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CONVERGENCE OF SERIES OF EXPONENTIAL MONOMIALS

A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA

Abstract. In the paper we study the convergence of series of exponential monomials, special
cases of which are the series of exponentials, Dirichlet series and power series. We provide
a description of the space of coefficients of series of exponential monomials converging in a
given convex domain in the complex plane is described. Under a single natural restriction
on the degrees of monomials, we provide a complete analogue of the Abel theorem for
such series, which, in particular, implies results on the continued convergence of series of
exponential monomials. We also obtain a complete analogue of the Cauchy-Hadamard
theorem, in which we give a formula allowing to recover the convergence domain of these
series by their coefficients. The obtained results include, as special cases, all previously
known results related with the Abel and Cauchy-Hadamard theorems for exponential series,
Dirichlet series and power series.

Keywords: exponential monomial, convex domain, Abel theorem, Cauchy-Hadamard the-
orem.
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1. Introduction

In the work we study the convergence of the series of exponential monomials, that is, of the
series of form

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑑𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧. (1.1)

We study the problem on describing the space of the coefficients of converging series (1.1),
the nature of their convergence, describe their convergence domain and study the question on
continuing the convergence of series (1.1).
Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 be a sequence of different complex numbers 𝜆𝑘 and their multiplicities

𝑛𝑘 ∈ N. We suppose that |𝜆𝑘| are non-decreasing and |𝜆𝑘| → ∞, 𝑘 → ∞. We let

𝑚(Λ) = lim
𝑘→∞

𝑛𝑘
|𝜆𝑘|

, 𝜎(Λ) = lim
𝑗→∞

ln 𝑗

|𝜉𝑗|
, (1.2)

where {𝜉𝑗} is a non-increasing by the absolute value sequence formed by the points 𝜆𝑘 and each
point 𝜆𝑘 appears in it exactly 𝑛𝑘 times.
The direction related with the series of exponential monomials and their particular case, the

series of exponentials, that is, series (1.1), where 𝑛𝑘 = 1, 𝑘 ⩾ 1, the Dirichlet series (𝑛𝑘 = 1
and 𝜆𝑘 > 0) and the Taylor series has a rich history. It goes back to works by Taylor, Cauchy,
Hadamard, Abel and Dirichlet. The aforementioned problems for such series were studied in
works E. Khille, G.L. Lunts, A.F. Leontiev and other mathematicians.
For series (1.1), as in the theory of exponential series, in particular, of power series and the

Dirichlet series, the most important problems are on describing the classes of the convergence
domains including the problem on continuing the convergence and on describing the nature
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of the convergence of the series, as well as the recovering of the convergence domain by the
coefficients of the series. In the theory of power series the first two problems are solved by means
of the Abel theorem, while the latter problem is solved by means of the Cauchy-Hadamard
problem. For the Dirichlet series there is an analogue of the Abel theorem [1, Ch. II, Lm.
1.1], which states that the convergence of the Dirichlet series at a single point 𝑧0 implies its
convergence in the half-plane {𝑧 ∈ C : Re 𝑧 < Re 𝑧0}. If 𝜎(Λ) = 0, then this convergence is
absolute and uniform in each half plane {𝑧 ∈ C : Re 𝑧 < Re 𝑧0− 𝜀} [1, Ch. 2, Thm. 1.1]. There
is also a complete analogue of the Cauchy-Hadamard theorem for the Dirichlet series, in which
under the condition 𝜎(Λ) = 0, the convergence abscissa is calculated [1, Ch. 2, Thm. 1.2].
In the case of the exponential series a complete analogue of the Abel theorem is absent.

There is a result [3], [1, Ch. 2, Thm. 2.1] stating that the set of the points of the absolute
convergence of the series is convex. And on the compact subsets of the interior of this set the
seris converges uniformly [1, Ch. 2, Thm. 2.2]. If the condition 𝜎(Λ) = 0 is satisfied, then
[1, Ch. 2, Thm. 2.3] the simple and the absolute convergence of the exponential series in the
convex domain are equivalent. Moreover, for the exponential series, an analogue of the Cauchy-
Hadamard theorem is known [3]–[5], [2, Thm. 3.1.3]. In the case of general series of form (1.1)
we can only mention the result from work [6]. Here it was proved that the convergence domain
of series (1.1) is convex if 𝑚(Λ) = 0.
In work [7] under the conditions 𝜎(Λ) = 𝑚(Λ) = 0, a complete analogue of the Abel theorem

is given for (1.1), in particular, for the exponential series. It was shown that the convergence
domain of series (1.1) is a convex domain of a special form. It was proved that the pointwise
convergence of series (1.1) in this domain is equivalent to its absolute continuity, uniform
continuity on the compact sets and even a convergence in a stronger topology. Also an analogue
of Cauchy-Hadamard theorem was provided, which contained all above results as particular
cases.
A disadvantage of work [7] is the condition 𝑚(Λ) = 0, which is well appropriate for the

case of a bounded convergence domain of series (1.1). In the case of an unbounded domain,
the condition 𝑚(Λ) = 0 becomes too restrictive. The aim of the present work is to obtain
the results similar to ones in work [7] under a weaker, in the case of an unbounded domain,
condition on the multiplicities 𝑛𝑘 of the points 𝜆𝑘.

2. Space of coefficients of converging series

By the symbols 𝐵(𝑧, 𝑟) and 𝑆(𝑧, 𝑟) we denote respectively an open ball and a circumference
of the radius 𝑟 > 0 centered at the point 𝑧 ∈ C. Let 𝑀 ⊂ C and 𝑀 be the closure of the set
𝑀 . By

𝐻(𝜙,𝑀) = sup
𝑧∈𝑀

Re(𝑧𝑒−𝑖𝜙), 𝜙 ∈ R,

we denote the support function of 𝑀 and

𝐽(𝑀) = {𝑒𝑖𝜙 ∈ 𝑆(0, 1) : ℎ(𝜙,𝑀) = +∞}.

We note that the support function 𝐻𝑀 is always lower semi-continuous and is continuous inside
the interval, on which it is bounded. In particular, if 𝑀 is bounded set ([8]), then 𝐻(𝜙,𝑀)

is a continuous function. If the set 𝐽(𝑀) ∖ 𝐽(𝑀) is non-empty, then it consists of one or two
points.
If 𝐷 is a bounded convex domain, then 𝐽(𝐷) = ∅. In the case of an unbounded convex

domain there can be the following situations:
1) 𝐽(𝐷) = 𝑆(0, 1), that is, 𝐷 = C,
2) 𝐷 is the half-plane {𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝑎} and 𝐽(𝐷) = 𝑆(0, 1) ∖ {𝑒𝑖𝜙},
3) 𝐷 is the strip {𝑧 ∈ C : 𝑏 < Re(𝑧𝑒−𝑖𝜙) < 𝑎} and 𝐽(𝐷) = 𝑆(0, 1) ∖ {𝑒𝑖𝜙, 𝑒𝑖𝜙+𝜋},
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4) in other cases 𝐽(𝐷) is an arc on the unit circumference, which corresponds to an angle at
least 𝜋.
Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 and 𝐷 ⊂∈ C be a convex domain. We describe the set of the sequences

of the coefficients {𝑑𝑘,𝑛}∞,𝑛𝑘−1
𝑘=1,𝑛=0, for which series (1.1) converges in the domain 𝐷. By 𝒦(𝐷) =

{𝐾𝑝}∞𝑝=1 we denote the sequence of the convex compact sets in the domain 𝐷, which strictly
exhausts it, that is,

𝐾𝑝 ⊂ int𝐾𝑝+1, 𝑝 ⩾ 1, 𝐷 =
∞⋃︁
𝑝=1

𝐾𝑝. (2.1)

Here the symbol int stands for the interior of the set. By the embedding in (2.1) and the
definition of the support function, for each 𝑝 ⩾ 1 there exists 𝛼𝑝 > 0 such that

𝐻(𝜙,𝐾𝑝)(𝜙) + 𝛼𝑝 ⩽ 𝐻(𝜙,𝐾𝑝+1), 𝜙 ∈ [0, 2𝜋]. (2.2)

We let

𝑄𝑝(Λ) = {𝑑 = {𝑑𝑘,𝑛} : ‖𝑑‖𝑝 = sup
𝑘,𝑛

|𝑑𝑘,𝑛|𝑝𝑛 exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑝)) <∞}, 𝜆𝑘 = 𝑟𝑘𝑒
𝑖𝜙𝑘 ,

𝑄𝑝,0(Λ) = {𝑑 = {𝑑𝑘,𝑛} : ‖𝑑‖𝑝,0 = sup
𝑘,𝑛

|𝑑𝑘,𝑛| exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑝)) <∞},

𝑄(𝐷,Λ) =
∞⋂︁
𝑝=1

𝑄𝑝(Λ), 𝑄0(𝐷,Λ) =
∞⋂︁
𝑝=1

𝑄𝑝,0(Λ).

The following inequalities are obvious:

‖𝑑‖𝑝,0 ⩽ ‖𝑑‖𝑝, 𝑝 ⩾ 1, ∀𝑑 = {𝑑𝑘,𝑛}. (2.3)

By (2.2), for all 𝑑 ∈ 𝑄(𝐷,Λ) and 𝑑0 ∈ 𝑄0(𝐷,Λ) we also have the inequalities

‖𝑑‖1 ⩽ ‖𝑑‖2 ⩽ . . . ⩽ ‖𝑑‖𝑝 ⩽ . . . , ‖𝑑0‖1,0 ⩽ ‖𝑑0‖2,0 ⩽ . . . ⩽ ‖𝑑0‖𝑝,0 ⩽ . . . . (2.4)

Let 𝜆 be the complex conjugate number of 𝜆. By the symbol Θ(Λ) we denote the set of the
limits of all converging sequences of form

{︀
𝜆𝑘𝑗/|𝜆𝑘𝑗 |

}︀∞
𝑗=1

. It is obvious that Θ(Λ) is a closed

subset of the circumference 𝑆(0, 1). We let

𝑚(Λ, 𝜇) = sup lim
𝑗→∞

𝑛𝑘𝑗
𝜆𝑘𝑗

,

where the supremum is taken over all subsequences {𝜆𝑘𝑗} such that 𝜆𝑘𝑗/|𝜆𝑘𝑗 | → 𝜇. If 𝜇 /∈ Θ(Λ),
then we obviously have the identity 𝑚(Λ, 𝜇) = 0.

Lemma 2.1. Let Λ = {𝜆𝑘, 𝑛𝑘} and 𝐷 be a convex domain. Assume that

𝐽(𝐷) ∩Θ(Λ) = 𝐽(𝐷) ∩Θ(Λ), 𝑚(Λ) <∞, 𝑚(Λ, 𝜇) = 0, 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐷). (2.5)

Then the following statements hold:
1) for each 𝑝 ⩾ 1 there exist 𝐶 > 0 and 𝑚 ⩾ 1 such that

𝑝𝑛𝑘 exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑝)) ⩽ 𝐶 exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑚)), 𝑘 ⩾ 1;

2) for each 𝑝 ⩾ 1 there exist 𝐶 > 0 and 𝑚 ⩾ 1 such that

‖𝑑‖𝑝 ⩽ 𝐶‖𝑑‖𝑚,0, ∀𝑑 = {𝑑𝑘,𝑛};
3) topological vector spaces 𝑄(𝐷,Λ) and 𝑄0(𝐷,Λ) coincide.

Proof. Suppose that Statement 1 is wrong. Then for some index 𝑝 ⩾ 1 there exists a subse-
quence {𝜆𝑘(𝑚)} such that

𝑝𝑛𝑘(𝑚) exp(𝑟𝑘(𝑚)𝐻(−𝜙𝑘(𝑚), 𝐾𝑝)) ⩾ 𝑚 exp(𝑟𝑘(𝑚)𝐻(−𝜙𝑘(𝑚), 𝐾𝑚)), 𝑚 ⩾ 1. (2.6)



CONVERGENCE OF SERIES OF EXPONENTIAL MONOMIALS 59

We choose a subsequence
{︀
𝜆𝑘(𝑚(𝑗))

}︀
so that 𝜆𝑘(𝑚(𝑗))/|𝜆𝑘(𝑚(𝑗))| converges to some point 𝜇 =

𝑒−𝑖𝜙0 ∈ Θ(Λ). First let 𝜇 /∈ 𝐽(𝐷). Then, by the first identity in (2.5), 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐷). By
the second identity in (2.5) we have: 𝑚(Λ, 𝜇) = 0. This is why there exists 𝑗0 such that

𝑝𝑛𝑘(𝑚(𝑗)) = exp(𝑛𝑘(𝑚(𝑗)) ln 𝑝) ⩽ exp(𝛼𝑝𝑟𝑘(𝑚(𝑗))), 𝑗 ⩾ 𝑗0.

In view of (2.2) we get:

𝑝𝑛𝑘(𝑚(𝑗)) exp(𝑟𝑘(𝑚(𝑗))𝐻(−𝜙𝑘(𝑚(𝑗)), 𝐾𝑝)) ⩽ exp(𝑟𝑘(𝑚(𝑗))𝐻(−𝜙𝑘(𝑚(𝑗)), 𝐾𝑝+1)), 𝑗 ⩾ 𝑗0.

This contradicts (2.6).
Now let 𝜇 ∈ 𝐽(𝐷). By the inequality in (2.5) for some 𝑏 > 0 we have 𝑛𝑘 ⩽ 𝑏𝑟𝑘, 𝑘 ⩾ 1. Then

𝑝𝑛𝑘(𝑚(𝑗)) exp(𝑟𝑘(𝑚(𝑗))𝐻(−𝜙𝑘(𝑚(𝑗)), 𝐾𝑝)) ⩽ exp(𝑏𝑟𝑘(𝑚(𝑗)) ln 𝑝+ 𝑏𝑝𝑟𝑘(𝑚(𝑗))), 𝑗 ⩾ 1, (2.7)

where
𝑏𝑝 = max

𝑧∈𝐾𝑝

|𝑧|.

Since the function 𝐻(𝜙,𝐷) is lower semicontinuous, there exists 𝛿 > 0 such that

𝐻(𝜙,𝐷) > 𝑏 ln 𝑝+ 𝑏𝑝, 𝜙 ∈ [𝜙0 − 𝛿, 𝜙0 + 𝛿].

Then by the identity in (2.1) for some index 𝑙 we have:

𝐻(𝜙,𝐾𝑙) ⩾ 𝑏 ln 𝑝+ 𝑏𝑝, 𝜙 ∈ [𝜙0 − 𝛿, 𝜙0 + 𝛿].

This implies:
𝐻(−𝜙𝑘(𝑚(𝑗)), 𝐾𝑙) ⩾ 𝑏 ln 𝑝+ 𝑏𝑝, 𝑗 ⩾ 𝑗1.

Together with (2.7) this contradicts (2.6).
Thus, Statement 1 is true. It implies Statement 2. The latter, in view of (2.3), gives

Statement 3. The proof is complete.

Remark 2.1. Assume that the first identity in (2.5) is wrong and 𝑚(Λ, 𝜇) > 0, where 𝜇 is

a point in the set 𝐽(𝐷) ∩ (Λ), which does not belong to the set 𝐽(𝐷) ∩ Θ(Λ). Then all three
statements in Lemma 2.1 are wrong. As an example we consider the domain 𝐷 = {𝑧 : Re 𝑧 < 0}
and the sequence Λ = {2𝑘, 2𝑘}. We have

𝐽(𝐷) = 𝑆(0, 1) ∖ {1}, Θ(Λ) = {1}, 𝑚(Λ) = 𝑚(Λ, 1) = 1.

Moreover, 0 > 𝐻(0, 𝐾𝑝) → 0, 𝑝 → ∞. This implies that Statement 1 of Lemma 2.1 fails. Let
𝑑 = {1, 1, . . .}. Then 𝑑 ∈ 𝑄0(𝐷,Λ) and for sufficiently large indices 𝑝 the identity ‖𝑑‖𝑝 = +∞
holds, that is, 𝑑 ∈ 𝑄(𝐷,Λ).

Remark 2.2. The first identity in (2.5) is employed in the proof of Statement 1 only to
ensure the identity 𝑚(Λ, 𝜇) = 0, 𝜇 /∈ 𝐽(𝐷). If we impose the condition 𝑚(Λ, 𝜇) = 0, 𝜇 ∈
Θ(Λ)∖𝐽(𝐷), then all three Statements of Lemma 2.1 are true independent of the first condition
in (2.5). Thus, we obtain the following lemma.

Lemma 2.2. Let Λ = {𝜆𝑘, 𝑛𝑘} and 𝐷 be a convex domain. Assume that

𝑚(Λ) <∞, 𝑚(Λ, 𝜇) = 0, 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐷).

Then the following statements hold:
1) for each 𝑝 ⩾ 1 there exist 𝐶 > 0 and 𝑚 ⩾ 1 such that

𝑝𝑛𝑘 exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑝)) ⩽ 𝐶 exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑚)), 𝑘 ⩾ 1;

2) for each 𝑝 ⩾ 1 there exist 𝐶 > 0 and 𝑚 ⩾ 1 such that

‖𝑑‖𝑝 ⩽ 𝐶‖𝑑‖𝑚,0, ∀𝑑 = {𝑑𝑘,𝑛};
3) topological vector spaces 𝑄(𝐷,Λ) and 𝑄0(𝐷,Λ) coincide.
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Let us show that the space 𝑄(𝐷,Λ) coincides with the space of the coefficients of converging
in the domain 𝐷 series (1.1).
First of all we formulate two auxiliary statements proved in work [7].

Lemma 2.3. Let Λ = {𝜆𝑘, 𝑛𝑘}. The series
∞∑︁
𝑘=1

𝑛𝑘𝑒
−𝜀|𝜆𝑘|

converges for each 𝜀 > 0 if and only if 𝜎(Λ) = 0.

Let 𝐸 ⊂ C, Θ be a closed subset of the unit circumference 𝑆(0, 1). A Θ-convex hull of 𝐸 is
the set

𝐸(Θ) = {𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝐻(𝜙,𝐸), 𝑒𝑖𝜙 ∈ Θ}.
We observe that int𝐸 ⊂ 𝐸(Θ). Indeed, let 𝑧 ∈ int𝐸. Then the definition of the support
function implies the inequalities Re(𝑧𝑒−𝑖𝜙) < 𝐻𝐸(𝜙), 𝑒

𝑖𝜙 ∈ Θ. This means that 𝑧 ∈ 𝐸(Θ).
If Θ = 𝑆(0, 1), then the Θ-convex hull of the set coincides with its usual convex hull, more
precisely, with the interior of this convex hull, and thus, is a convex domain. The latter holds
also in the general situation.

Lemma 2.4. Let 𝐸 ⊂ C, Θ be a closed subset of the circumference 𝑆(0, 1). Then 𝐸(Θ) is a
convex domain.

Lemma 2.5. Let Λ = {𝜆𝑘, 𝑛𝑘} and 𝐸 ⊂ C. Assume that
1) the general term of the series (1.1) is bounded on the set 𝐸, that is,

|𝑑𝑘,𝑛𝑧𝑛𝑒𝜆𝑘𝑧| ⩽ 𝐴(𝑧) < +∞, 𝑘 ⩾ 1, 𝑛 = 0, 𝑛𝑘 − 1, 𝑧 ∈ 𝐸;

2) 𝑚(Λ) <∞ and 𝑚(Λ, 𝜇) = 0, 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐸);
3) if 𝜇 = 𝑒−𝑖𝜙0 ∈ Θ(Λ) ∩

(︁
𝐽(𝐸) ∖ 𝐽(𝐸)

)︁
and 𝑚(Λ, 𝜇) > 0, then there exists 𝑏(𝜙0) ∈ R such

that the set 𝐵(𝜙0) = {𝑧 ∈ 𝐸 : Re(𝑧𝑒𝑖𝜙0) ⩾ 𝑏(𝜙0)} is unbounded;
4) if 0 is an isolated domain in the set 𝐸, then the sequence {𝑑𝑘,𝑛}∞,𝑚𝑘−1

𝑘=1,𝑛=0 is bounded.
Then 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ), where 𝐷 = 𝐸(Θ(Λ)).

Proof. Suppose that 𝑑 /∈ 𝑄(𝐷,Λ). Then 𝑑 /∈ 𝑄𝑝 for some 𝑝 ⩾ 1, that is, there exists a sequence
{𝑑𝑘(𝑗),𝑛(𝑗)} such that

|𝑑𝑘(𝑗),𝑛(𝑗)|𝑝𝑛(𝑗) exp(𝑟𝑘(𝑗)𝐻(−𝜙𝑘(𝑗), 𝐾𝑝)) → +∞, 𝑗 → ∞. (2.8)

Passing to a subsequence once again, we can suppose that
{︀
𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)|

}︀
converges to 𝜇 =

𝑒−𝑖𝜙0 ∈ Θ(Λ). First let

lim
𝑗→∞

𝑛(𝑗)

|𝜆𝑘(𝑗)|
= 0. (2.9)

By the definition of the quantity 𝑚(Λ, 𝜇), for each 𝜀 > 0 there exists 𝑗0 such that

𝑛𝑘(𝑗) ⩽ 𝜀𝑟𝑘(𝑗), 𝑗 ⩾ 𝑗0. (2.10)

Hence, by (2.2) and (2.8) we obtain:

|𝑑𝑘(𝑗),𝑛(𝑗)| exp(𝑟𝑘(𝑗)𝐻(−𝜙𝑘(𝑗), 𝐾𝑝+1)) → +∞, 𝑗 → ∞. (2.11)

Since 𝐾𝑝+2 is a compact set in the domain 𝐷 = 𝐸(Θ(Λ)), it follows from the definitions of the
set 𝐸(Θ(Λ)) and the support function that for some 𝑧0 ∈ 𝐸 the estimate holds: Re(𝑧0𝑒

𝑖𝜙0) >
𝐻(−𝜙0, 𝐾𝑝+2). Then in view of (2.2) and the continuity of the support function there exists
𝛿 > 0 such that

Re(𝑧𝑒𝑖𝜙) > 𝐻(−𝜑,𝐾𝑝+2) ⩾ 𝐻(−𝜙,𝐾𝑝+1) + 𝛼𝑝+1, 𝑧 ∈ 𝐵(𝑧0, 𝛿), 𝑒𝑖𝜙 ∈ 𝐵(𝑒𝑖𝜙0 , 𝛿). (2.12)



CONVERGENCE OF SERIES OF EXPONENTIAL MONOMIALS 61

We choose an index 𝑗1 ⩾ 𝑗0 so that

𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| = 𝑒𝑖𝜙𝑘(𝑗) ∈ 𝐵(𝑒𝑖𝜙0 , 𝛿), 𝑗 ⩾ 𝑗1. (2.13)

Two cases are possible.
1. The set 𝐵(𝑧0, 𝛿) ∩ 𝐸 contains the point 𝑧1 ̸= 0.
2. The point 𝑧0 = 0 is an isolated one in the set 𝐸.
We consider the first case. By (2.10)

|𝑧1|𝑛(𝑗) ⩾ exp(−𝛼𝑝+1𝑟𝑘(𝑗)), 𝑗 ⩾ 𝑗2 ⩾ 𝑗1.

By (2.12), (2.13) and (2.11) this yields:

|𝑑𝑘(𝑗),𝑛(𝑗)(𝑧1)𝑛(𝑗)𝑒𝜆𝑘(𝑗)𝑧1 | ⩾ |𝑑𝑘(𝑗),𝑛(𝑗)| exp(𝑟𝑘(𝑗)𝐻(−𝜙𝑘(𝑗), 𝐾𝑝+1)) → +∞, 𝑗 → ∞.

This contradicts Condition 1).
If 𝑧0 = 0 is an isolated point in 𝐸, by (2.11)–(2.13) we find:

|𝑑𝑘(𝑗),𝑛(𝑗)| = |𝑑𝑘(𝑗),𝑛(𝑗)𝑒𝜆𝑘(𝑗)𝑧0| ⩾ |𝑑𝑘(𝑗),𝑛(𝑗)| exp𝐻(−𝜙𝑘(𝑗), 𝐾𝑝+1) → +∞, 𝑗 → ∞.

This contradicts Condition 4).
Now suppose that (2.9) is wrong. Passing to a subsequence, we can suppose that

lim
𝑗→∞

𝑛(𝑗)

|𝜆𝑘(𝑗)|
> 0. (2.14)

According to Condition 2), two cases are possible.
1. 𝜇 ∈ 𝐽(𝐸).

2. 𝜇 ∈ Θ(Λ) ∩
(︁
𝐽(𝐸) ∖ 𝐽(𝐸)

)︁
.

By (2.7) and (2.8) we obtain:

|𝑑𝑘(𝑗),𝑛(𝑗)| exp(𝑏𝑟𝑘(𝑗) ln 𝑝+ 𝑏𝑝𝑟𝑘(𝑗)) → +∞, 𝑗 → ∞. (2.15)

We consider the first case. Since 𝜇 ∈ 𝐽(𝐸), it follows from the definitions of the set 𝐸(Θ(Λ))
and the support function that for some 𝑧0 ∈ 𝐸 the estimate holds:

Re(𝑧0𝑒
𝑖𝜙0) > 𝑏 ln 𝑝+ 𝑏𝑝.

We can suppose that |𝑧0| ⩾ 1. We choose 𝛿 > 0 such that

Re(𝑧0𝑒
𝑖𝜙) > 𝑏 ln 𝑝+ 𝑏𝑝, 𝑒𝑖𝜙 ∈ 𝐵(𝑒𝑖𝜙0 , 𝛿).

Then in view of (2.15) we have:

|𝑑𝑘(𝑗),𝑛(𝑗)(𝑧0)𝑛(𝑗)𝑒𝜆𝑘(𝑗)𝑧0| ⩾ |𝑑𝑘(𝑗),𝑛(𝑗)𝑒𝜆𝑘(𝑗)𝑧0| → +∞, 𝑗 → ∞.

This contradicts Condition 1).

Finally, let 𝜇 ∈ Θ(Λ) ∩
(︁
𝐽(𝐸) ∖ 𝐽(𝐸)

)︁
. By Condition 3) of the lemma, the set 𝐵(𝜙0) is

unbounded. Hence, in view of (2.14), there exists 𝑧0 ∈ 𝐸 such that

|(𝑧0)𝑛(𝑗)| ⩾ exp((𝑏 ln 𝑝+ 𝑏𝑝 − 𝑏(𝜙0))𝑟𝑘(𝑗)), 𝑗 ⩾ 𝑗3.

By (2.15) this implies:

|𝑑𝑘(𝑗),𝑛(𝑗)(𝑧0)𝑛(𝑗)𝑒𝜆𝑘(𝑗)𝑧0| → +∞, 𝑗 → ∞.

This contradicts Condition 1). Thus, 𝑑 ∈ 𝑄(𝐷,Λ). The proof is complete.

Remark 2.3. Condition 4) of Lemma 2.5 is essential. As an example we consider the series
∞∑︁
𝑘=1

𝑒2𝑘𝑧𝑒𝑘𝑧.
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Here Θ(Λ) = {1}. Let 𝐸 = {−2, 0}. Then 𝐸(Θ(Λ)) coincides with the half-plane Re 𝑧 < 0,
while the general term of the series is bounded on 𝐸. But this series does not converge on
this half-plane since it diverges on the circumference 𝑆(0, 1). It converges in the half-plane
Re 𝑧 < −2, which coincides with the set 𝐸 ′(Θ(Λ)), where 𝐸 ′ = {−2}. In this case Condition 4)
of Lemma 2.1 fails, while others are satisfied and the statement of the lemma becomes wrong.

Lemma 2.6. Let 𝐷 be a convex domain, Λ = {𝜆𝑘, 𝑛𝑘} and 𝜎(Λ) = 0. Then for each 𝑝 ⩾ 1
there exist 𝐶𝑝 > 0 and an index 𝑚(𝑝) such that

∞,𝑚𝑘−1∑︁
𝑘=1,𝑛=0

|𝑑𝑘,𝑛| sup
𝑧∈𝐾𝑝

|𝑧𝑛𝑒𝑧𝜆𝑘 | ⩽ 𝐶𝑝‖𝑑‖𝑚(𝑝), 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ). (2.16)

Proof. We fix 𝑝 ⩾ 1. We choose an index 𝑚(𝑝) > 𝑝 such that

𝑚(𝑝) ⩾ 𝑏𝑝 = max
𝑧∈𝐾𝑝

|𝑧|.

Then by (2.2) and the definition of the support function we obtain:

∞,𝑚𝑘−1∑︁
𝑘=1,𝑛=0

|𝑑𝑘,𝑛| sup
𝑧∈𝐾𝑝

|𝑧𝑛𝑒𝑧𝜆𝑘 | ⩽
∞,𝑚𝑘−1∑︁
𝑘=1,𝑛=0

|𝑑𝑘,𝑛|(𝑚(𝑝))𝑛 exp(𝑟𝑘𝐻(−𝜙𝑘, 𝐾𝑝))

⩽‖𝑑‖𝑚(𝑝)

∞,𝑚𝑘−1∑︁
𝑘=1,𝑛=0

exp(𝑟𝑘(𝐻(−𝜙𝑘, 𝐾𝑝)−𝐻(−𝜙𝑘, 𝐾𝑚(𝑝))))

⩽‖𝑑‖𝑚(𝑝)

∞,𝑚𝑘−1∑︁
𝑘=1,𝑛=0

exp(−𝑟𝑘𝛼𝑝).

By Lemma 2.3 this implies (2.16). The proof is complete.

Theorem 2.1. Let 𝐷 be a convex domain and Λ = {𝜆𝑘, 𝑛𝑘}. Assume that 𝜎(Λ) = 0,

𝑚(Λ) <∞ and 𝑚(Λ, 𝜇) = 0, 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐷). Then the following statements are equivalent:
1) Series (1.1) converges in the domain 𝐷.
2) The belonging 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ) holds.

Proof. Let Statement 1) be satisfied. We let 𝐸 = 𝐷. By the convergence of series (1.1), in
the domain 𝐷 Condition 1) of Lemma 2.5 is satisfied. According to the assumptions of the
theorem, also Condition 2) of Lemma 2.5 is obeyed. Since 𝐸 = 𝐷 is a convex domain, it has no
isolated points. This is why Condition 4) of Lemma 2.5 holds trivially. We are going to show
that Condition 3) of Lemma 2.5 holds as well.

Let 𝜇 = 𝑒−𝑖𝜙0 ∈ 𝐽(𝐷) ∖ 𝐽(𝐷) and 𝑏(𝜙0) < 𝐻(−𝜙0, 𝐷). According to the definition of the
support function we find a point 𝑧0 ∈ 𝐷 such that

Re(𝑧0𝑒
𝑖𝜙0) > 𝑏(𝜙0).

Since 𝜇 ∈ 𝐽(𝐷) ∖ 𝐽(𝐷), then 𝜇 is a bounded point of an open arc 𝛾 ⊂ 𝑆(0, 1) of the opening 𝜋,
which is completely contained in the set 𝐽(𝐷). Let, for the sake of definiteness,

𝛾 = {𝑒−𝑖𝜙 : 𝜙 ∈ (𝜙0, 𝜙0 + 𝜋)}.

We consider the ray 𝑧𝑡 = 𝑧0 + 𝑡𝑒−𝑖(𝜙0+𝜋/2), 𝑡 > 0. We have:

Re(𝑧𝑡𝑒
𝑖𝜙0) = Re(𝑧0𝑒

𝑖𝜙0) + Re(𝑡𝑒−𝑖𝜋/2) = Re(𝑧0𝑒
𝑖𝜙0) > 𝑏(𝜙0). (2.17)

Since 𝛾 ⊂ 𝐽(𝐷), then

Re(𝑧𝑡𝑒
𝑖𝜙) < 𝐻(−𝜙,𝐷) = +∞, 𝜙 ∈ (𝜙0, 𝜙0 + 𝜋).
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Moreover, since 𝑧0 ∈ 𝐷, then

Re(𝑧𝑡𝑒
𝑖𝜙) = Re(𝑧0𝑒

𝑖𝜙) + 𝑡Re(𝑒−𝑖(𝜙0+𝜋/2−𝜙)) ⩽ Re(𝑧0𝑒
𝑖𝜙) < 𝐻(−𝜙,𝐷), 𝜙 ∈ [𝜙0 − 𝜋, 𝜙0].

It follows from latter identities that

Re(𝑧𝑡𝑒
𝑖𝜙) < 𝐻(−𝜙,𝐷), 𝑡 > 0, 𝜙 ∈ [𝜙0 − 𝜋, 𝜙0 + 𝜋],

that is, 𝑧𝑡 ∈ 𝐷, 𝑡 > 0. Together with (2.17) this means that the set 𝐵(𝜙0) is unbounded.
Thus, all assumptions of Lemma 2.5 are satisfied. Then according to this lemma, 𝑑 = {𝑑𝑘,𝑛} ∈

𝑄(𝐷(Θ(Λ)),Λ). Since 𝐷 is a convex domain, then

𝐷 = {𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝐻(𝜙,𝐷), 𝜙 ∈ [0, 2𝜋]}.
This is why 𝐷 ⊂ 𝐷(Θ(Λ)). Now by the definition of 𝑄(𝐷,Λ) we easily obtain the embedding

𝑄(𝐷(Θ(Λ))) ⊂ 𝑄(𝐷,Λ).

Therefore, 𝑑 ∈ 𝑄(𝐷,Λ).
Now let Statement 2) be true. Then by Lemma 2.6 series (1.1) converges on each compact

set in the domain 𝐷, and hence, on the entire domain 𝐷. The proof is complete.

Remark 2.4. According to Theorem 2.7 and Lemma 2.6, under the assumptions of this
theorem, the pointwise convergence of series (1.1) in the domain 𝐷 is equivalent to its absolute
and uniform convergence on the compact sets in this domain.

3. Analogue of Abel and Cauchy-Hadamard theorems

for series of exponential monomials

The following result is an analogue of the Abel theorem for series (1.1).

Theorem 3.1. Let Λ = {𝜆𝑘, 𝑛𝑘} and 𝐸 ⊂ C. Assume that
1) the general term of series (1.1) is bounded on the set 𝐸, that is,

|𝑑𝑘,𝑛𝑧𝑛𝑒𝜆𝑘𝑧| ⩽ 𝐴(𝑧) < +∞, 𝑘 ⩾ 1, 𝑛 = 0, 𝑛𝑘 − 1, 𝑧 ∈ 𝐸;

2) 𝜎(Λ) = 0, 𝑚(Λ) <∞ and 𝑚(Λ, 𝜇) = 0, 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐸);
3) if 𝜇 = 𝑒−𝑖𝜙0 ∈ Θ(Λ) ∩

(︁
𝐽(𝐸) ∖ 𝐽(𝐸)

)︁
and 𝑚(Λ, 𝜇) > 0, then there exists 𝑏(𝜙0) ∈ R such

that the set 𝐵(𝜙0) = {𝑧 ∈ 𝐸 : Re(𝑧𝑒𝑖𝜙0) ⩾ 𝑏(𝜙0)} is unbounded;
4) if 0 is an isolated point in the set 𝐸, then the sequence {𝑑𝑘,𝑛}∞,𝑚𝑘−1

𝑘=1,𝑛=0 is bounded.
Then for each 𝑝 ⩾ 1 there exist 𝐶𝑝 > 0 and an index 𝑚(𝑝) such that

∞,𝑚𝑘−1∑︁
𝑘=1,𝑛=0

|𝑑𝑘,𝑛| sup
𝑧∈𝐾𝑝

|𝑧𝑛𝑒𝑧𝜆𝑘 | ⩽ 𝐶𝑝‖𝑑‖𝑚(𝑝), 𝑑 = {𝑑𝑘,𝑛} ∈ 𝑄(𝐷,Λ),

where 𝐷 = 𝐸(Θ(Λ)), {𝐾𝑝} = 𝒦(𝐷). In particular, series (1.1) converges absolutely and
uniformly on each compact set in the domain 𝐷.

Proof. Let the assumptions of the theorem hold. Then by Lemma 2.5, 𝑑 ∈ 𝑄(𝐷,Λ). Therefore,
by Lemma 2.6, inequality (2.16) holds. In particular, this means that series (1.1) converges
absolutely and uniformly on each compact set in the domain 𝐷. The proof is complete.

Remark 3.1. Let 𝐸 be the convergence domain of series (1.1). Theorem 3.1 implies that
under its assumptions the interior of the set 𝐸 is always convex and is even a Θ(Λ)-convex
domain, that is, is a domain of the form

{𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝐻(𝜙), 𝑒𝑖𝜙 ∈ Θ(Λ)},
where 𝐻(𝜙) is a lower semi-continuous function.
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Remark 3.2. If we omit the assumption 𝜎(Λ) = 0 from Theorem 3.1, its statement becomes
wrong. To support this, we consider a series from book [1]:

∞∑︁
𝑘=1

(−1)𝑘𝑒𝜆𝑘𝑧, 𝜆𝑘 = ln ln 𝑘, 𝑘 ⩾ 1. (3.1)

It converges as a sign-alternating series for all 𝑧 = 𝑥 < 0 and diverges at the point 𝑧 = 0.
All assumptions of Theorem 3.1 except for the identity 𝜎(Λ) = 0 are satisfied. In our case
𝜎(Λ) = +∞. Had the statement of Theorem 3.1 been true, then series (3.1) would have
converged in the half-plane {𝑧 ∈ C : Re 𝑧 < 0}. However, for each 𝑥 > 0 and all sufficiently
large indices 𝑘 we have:

|𝑒𝜆𝑘𝑥| = 1

(ln 𝑘)𝑥
>

1

𝑘
,

that is, series (3.1) converges absolutely on the negative real semi-axis.

Remark 3.3. The condition 𝑚(Λ, 𝜇) = 0, 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐸) is also essential. We consider
the series

∞∑︁
𝑘=1

𝑒2𝑘𝑧2𝑘−1𝑒𝑘𝑧.

It is easy to show that this series converges in some domain lying in the half-plane Re 𝑧 < −𝑎,
where 𝑎 > 1 is chosen by the condition 𝑎 > 2(2 ln 𝑎+1), and in the circle 𝐵(0, 𝑟), where 𝑟 ∈ (0, 1)
is such that −2−12 ln 𝑟 > 3. At the same time it obviously diverges on the circumference 𝑆(0, 1).
Thus, the interior of the convergence set of this series is not a convex domain and even is not
a domain since its not connected.

Theorem 3.1 is an analogue of the Abel theorem for power series which are a particular case
of the exponential series. However, if we reformulate Theorem 3.1 for this particular case,
we obtain a weaker statement that the Abel theorem. This is explained by the fact that the
circles, on which the power series is to converge absolutely and uniformly, are mapped into
unbounded domains under the mentioned transformation. At the same time, in Theorem 3.1,
the uniform convergence is guaranteed only on the compact subsets. Complicating essentially
the proof of this theorem, we can show that series (1.1) still converges uniformly in some cases
on unbounded sets. However, these sets not always contain the images of circles under the
change of the variable that transforms a power series into an exponential series. We consider
the series ∑︁

(𝑒𝑘𝑧 + 𝑧𝑒𝑘𝑧). (3.2)

Let 𝐸 = {0}. We have Θ(Λ) = {1}. By Theorem 3.1, series (3.2) converges in the domain
𝐸(Θ(Λ)) = {𝑧 ∈ C : Re 𝑧 < 0} and uniformly on its compact subsets. One can show that
series (3.2) converges uniformly on some unbounded set, for instance, on the angles of opening
strictly less than 𝜋 with the vertices on the negative real semi-axis. But it does not converge
uniformly in any half-plane of form Π(𝑎) = {𝑧 : Re 𝑧 < −𝑎}, 𝑎 > 0. Now we consider the series∑︁

𝑒𝑘𝑧. (3.3)

It is obtained from the power series
∑︀
𝑤𝑘 by means of the transformation 𝑤 = 𝑒𝑧. The latter

converges in the ball 𝐵(0, 1), while by the Abel theorem it converges in each ball of a smaller
radius. Under the mentioned transform, these balls are mapped onto the half-planes Π(𝑎).
Therefore, series (3.2) converges uniformly in each of these half-planes. Such difference in the
set of uniform convergence of series (3.2) and (3.3) is related with the presence of the factors 𝑧
in series (3.2). Keeping the same factors, it is impossible to prove theorem of like Theorem 3.1
so that its particular case would the Abel theorem for power series. However, this situation can
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be fixed by omitting the factors 𝑧𝑛 in series (1.1), that is, considering only «pure» exponential
series; this is confirmed by the following result from work [7].
Let 𝐸 ⊂ C and Θ be a closed subset in 𝑆(0, 1). We let

𝐸(Θ, 𝜀) = {𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝐻(𝜙,𝐸), 𝑒𝑖𝜙 ∈ Θ}, 𝜀 > 0.

We note that in the case when Θ lies in some angle with the vertex at the origin of an opening
at most 𝜋, the set 𝐸(Θ, 𝜀) is unbounded for a sufficiently small 𝜀 ⩾ 0.

Theorem 3.2. Let Λ = {𝜆𝑘, 1}, 𝜎(Λ) = 0, 𝐸 ⊂ C and Θ be a closed subset in 𝑆(0, 1) such
that

𝜆𝑘/|𝜆𝑘| ∈ Θ, 𝑘 ⩾ 𝑘0.

Assume that general term of series (1.1) is uniformly bounded on the set 𝐸, that is,

|𝑑𝑘𝑒𝜆𝑘𝑧| ⩽ 𝐴, 𝑘 ⩾ 1, 𝑧 ∈ 𝐸. (3.4)

Then for each 𝜀 > 0 there exists 𝑐(𝜀,Λ) > 0 such that

∞∑︁
𝑘=𝑘0

|𝑑𝑘𝑒𝜆𝑘𝑧| ⩽ 𝐴𝑐(𝜀,Λ), 𝑧 ∈ 𝐸(Θ, 𝜀).

In particular, series (1.1) converges absolutely and uniformly on the set 𝐸(Θ, 𝜀).

Remark 3.4. We consider a series of exponentials∑︁
𝑑𝑘𝑒

𝑘𝑧, (3.5)

into which the power series
∑︀
𝑑𝑘𝑤

𝑘 is transformed under the change 𝑤 = 𝑒𝑧. In this case
𝜎(Λ) = 0 and for each 𝑘 ⩾ 1 the belonging holds: 𝜆𝑘/|𝜆𝑘| ∈ Θ = {1}. Let 𝐸 = {𝑧0} and (3.4) be
true. Then by Theorem 3.2 series (3.5) converges absolutely and uniformly on the set 𝐸(Θ, 𝜀) =
{𝑧 : Re 𝑧 < Re 𝑧0 − 𝜀}, 𝜀 > 0. This gives the Abel theorem for the power series.

The Cauchy-Hadamard theorem provides a formula for calculating the convergence radius of
a power series. For exponential series, an analogue of the circle is the half-plane, it is the image
of the circle under the change 𝑤 = 𝑒𝑧. An analogue of the radius of the circle is the distance
from the origin to the half-plane. If Θ(Λ) consists of two points, then the corresponding Θ(Λ)-
convex convergence domain of series (1.1) is the intersection of two half-planes. This domain
has already two «convergence radii», which are the distance from the origin to two straight lines
being the boundaries of these half-planes. If Θ(Λ) is an infinite set, then there are infinitely
many corresponding «convergence radii» of series (1.1). It should be noted that some of the
distance are to be taken with the minus sign. Such situation arises in the case, when the
convergence domain does not contain the origin.
We consider the series ∑︁

2𝑘𝑒𝑘𝑧.

Applying the Abel theorem to the associated power series, we establish easily that its conver-
gence domain is the half-plane {𝑧 : Re 𝑧 < ln 1

2
}. To avoid ambiguities, here as the «convergence

radius» the quantity − ln 2 should be treated, which is equal to the distance from the origin to
the straight line bounding the half-plane taken with minus sign and not the distance itself. Let
us clarify the said statement. We consider one more series∑︁

2−𝑘𝑒𝑘𝑧.

The convergence domain of this series is the half-plane {𝑧 : Re 𝑧 < ln 2}. Here the «convergence
radius» is equal to ln 2, that is, to the distance from the origin to the straight line bounding
the half-plane.
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Let 𝑒𝑖𝜙 ∈ Θ(Λ). For the sequence of the coefficients 𝑑 of series (1.1) we let

ℎ0(𝑑, 𝜙) = inf
𝜆𝑘(𝑗)

lim
𝑗→∞

min
0⩽𝑛⩽𝑛𝑘(𝑗)−1

− ln |𝑑𝑘(𝑗),𝑛|
𝑟𝑘(𝑗)

,

ℎ(𝑑, 𝜙) = inf
{𝜆𝑘(𝑗)}

inf
𝑝∈N

lim
𝑗→∞

min
0⩽𝑛⩽𝑛𝑘(𝑗)−1

−(ln |𝑑𝑘(𝑗),𝑛|+ 𝑛 ln 𝑝)

𝑟𝑘(𝑗)
,

where the infimum is taken over all subsequences {𝜆𝑘(𝑗)} such that 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝑒𝑖𝜙, 𝑗 → ∞.
It follows from the definition of the function ℎ(𝑑, 𝜙) that it is lower semi-continuous . Then, as
in Lemma 2.4 proven in work [7], one can show that the set

𝐷(𝑑,Λ) = {𝑧 : Re(𝑧𝑒−𝑖𝜙) < ℎ0(𝑑, 𝜙), 𝑒
𝑖𝜙 ∈ Θ(Λ)}

is a Θ(Λ)-convex domain. The definitions of the quantities ℎ0(𝑑, 𝜙) and ℎ(𝑑, 𝜙) imply that in the
cases when 𝑚(Λ, 𝑒𝑖𝜙) = 0 or 𝑚(Λ, 𝑒𝑖𝜙) <∞ and ℎ0(𝑑, 𝜙) = +∞ the identity ℎ0(𝑑, 𝜙) = ℎ(𝑑, 𝜙)
holds.

Theorem 3.3. Let Λ = {𝜆𝑘, 𝑛𝑘}. Suppose that 𝐷(𝑑,Λ) ̸= ∅,

𝜎(Λ) = 0, 𝑚(Λ) <∞, 𝑚(Λ, 𝜇) = 0, 𝜇 ∈ Θ(Λ) ∖ 𝐽(𝐷(𝑑,Λ)), (3.6)

ℎ(𝑑, 𝜙) > −∞, 𝑒𝑖𝜙 ∈ Θ(Λ) ∩
(︁
𝐽(𝐷(𝑑,Λ)) ∖ 𝐽(𝐷(𝑑,Λ))

)︁
. (3.7)

Then series (1.1) converges at each point in the domain 𝐷(𝑑,Λ) and diverges at each point of

its exterior C ∖𝐷(𝑑,Λ) except for the origin if the series
∑︀
𝑑𝑘,0 diverges.

Proof. Let {𝐾𝑝} = 𝒦(𝐷), where 𝐷 = 𝐷(𝑑,Λ). We are going to show that 𝑑 ∈ 𝑄(𝐷,Λ).
Suppose that this is wrong. Then for 𝑝 ⩾ 1 there exists a subsequence {𝑑𝑘(𝑗),𝑛(𝑗)} such that

(2.8) holds an {𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)|} converges to 𝜇 = 𝑒−𝑖𝜙0 ∈ Θ(Λ). First let (2.9) be true. Then
relation (2.11) holds.
Since 𝐾𝑝+1 is a compact set in the domain 𝐷, it follows from its definition that

𝐻(−𝜙0, 𝐾𝑝+1) ⩽ ℎ0(𝑑,−𝜙0)− 2𝜀

for some 𝜀 > 0. Then according to the definition of the quantity ℎ0(𝑑,−𝜙0) there exists an
index 𝑗1 ⩾ 𝑗0 such that

− ln |𝑑𝑘(𝑗),𝑛(𝑗)|
𝑟𝑘(𝑗)

⩾ 𝐻(−𝜙0, 𝐾𝑝+1) + 𝜀, 𝑗 ⩾ 𝑗1.

By the continuity of the support function of a compact set we can suppose that

𝐻(−𝜙0, 𝐾𝑝+1) + 𝜀 ⩾ 𝐻(−𝜙𝑘(𝑗), 𝐾𝑝+1), 𝑗 ⩾ 𝑗1.

Then
− ln |𝑑𝑘(𝑗),𝑛(𝑗)|

𝑟𝑘(𝑗)
⩾ 𝐻(−𝜙𝑘(𝑗), 𝐾𝑝+1), 𝑗 ⩾ 𝑗1.

This yields:

|𝑑𝑘(𝑗),𝑛(𝑗)| ⩽ exp(−𝑟𝑘(𝑗)𝐻(−𝜙𝑘(𝑗), 𝐾𝑝+1), 𝑗 ⩾ 𝑗1,

which contradicts (2.11).
Now suppose that (2.9) is wrong. Passing to a subsequence, we can suppose that (2.14)

holds. In accordance with (3.6), two cases are possible.
1. 𝜇 ∈ 𝐽(𝐷).

2. 𝜇 ∈ Θ(Λ) ∩
(︁
𝐽(𝐷) ∖ 𝐽(𝐷)

)︁
.
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As in Lemma 2.5, convergence (2.15) holds true. Let us consider the first case. Since
𝜇 ∈ 𝐽(𝐷), then ℎ0(𝑑,−𝜙0) = +∞. This is why there exists an index 𝑗2 such that

− ln |𝑑𝑘(𝑗),𝑛(𝑗)|
𝑟𝑘(𝑗)

⩾ 𝑏 ln 𝑝+ 𝑏𝑝, 𝑗 ⩾ 𝑗2.

This gives:
|𝑑𝑘(𝑗),𝑛(𝑗)| ⩽ exp(−𝑏𝑟𝑘(𝑗) ln 𝑝− 𝑏𝑝𝑟𝑘(𝑗)), 𝑗 ⩾ 𝑗2,

which contradicts (2.15).

Finally, let 𝜇 ∈ Θ(Λ) ∩
(︁
𝐽(𝐷) ∖ 𝐽(𝐷)

)︁
. It follows from (3.7) and (2.14) that

− ln |𝑑𝑘(𝑗),𝑛(𝑗)|
𝑟𝑘(𝑗)

→ +∞, 𝑗 → ∞.

This contradicts (2.15).
Thus, 𝑑 ∈ 𝑄(𝐷,Λ). Then by Theorem 2.7, series (1.1) converges in the domain 𝐷.
Now let 𝑧 ∈ C ∖ 𝐷. If 𝑧 = 0 and series

∑︀
𝑑𝑘,0 converges, then series (1.1) converges at the

point 𝑧 = 0. Let 𝑧 ̸= 0. By the definition of the domain 𝐷 there exists 𝑒𝑖𝜙 ∈ Θ(Λ) such that

Re(𝑧𝑒−𝑖𝜙) > ℎ0(𝑑, 𝜙). (3.8)

According to the definition of the quantity ℎ0(𝑑, 𝜙), there exists a subsequence

𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝑒−𝑖𝜙,

for which

ℎ0(𝑑,−𝜙) = lim
𝑗→∞

− ln |𝑑𝑘(𝑗),𝑛(𝑗)|
𝑟𝑘(𝑗)

. (3.9)

Suppose that series (1.1) converges at the point 𝑧. Then series (1.1) converges at each point
of the set 𝐸 = {𝑧} ∪𝐷. This is why general term of series (1.1) is bounded on the set 𝐸. This
gives Condition 1) of Lemma 2.5. By construction,

𝐻(𝜓,𝐸) = max{𝐻(𝜓,𝐷),Re(𝑧𝑒−𝑖𝜓)}, 𝜓 ∈ [0, 2𝜋].

Therefore, 𝐽(𝐷) = 𝐽(𝐸). Then by (3.6) we obtain Condition 2) of Lemma 2.5. Condition 3)
of Lemma 2.5 holds owing to the same arguing as in Theorem 2.7. Finally, Condition 4) holds
trivially since the set 𝐸 has the unique isolated point 𝑧 ̸= 0. Then according to Lemma 2.5,
𝑑 ∈ 𝑄(𝐷0,Λ), where 𝐷0 = 𝐸(Θ(Λ)).
By (3.8) in the domain 𝐷0 there exists a point 𝑧0 such that

Re(𝑧0𝑒
𝑖𝜙) > ℎ0(𝑑,−𝜙). (3.10)

We choose an index 𝑝, for which the compact set 𝐾0,𝑝 ∈ 𝒦(𝐷0) contains 𝑧0. Since 𝑑 ∈ 𝑄(𝐷0,Λ),
then

|𝑑𝑘,𝑛| ⩽ 𝐵𝑝−𝑛 exp(−𝑟𝑘𝐻(−𝜙𝑘, 𝐾0,𝑝)) ⩽ 𝐵 exp(−𝑟𝑘𝐻(−𝜙𝑘, 𝐾0,𝑝)), 𝑘 ⩾ 1, 𝑛 = 0, 𝑛𝑘 − 1,

where 𝐵 > 0. Since 𝑧0 ∈ 𝐾0,𝑝, then

Re(𝑧0𝑒
𝑖𝜙𝑘) ⩽ 𝐻(−𝜙𝑘, 𝐾0,𝑝), 𝑘 ⩾ 1.

In view of the said above this implies

|𝑑𝑘,𝑛| ⩽ 𝐵 exp(−𝑟𝑘 Re(𝑧0𝑒𝑖𝜙𝑘)), 𝑘 ⩾ 1.

Then by (3.10) we have:

lim
𝑗→∞

− ln |𝑑𝑘(𝑗),𝑛(𝑗)|
𝑟𝑘(𝑗)

⩾ lim
𝑗→∞

− ln𝐵 + 𝑟𝑘(𝑗) Re(𝑧0𝑒
𝑖𝜙𝑘)

𝑟𝑘(𝑗)
= Re(𝑧0𝑒

𝑖𝜙) > ℎ0(𝑑,−𝜙).

This contradicts (3.9). The proof is complete.
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Remark 3.5. In the particular case for series (3.5) we have the formula

ℎ0(𝑑, 0) = lim
𝑘→∞

− ln |𝑑𝑘|
𝑘

= lim
𝑘→∞

(− ln 𝑘
√︀
|𝑑𝑘|).

Making the change 𝑤 = 𝑒𝑧 transforming series (3.5) into the power series, we obtain the
following formula for the convergence radius of the latter

𝑅 = expℎ0(𝑑, 0) = lim
𝑘→∞

1
𝑘
√︀

|𝑑𝑘|
.

Thus, we have obtained the Cauchy-Hadamard formula for the power series.
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