 𝑉 7, which satisfy functional equation (2.4). We define this set of vectors
ℎ𝑥 as follows:

(𝑙1) If at a vertex 𝑥 ∈ 𝑉 7 we have ℎ𝑥 = (ℎ
(1)
1 , 0), then with the vertices 𝑆6(𝑥) we associate the

vector ℎ𝑥 = (ℎ
(1)
1 , 0), while other vertices 𝑆1(𝑥) are associated with the vector ℎ𝑥 = (ℎ

(2)
1 , 0). If

at a vertex 𝑥 ∈ 𝑉 7 we have ℎ𝑥 = (ℎ
(2)
1 , 0), then with the vertices 𝑆3(𝑥) we associate the vector

ℎ𝑥 = (ℎ
(2)
1 , 0), while other vertices 𝑆4(𝑥) are associated with the vector ℎ𝑥 = (ℎ

(1)
1 , 0). As a
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result by (2.4) we obtain the following system of equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℎ
(1)
1 = 6 ln

𝜃𝑒ℎ
(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

,

ℎ
(2)
1 = 3 ln

𝜃𝑒ℎ
(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ 4 ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

.

(3.3)

In view of

ℎ
(𝑖)
1 = 3 ln

𝜃𝑒ℎ
(𝑖)
1 + 2

𝜃 + 1 + 𝑒ℎ
(𝑖)
1

, 𝑖 = 1, 2, (3.4)

by (3.3) we have

3 ln
𝜃𝑒ℎ

(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

= 0. (3.5)

We observe that ℎ
(𝑖)
1 = ℎ

(𝑖)
1 (𝜃), 𝑖 = 1, 2, therefore, the left hand side in (3.5) depends only on 𝜃.

For the values of 𝜃 satisfying (3.5) and

𝜃 > 𝜃𝑐𝑟 =

√︁
9 + 6

√
3− 2 ≈ 2.403669476,

the set of the vectors ℎ𝑥 on 𝑉 7 constructed by rules (𝑙1) satisfies functional equation (2.4). By
(3.5) and (3.4) we obtain the following:

ℎ
(1)
1 +

ℎ
(2)
1

3
= 0. (3.6)

Therefore, by (3.6) and (3.2) we get the following equation:

𝑥3
1 · 𝑥2 = 1.

A solution of this equation is 𝜃 = 𝜃𝑐, that is, as 𝜃 = 𝜃𝑐, the set of vectors constructed by rules
(𝑙1) satisfies functional equation (2.4). Following works [22], [23], for the Potts model, we call
the measure constructed by rules (𝑙1) a (3)-translation-invariant Gibbs measure. In the same

way for the vectors ℎ𝑥 = (0, ℎ
(𝑖)
1 ), 𝑖 = 1, 2, we prove the existence of one more (3)-translation-

invariants Gibbs measure for 𝜃 = 𝜃𝑐.
Now by means of (ℎ

(1)
1 , 0), (ℎ

(2)
1 , 0) and (−ℎ

(1)
1 ,−ℎ

(1)
1 ) we construct a set of vectors ℎ𝑥 on 𝑉 7,

which satisfy functional equation (2.4). We define this set of vectors ℎ𝑥 as follows:

(𝑙2) If at a vertex 𝑥 ∈ 𝑉 7 we have ℎ𝑥 = (−ℎ
(1)
1 ,−ℎ

(1)
1 ), then with the vertices 𝑆3(𝑥) we

associate the vector ℎ𝑥 = (−ℎ
(1)
1 ,−ℎ

(1)
1 ), the vertices 𝑆3(𝑥) are associated with the vector

ℎ𝑥 = (ℎ
(1)
1 , 0), while other vertices 𝑆1(𝑥) are associated with the vector ℎ𝑥 = (ℎ

(2)
1 , 0). If a

vertex 𝑥 ∈ 𝑉 7 we have (ℎ
(1)
1 , 0) or ℎ𝑥 = (ℎ

(2)
1 , 0), then the vertices 𝑆(𝑥) are associated with the

vectors (ℎ
(1)
1 , 0) and ℎ𝑥 = (ℎ

(2)
1 , 0) by rules (𝑙1). As a result by (2.4) we obtain the following

system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ℎ
(1)
1 = 3 ln

(𝜃 + 1)𝑒−ℎ
(1)
1 + 1

𝜃 + 2𝑒−ℎ
(1)
1

+ 3 ln
𝜃𝑒ℎ

(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

,

−ℎ
(1)
1 = 3 ln

(𝜃 + 1)𝑒−ℎ
(1)
1 + 1

𝜃 + 2𝑒−ℎ
(1)
1

,

ℎ
(1)
1 = 6 ln

𝜃𝑒ℎ
(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

,

ℎ
(2)
1 = 3 ln

𝜃𝑒ℎ
(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ 4 ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

.

(3.7)
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Figure 1. Set of vectors ℎ𝑥 constructed by rules (𝑙1) on the Cayley tree of order 𝑘 = 7.

Taking into consideration (3.4), by (3.7) we obtain equation (3.5), while equation (3.5) has a
solution 𝜃 = 𝜃𝑐, that is, as 𝜃 = 𝜃𝑐, the set of vectors constructed by rules (𝑙2) satisfies functional
equation (2.4). In the same way for the set of vectors

{(0, ℎ(1)
1 ), (0, ℎ

(2)
1 ), (−ℎ

(1)
1 ,−ℎ

(1)
1 )}, {(0, ℎ(1)

1 ), (0, ℎ
(2)
1 ), (−ℎ

(2)
1 ,−ℎ

(2)
1 )},

{(ℎ(1)
1 , 0), (ℎ

(2)
1 , 0), (−ℎ

(2)
1 ,−ℎ

(2)
1 )}

one can show the existence of extra three sets of the vectors satisfying functional equation
(2.4). The above facts imply that as 𝜃 = 𝜃𝑐, there exist six (3)-translation-invariant Gibbs
measures.

We introduce the notations ̃︀ℎ1 = (ℎ
(1)
1 ; 0), ̃︀ℎ2 = (ℎ

(2)
1 ; 0).

The set of vectors ℎ𝑥 constructed by rules (𝑙1) on the Cayley tree of order is shown on Figure 1.

Remark 3.1. We note that in work [31] by means of known Gibbs measures there was con-
structed a Gibbs measure obtained by ART-construction. On the Cayley tree of order 𝑘, 𝑘 ⩾ 8
as 𝜃 = 𝜃𝑐, by means of (3)-translation-invariant Gibbs measures described in Theorem 3.1 one
can construct the Gibbs measure obtained by ART-construction.

We consider the Cayley tree of order 𝑘 = 𝑎 + 𝑏 + 3, 𝑎, 𝑏 ∈ N. We introduce the following
notations:

𝐵(𝑎, 𝑏) = {𝜃 ∈ R+ : 𝜃 >

√︁
9 + 6

√
3− 2 ≈ 2.403669476, 𝑎ℎ

(1)
1 + 𝑏ℎ

(2)
1 = 0}.

Theorem 3.2. For the ferromagnetic Potts model on the Cayley tree of order 𝑘 = 𝑎+ 𝑏+3,
𝑎, 𝑏 ∈ N as 𝑞 = 3 and 𝜃 ∈ 𝐵(𝑎, 𝑏) there exist at least six (3)-translation-invariant Gibbs
measures.

Proof. By means of (ℎ
(1)
1 , 0) and (ℎ

(2)
1 , 0) we construct a set of vectors ℎ𝑥 on 𝑉 𝑘, 𝑘 = 𝑎+ 𝑏+ 3,

𝑎, 𝑏 ∈ N, which satisfy functional equation (2.4). We define this set of vectors ℎ𝑥 as follows:

(𝑙3) Let 𝑘 = 𝑎 + 𝑏 + 3, 𝑎, 𝑏 ∈ N. If at a vertex 𝑥 ∈ 𝑉 𝑘 we have ℎ𝑥 = (ℎ
(1)
1 , 0), then with the

vertices 𝑆𝑎+3(𝑥) we associate the vector ℎ𝑥 = (ℎ
(1)
1 , 0), while other vertices 𝑆𝑏(𝑥) are associated
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with the vector ℎ𝑥 = (ℎ
(2)
1 , 0). If at a vertex 𝑥 ∈ 𝑉 𝑘 we have ℎ𝑥 = (ℎ

(2)
1 , 0), then the vertices

𝑆𝑏+3(𝑥) are associated with the vector ℎ𝑥 = (ℎ
(2)
1 , 0), while other vertices 𝑆𝑎(𝑥) are associated

with the vector ℎ𝑥 = (ℎ
(1)
1 , 0). As a result by (2.4) we obtain the following system of equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℎ
(1)
1 = (𝑎+ 3) ln

𝜃𝑒ℎ
(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ 𝑏 ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

,

ℎ
(2)
1 = 𝑎 ln

𝜃𝑒ℎ
(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ (𝑏+ 3) ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

.

(3.8)

Taking into consideration (3.4), by (3.8) we get:

𝑎 ln
𝜃𝑒ℎ

(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ 𝑏 ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

= 0. (3.9)

We note that ℎ
(1)
1 and ℎ

(2)
1 depend on 𝜃 and they are real as 𝜃 > 𝜃𝑐𝑟 =

√︀
9 + 6

√
3− 2, see [18].

We rewrite equation (3.9) as follows:

𝑎ℎ
(1)
1 + 𝑏ℎ

(2)
1 = 0. (3.10)

Therefore, the set of vectors constructed by rules (𝑙2) as

𝜃 ∈ 𝐵(𝑎, 𝑏) = {𝜃 ∈ R+ : 𝜃 >

√︁
9 + 6

√
3− 2 ≈ 2.403669476, 𝑎ℎ

(1)
1 + 𝑏ℎ

(2)
1 = 0}

satisfies functional equation (2.4).
As in the previous case, for the Potts model, the measure corresponding to the set of the

vectors constructed by rules (𝑙3) is called (3)-translation-invariant Gibbs measure. In the same

way for the vectors ℎ𝑥 = (0, ℎ
(𝑖)
1 ), 𝑖 = 1, 2, we prove the existence of one more (3)-translation-

invariant Gibbs measure as 𝜃 ∈ 𝐵(𝑎, 𝑏).

Now by means of (ℎ
(1)
1 , 0), (ℎ

(2)
1 , 0) and (−ℎ

(1)
1 ,−ℎ

(1)
1 ) we construct one more set of vectors

ℎ𝑥 on 𝑉 𝑘, which satisfy functional equation (2.4). We defined this set of vectors ℎ𝑥 as follows:

(𝑙4) If at a vertex 𝑥 ∈ 𝑉 𝑘 we have ℎ𝑥 = (−ℎ
(1)
1 ,−ℎ

(1)
1 ), then with the vertices 𝑆2(𝑥) we

associate the vector ℎ𝑥 = (−ℎ
(1)
1 ,−ℎ

(1)
1 ), with the vertices 𝑆𝑎(𝑥) we associate the vector ℎ𝑥 =

(ℎ
(1)
1 , 0), while other vertices 𝑆𝑏(𝑥) are associated with the vector ℎ𝑥 = (ℎ

(2)
1 , 0). If at the vertex

𝑥 ∈ 𝑉 𝑘 we have (ℎ
(1)
1 , 0) or ℎ𝑥 = (ℎ

(2)
1 , 0), with the vertices 𝑆(𝑥) we associate the vectors

(ℎ
(1)
1 , 0) and ℎ𝑥 = (ℎ

(2)
1 , 0) by the rules (𝑙3). As a result by (2.4) we obtain the following system

of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ℎ
(1)
1 = 3 ln

(𝜃 + 1)𝑒−ℎ
(1)
1 + 1

𝜃 + 2𝑒−ℎ
(1)
1

+ 𝑎 ln
𝜃𝑒ℎ

(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ 𝑏 ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

,

−ℎ
(1)
1 = 3 ln

(𝜃 + 1)𝑒−ℎ
(1)
1 + 1

𝜃 + 2𝑒−ℎ
(1)
1

,

ℎ
(1)
1 = (𝑎+ 3) ln

𝜃𝑒ℎ
(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ 𝑏 ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

,

ℎ
(2)
1 = 𝑎 ln

𝜃𝑒ℎ
(1)
1 + 2

𝜃 + 1 + 𝑒ℎ
(1)
1

+ (𝑏+ 3) ln
𝜃𝑒ℎ

(2)
1 + 2

𝜃 + 1 + 𝑒ℎ
(2)
1

.

(3.11)

In view of (3.4), by (3.11) we obtain equation (3.10), which is equivalent (3.9). Therefore, as
𝜃 ∈ 𝐵(𝑎, 𝑏), the set of vectors ℎ𝑥 constructed by rules (𝑙4) satisfies equation (2.4). In the same
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way for the set of vectors

{(0, ℎ(1)
1 ), (0, ℎ

(2)
1 ), (−ℎ

(1)
1 ,−ℎ

(1)
1 )}, {(0, ℎ(1)

1 ), (0, ℎ
(2)
1 ), (−ℎ

(2)
1 ,−ℎ

(2)
1 )},

{(ℎ(1)
1 , 0), (ℎ

(2)
1 , 0), (−ℎ

(2)
1 ,−ℎ

(2)
1 )}

one can show the existence of extra three sets of the vectors satisfying functional equation (2.4).
As a result we obtain that as 𝜃 ∈ 𝐵(𝑎, 𝑏) on the Cayley tree of order 𝑘 = 𝑎+ 𝑏+ 3, 𝑎, 𝑏 ∈ N,

there exist six (3)-translation-invariant Gibbs measures.

Remark 3.2. 1. We note that the set 𝐵(𝑎, 𝑏) is non-empty since for the case 𝑎 = 3, 𝑏 = 1 it
was proved in Theorem 3.1 that 𝜃 = 𝜃𝑐 ∈ 𝐵(3, 1).

2. We note that the Gibbs measures constructed by rules (𝑙𝑖), 𝑖 = 1, 2, 3, 4, differ from earlier
known measures, see [15], [29], [30], [24].

4. (𝑘0)-periodic Gibbs measures

In this section we consider the antiferromagnetic Potts model of order three and by means of
periodic Gibbs measures on the Cayley tree of order three we prove the existence of new Gibbs
measures, which we call (𝑘0)-periodic.
The following theorem characterizes periodic Gibbs measures.

Theorem 4.1 ([14]). Let 𝐾 be a normal divisor of a finite index in 𝐺𝑘. Then for the Potts

model all 𝐾-periodic Gibbs measures are either 𝐺
(2)
𝑘 -periodic or translation-invariant, where

𝐺
(2)
𝑘 = {𝑥 : |𝑥| is even}.

For all 𝑘 ⩾ 3 and 𝑞 ⩾ 3, 𝐺
(2)
𝑘 -periodic Gibbs measures for Potts are studied in work [18].

In the case 𝑘 = 3, 𝑞 = 3, that is, 𝜎 : 𝑉 → Φ = {1, 2, 3}, by Theorem 4.1 there exist only 𝐺
(2)
𝑘 -

periodic Gibbs measures, which correspond to the set of the vectors ℎ = {ℎ𝑥 ∈ R2 : 𝑥 ∈ 𝐺𝑘} of
form

ℎ𝑥 =

{︂
ℎ if |𝑥| is even,

𝑙 if |𝑥| is odd.

Here ℎ = (ℎ1, ℎ2), 𝑙 = (𝑙1, 𝑙2). Then by (2.4) we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ1 = 3 ln
𝜃 exp(𝑙1) + exp(𝑙2) + 1

exp(𝑙1) + exp(𝑙2) + 𝜃
,

ℎ2 = 3 ln
𝜃 exp(𝑙2) + exp(𝑙1) + 1

exp(𝑙1) + exp(𝑙2) + 𝜃
,

𝑙1 = 3 ln
𝜃 exp(ℎ1) + exp(ℎ2) + 1

exp(ℎ1) + exp(ℎ2) + 𝜃
,

𝑙2 = 3 ln
𝜃 exp(ℎ2) + exp(ℎ1) + 1

exp(ℎ1) + exp(ℎ2) + 𝜃
.

(4.1)

We introduce the following notations:

𝑧1 = exp(ℎ1), 𝑧2 = exp(ℎ2), 𝑧3 = exp(𝑙1), 𝑧4 = exp(𝑙2).
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Then the latter system of equations can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑧1 =
(︁𝜃𝑧3 + 𝑧4 + 1

𝑧3 + 𝑧4 + 𝜃

)︁3
,

𝑧2 =
(︁𝜃𝑧4 + 𝑧3 + 1

𝑧3 + 𝑧4 + 𝜃

)︁3
,

𝑧3 =
(︁𝜃𝑧1 + 𝑧2 + 1

𝑧1 + 𝑧2 + 𝜃

)︁3
,

𝑧4 =
(︁𝜃𝑧2 + 𝑧1 + 1

𝑧1 + 𝑧2 + 𝜃

)︁3
.

(4.2)

We consider the mapping 𝑊 : R4 → R4 defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑧′1 =
(︁𝜃𝑧3 + 𝑧4 + 1

𝑧3 + 𝑧4 + 𝜃

)︁3
,

𝑧′2 =
(︁𝜃𝑧4 + 𝑧3 + 1

𝑧3 + 𝑧4 + 𝜃

)︁3
,

𝑧′3 =
(︁𝜃𝑧1 + 𝑧2 + 1

𝑧1 + 𝑧2 + 𝜃

)︁3
,

𝑧′4 =
(︁𝜃𝑧2 + 𝑧1 + 1

𝑧1 + 𝑧2 + 𝜃

)︁3
.

(4.3)

System (4.2) is equivalent to the system of equations 𝑧 = 𝑊 (𝑧).

Lemma 4.1 ([18]). The mapping 𝑊 has invariant sets of the following forms:

𝐼1 = {𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ R4 : 𝑧1 = 𝑧2 = 𝑧3 = 𝑧4},
𝐼2 = {𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ R4 : 𝑧1 = 𝑧2, 𝑧3 = 𝑧4},
𝐼3 = {𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ R4 : 𝑧1 = 𝑧3 = 1},
𝐼4 = {𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ R4 : 𝑧2 = 𝑧4 = 1}.

i) System of equations (4.2) on 𝐼2 reads as follows:⎧⎪⎪⎨⎪⎪⎩
𝑧1 =

(︁𝜃𝑧3 + 𝑧3 + 1

2𝑧3 + 𝜃

)︁3
,

𝑧3 =
(︁𝜃𝑧1 + 𝑧1 + 1

2𝑧1 + 𝜃

)︁3
.

(4.4)

Introducing the notations 3
√
𝑧1 = 𝑥, 3

√
𝑧3 = 𝑦, we rewrite (4.4):{︂

𝑥 = 𝑓(𝑦),

𝑦 = 𝑓(𝑥).
(4.5)

where

𝑓(𝑥) =
(𝜃 + 1)𝑥3 + 1

2𝑥3 + 𝜃
.

By (4.5) we obtain
𝑥 = 𝑓(𝑓(𝑥)). (4.6)

It is clear that the roots of the equation 𝑥 = 𝑓(𝑥) are also the roots of equation (4.6). This
is why to find the roots of (4.6) different from ones of the equation 𝑥 = 𝑓(𝑥), we consider the
equation

𝑓(𝑓(𝑥))− 𝑥

𝑓(𝑥)− 𝑥
= 0.
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Dividing the numerator by the denominator in the left hand side of this equation, we obtain
the equation:

(𝜃3 + 3𝜃2 + 7𝜃 + 1)𝑥6 + (2𝜃2 + 2𝜃 − 4)𝑥5 + (𝜃3 + 2𝜃2 − 𝜃 − 2)𝑥4 + (6𝜃2 + 4𝜃 + 2)𝑥3

+ (𝜃3 + 𝜃2 − 2𝜃)𝑥2 + (𝜃2 + 𝜃 − 2)𝑥+ 𝜃3 + 𝜃 + 1 = 0.
(4.7)

If 0 < 𝜃 < 1
4
, then it is easy to see that equation (4.7) has at least two positive roots, see

[18]. Denoting these roots by 𝑥1 and 𝑥2, we obtain that the solutions of system (4.1) are of the
form

(ℎ
(1)
1 , ℎ

(1)
2 , 𝑙

(1)
1 , 𝑙

(1)
2 ), (ℎ

(2)
1 , ℎ

(2)
2 , 𝑙

(2)
1 , 𝑙

(2)
2 ).

Here

ℎ
(𝑖)
1 = ℎ

(𝑖)
2 = 3 ln 𝑥𝑖, 𝑙

(𝑖)
1 = 𝑙

(𝑖)
2 = 3 ln

(︁(𝜃 + 1)𝑥3
𝑖 + 1

2𝑥3
𝑖 + 𝜃

)︁
, 𝑖 = 1, 2. (4.8)

We recall that to each set of vectors of form

ℎ𝑥 =

{︃
(ℎ

(1)
1 , ℎ

(1)
2 ), 𝑥 ∈ 𝐺

(2)
𝑘 ,

(𝑙
(1)
1 , 𝑙

(1)
2 ), 𝑥 ∈ 𝐺𝑘 ∖𝐺(2)

𝑘 ,

satisfying functional equation (2.4), a 𝐺
(2)
𝑘 -periodic Gibbs measure corresponds.

We shall construct 𝑘0-periodic solutions by means of these solutions. By means of (ℎ
(1)
1 , ℎ

(1)
2 )

and (𝑙
(1)
1 , 𝑙

(1)
2 ) we construct a set of vectors ℎ𝑥 on 𝑉 𝑘, 𝑘 = 𝑐 + 𝑑 + 3, 𝑐, 𝑑 ∈ N, which satisfy

functional equation (2.4). We define the set of vectors ℎ𝑥 as follows:

(𝑙5) Let 𝑘 = 𝑐 + 𝑑 + 3, 𝑐, 𝑑 ∈ N. If at the vertex 𝑥 ∈ 𝑉 we have ℎ𝑥 = (ℎ
(1)
1 , ℎ

(1)
2 ), then with

the vertices 𝑆𝑐(𝑥) we associate the vector ℎ𝑥 = (ℎ
(1)
1 , ℎ

(1)
2 ), while with other vertices 𝑆𝑑+3(𝑥) we

associated the vector ℎ𝑥 = (𝑙
(1)
1 , 𝑙

(1)
2 ). If at a vertex 𝑥 ∈ 𝑉 we have ℎ𝑥 = (𝑙

(1)
1 , 𝑙

(1)
2 ), then with

the vertices 𝑆𝑐+3(𝑥) we associate the vector ℎ𝑥 = (ℎ
(1)
1 , ℎ

(1)
2 ), while with the other vertices 𝑆𝑑(𝑥)

we associate the vector ℎ𝑥 = (𝑙
(1)
1 , 𝑙

(1)
2 ). As a result from (2.4) we obtain the following system

of equations: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℎ
(1)
1 = 𝑐 ln

(𝜃 + 1) exp(ℎ
(1)
1 ) + 1

2 exp(ℎ
(1)
1 ) + 𝜃

+ (𝑑+ 3) ln
(𝜃 + 1) exp(𝑙

(1)
1 ) + 1

2 exp(𝑙
(1)
1 ) + 𝜃

,

𝑙
(1)
1 = (𝑐+ 3) ln

(𝜃 + 1) exp(ℎ
(1)
1 ) + 1

2 exp(ℎ
(1)
1 ) + 𝜃

+ 𝑑 ln
(𝜃 + 1) exp(𝑙

(1)
1 ) + 1

2 exp(𝑙
(1)
1 ) + 𝜃

.

(4.9)

Taking into consideration that

ℎ
(1)
1 = 3 ln

(𝜃 + 1) exp(𝑙
(1)
1 ) + 1

2 exp(𝑙
(1)
1 ) + 𝜃

, 𝑙
(1)
1 = 3 ln

(𝜃 + 1) exp(ℎ
(1)
1 ) + 1

2 exp(ℎ
(1)
1 ) + 𝜃

by (4.9) we have

𝑐 ln
(𝜃 + 1) exp(ℎ

(1)
1 ) + 1

2 exp(ℎ
(1)
1 ) + 𝜃

+ 𝑑 ln
(𝜃 + 1) exp(𝑙

(1)
1 ) + 1

2 exp(𝑙
(1)
1 ) + 𝜃

= 0. (4.10)

We note that ℎ
(1)
1 and 𝑙

(1)
1 depend on 𝜃 and they are real as 0 < 𝜃 < 1

4
, see [18]. We rewrite

equation (4.10) as

𝑐𝑙
(1)
1 + 𝑑ℎ

(1)
1 = 0. (4.11)

Substituting (4.8) into (4.11), we obtain(︂
(𝜃 + 1)𝑥3

1 + 1

2𝑥3
1 + 𝜃

)︂𝑐

· 𝑥𝑑
1 = 1.
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Therefore, the set of vectors constructed by rules (𝑙4) as

𝜃 ∈ 𝐵(𝑐, 𝑑) =

{︂
𝜃 ∈ R+ : 0 < 𝜃 <

1

4
,

(︂
(𝜃 + 1)𝑥3

1 + 1

2𝑥3
1 + 𝜃

)︂𝑐

· 𝑥𝑑
1 = 1

}︂
solves functional equation (2.4).
In the same way for the set of vectors

{(ℎ(1)
1 , ℎ

(1)
2 ), (𝑙

(2)
1 , 𝑙

(2)
2 )}, {(ℎ(2)

1 , ℎ
(2)
2 ), (𝑙

(1)
1 , 𝑙

(1)
2 )}, {(ℎ(2)

1 , ℎ
(2)
2 ), (𝑙

(2)
1 , 𝑙

(2)
2 )}

one can show the existence of extra three sets of the vectors satisfying functional equation (2.4).
As a result we obtain the following theorem.

Theorem 4.2. For antiferromagnetic Potts model on the Cayley tree of order 𝑘 = 𝑐+ 𝑑+3,
𝑐, 𝑑 ∈ N as 𝑞 = 3 and 𝜃 ∈ 𝐵(𝑐, 𝑑) there exist at least (3)-periodic Gibbs measures.

Now we consider system of equations (4.2) on an invariant set 𝐼3.
ii) System of equations (4.2) on 𝐼3 has the following form:⎧⎪⎪⎨⎪⎪⎩

𝑧1 =
(︁ 𝜃𝑧3 + 2

𝑧3 + 𝜃 + 1

)︁3
,

𝑧3 =

(︂
𝜃𝑧1 + 2

𝑧1 + 𝜃 + 1

)︂3

.

(4.12)

Introducing the notations 3
√
𝑧1 = 𝑥, 3

√
𝑧3 = 𝑦, we rewrite (4.12):{︂

𝑥 = 𝑓(𝑦),

𝑦 = 𝑓(𝑥).
(4.13)

where

𝑓(𝑥) =
𝜃𝑥3 + 2

𝑥3 + 𝜃 + 1
.

By (4.13) we obtain
𝑥 = 𝑓(𝑓(𝑥)). (4.14)

It is clear that the roots of the equation 𝑥 = 𝑓(𝑥) are also ones of equation (4.14). This is
why to find roots of (4.14) different from the roots of the equation 𝑥 = 𝑓(𝑥) we consider the
equation

𝑓(𝑓(𝑥))− 𝑥

𝑓(𝑥)− 𝑥
= 0.

We divide the numerator by the denominator of the left hand side in this equation and we
obtain:

(𝜃3 + 𝜃 + 1)𝑥6 + (𝜃2 + 𝜃 − 2)𝑥5 + (𝜃3 + 𝜃2 − 2𝜃)𝑥4 + (6𝜃2 + 4𝜃 + 2)𝑥3

+ (𝜃3 + 2𝜃2 − 𝜃 − 2)𝑥2 + (2𝜃2 + 2𝜃 − 4)𝑥+ 𝜃3 + 3𝜃2 + 7𝜃 + 1 = 0.
(4.15)

If 0 < 𝜃 < 1
4
, it is easy to see that equation (4.15) has at least two positive roots, see [18].

Denoting these roots by 𝑥1 and 𝑥2, we find that the solutions of system (4.1) has the following
form:

(ℎ
(1)
1 , 0, 𝑙

(1)
1 , 0), (ℎ

(2)
1 , 0, 𝑙

(2)
1 , 0).

Here

ℎ
(𝑖)
1 = 3 ln 𝑥𝑖, 𝑙

(𝑖)
1 = 3 ln

(︁ 𝜃𝑥3
𝑖 + 2

𝑥3
𝑖 + 𝜃 + 1

)︁
, ℎ

(𝑖)
2 = 𝑙

(𝑖)
2 = 0, 𝑖 = 1, 2. (4.16)

We recall that to each set of vectors of form

ℎ𝑥 =

{︃
(ℎ

(1)
1 , 0), 𝑥 ∈ 𝐺

(2)
𝑘 ,

(𝑙
(1)
1 , 0), 𝑥 ∈ 𝐺𝑘 ∖𝐺(2)

𝑘 ,
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satisfying functional equation (2.4) there exists a 𝐺
(2)
𝑘 -periodic Gibbs measure.

We are going to construct 𝑘0-periodic solutions by means of these solutions. By (ℎ
(1)
1 , 0)

and (𝑙
(1)
1 , 0) we construct the set of the vectors ℎ𝑥 on 𝑉 𝑘, 𝑘 = 𝑐+ 𝑑+ 3, 𝑐, 𝑑 ∈ N, which satisfy

functional equation (2.4). We define this set of vectors ℎ𝑥 as follows:

(𝑙6) Let 𝑘 = 𝑐 + 𝑑 + 3, 𝑐, 𝑑 ∈ N. If at a vertex 𝑥 ∈ 𝑉 we have ℎ𝑥 = (ℎ
(1)
1 , 0), then with the

vertices 𝑆𝑐(𝑥) we associate the vector ℎ𝑥 = (ℎ
(1)
1 , 0), and with other vertices 𝑆𝑑+3(𝑥) we associate

the vector ℎ𝑥 = (𝑙
(1)
1 , 0). If at a vertex 𝑥 ∈ 𝑉 we have ℎ𝑥 = (𝑙

(1)
1 , 0), then with the vertices

𝑆𝑐+3(𝑥) we associate the vector ℎ𝑥 = (ℎ
(1)
1 , 0), while with other vertices 𝑆𝑑(𝑥) we associate the

vector ℎ𝑥 = (𝑙
(1)
1 , 0). As a result by (2.4) we obtain the following system of equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℎ
(1)
1 = 𝑐 ln

𝜃 exp(ℎ
(1)
1 ) + 2

exp(ℎ
(1)
1 ) + 𝜃 + 1

+ (𝑑+ 3) ln
𝜃 exp(𝑙

(1)
1 ) + 2

exp(𝑙
(1)
1 ) + 𝜃 + 1

,

𝑙
(1)
1 = (𝑐+ 3) ln

𝜃 exp(ℎ
(1)
1 ) + 2

exp(ℎ
(1)
1 ) + 𝜃 + 1

+ 𝑑 ln
𝜃 exp(𝑙

(1)
1 ) + 2

exp(𝑙
(1)
1 ) + 𝜃 + 1

.

(4.17)

In view of

ℎ
(1)
1 = 3 ln

𝜃 exp(𝑙
(1)
1 ) + 2

exp(𝑙
(1)
1 ) + 𝜃 + 1

, 𝑙
(1)
1 = 3 ln

𝜃 exp(ℎ
(1)
1 ) + 2

exp(ℎ
(1)
1 ) + 𝜃 + 1

by (4.17) we find:

𝑐 ln
𝜃 exp(ℎ

(1)
1 ) + 2

exp(ℎ
(1)
1 ) + 𝜃 + 1

+ 𝑑 ln
𝜃 exp(𝑙

(1)
1 ) + 2

exp(𝑙
(1)
1 ) + 𝜃 + 1

= 0. (4.18)

We note that ℎ
(1)
1 and 𝑙

(1)
1 depend on 𝜃 and they are real for 0 < 𝜃 < 1

4
, see [18]. We rewrite

equation (4.18) as follows:

𝑐𝑙
(1)
1 + 𝑑ℎ

(1)
1 = 0. (4.19)

Substituting (4.16) into (4.19), we obtain(︂
𝜃𝑥3

1 + 2

𝑥3
1 + 𝜃 + 1

)︂𝑐

· 𝑥𝑑
1 = 1.

Therefore, the set of the vectors constructed by rules (𝑙4) as

𝜃 ∈ 𝐵(𝑐, 𝑑) =

{︂
𝜃 ∈ R+ : 0 < 𝜃 <

1

4
,

(︂
𝜃𝑥3

1 + 2

𝑥3
1 + 𝜃 + 1

)︂𝑐

· 𝑥𝑑
1 = 1

}︂
satisfy functional equation (2.4). In the same way, for the set of vectors

{(0, ℎ(1)
1 ), (0, 𝑙

(1)
1 )}, {(ℎ(2)

1 , 0), (𝑙
(2)
1 , 0)}, {(0, ℎ(2)

1 ), (0, 𝑙
(2)
1 )}

one can show the existence of extra three sets of vectors satisfying functional equation (2.4).
As a result we obtain the following theorem.

Theorem 4.3. For the antiferromagnetic Potts model on the Cayley tree of order 𝑘 = 𝑐 +
𝑑+ 3, 𝑐, 𝑑 ∈ N as 𝑞 = 3 and 𝜃 ∈ 𝐵(𝑐, 𝑑) there exist at least (3)-periodic Gibbs measures.

Remark 4.1. 1) We note that for the Potts model on the Cayley tree of order two there
exist no periodic and non-translation-invariant Gibbs measures, see [31]. This is why for the
antiferromagnetic Potts model also there exist no (2)-periodic Gibbs measures.

2) We note that (3)-periodic Gibbs measures differ from known measures, see [15], [29], [30],
[24].
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5. Conclusion

In the paper we study (𝑘0)-translation-invariant and (𝑘0)-periodic Gibbs measure for the
Potts model on the Cayley tree. For the ferromagnetic Potts model on the Cayley tree of the
seventh order as 𝑞 = 3 and 𝜃 = 𝜃𝑐 we prove the existence of at least six (3)-translation-invariant
Gibbs measures; for the ferromagnetic Potts model on the Cayley tree of order 𝑘 = 𝑎 + 𝑏 + 3,
𝑎, 𝑏 ∈ N for 𝑞 = 3 and 𝜃 ∈ 𝐵(𝑎, 𝑏) we prove the existence of at least six (3)-translation-invariant
Gibbs measures; for the antiferromagnetic Potts model on the Cayley tree of order 𝑘 = 𝑐+𝑑+3,
𝑐, 𝑑 ∈ N as 𝑞 = 3 and 𝜃 ∈ 𝐵(𝑐, 𝑑) on the invariant sets 𝐼2, 𝐼3 and 𝐼4 we prove the existence of
at least four (3)-periodic Gibbs measures.
All these results can be applied both for the experimental checking of the properties of the

magnetic materials corresponding to the Potts models and to testing the algorithms of numerical
physics on supercomputers, see [9]–[13].
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