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LOWER BOUND FOR MINIMUM OF MODULUS OF ENTIRE

FUNCTION OF GENUS ZERO WITH POSITIVE ROOTS IN

TERMS OF DEGREE OF MAXIMAL MODULUS AT

FREQUENT SEQUENCE OF POINTS

A.YU. POPOV, V.B. SHERSTYUKOV

Abstract. We consider entire function of genus zero, the roots of which are located at a
single ray. On the class of all such functions, we obtain close to optimal lower bounds for
the minimum of the modulus on a sequence of the circumferences in terms of a negative
power of the maximum of the modulus on the same circumferences under a restriction on
the quotient 𝑎 > 1 of the radii of neighbouring circumferences. We introduce the notion of
the optimal exponent 𝑑(𝑎) as an extremal exponent of the maximum of the modulus in this
problem. We prove two-sided estimates for the optimal exponent for a “test” value 𝑎 = 9

4

and for 𝑎 ∈ (1, 98 ]. We find an asymptotics for 𝑑(𝑎) as 𝑎 → 1. The obtained result differs
principally from the classical cos(𝜋𝜌)-theorem containing no restrictions for the frequencies
of the radii of the circumferences, on which the minimum of the modulus of an entire
function of order 𝜌 ∈ [0, 1] is estimated by a power of the maximum of its modulus.
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1. Introduction. Main results

We recall a classical cos(𝜋𝜌)-theorem on lower bound for the modulus of an entire function
of order 𝜌 ∈ [0, 1] on some sequence of circumference tending to infinity. As usually, we denote

𝑀(𝑓 ; 𝑟) = max
|𝑧|=𝑟

|𝑓(𝑧)| = max
|𝑧|⩽𝑟

|𝑓(𝑧)|, 𝑚(𝑓 ; 𝑟) = min
|𝑧|=𝑟

|𝑓(𝑧)|,

where 𝑓 is an entire function.
Let 𝑓 be a not identically constant entire function of order 𝜌 ∈ [0, 1]. Then for each 𝜀 > 0

there exists a sequence of positive numbers 𝑟𝑛 → +∞ such that the inequality

𝑚(𝑓 ; 𝑟𝑛) > (𝑀(𝑓 ; 𝑟𝑛))
cos(𝜋𝜌)−𝜀 (1.1)

holds. For the values 𝜌 ∈ [0, 1) this result was independently obtained by Valiron [1] and
Wiman [2], while in the case 𝜌 = 1 it was proved by Cartwright in [3], see also a fundamental
work by Hayman [4]. We also mention that in [3], [4] there was considered a question on the
vastness of the set 𝐸 ⊂ R+ = (0,+∞) such that

𝑚(𝑓 ; 𝑟) > (𝑀(𝑓 ; 𝑟))cos(𝜋𝜌)−𝜀 , 𝑟 ∈ 𝐸.

It was proved that 𝐸 possesses a logarithmic density but this does not exclude the presence of
wide gaps in this set, that is, the existence of a sequence 𝑅𝑛 → +∞ and a number 𝑝 > 1 such
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that the segments [𝑅𝑛, 𝑅
𝑝
𝑛] lie in R+ ∖𝐸. The mentioned results are called Valiron-Wiman type

theorems, for more details we refere to monographs [5, Ch. 3], [6, Ch. V, Sect. 3], [7, Ch. 6]
and surveys [8], [9].

We pose a problem on possibility of the power estimate

𝑚(𝑓 ; 𝑟𝑛) > 𝑀−𝑑(𝑓 ; 𝑟𝑛) (1.2)

with some exponent 𝑑 > 0 on some sequence 𝑟𝑛 → +∞ obeying the condition

lim
𝑛→∞

𝑟𝑛+1

𝑟𝑛
< +∞. (1.3)

Of course, here we deal only with entire functions 𝑓 of a finite order. In [4] there is an example
of an entire function 𝐹 of an infinite order for which

lim
𝑟→+∞

ln𝑚(𝐹 ; 𝑟)

ln𝑀(𝐹 ; 𝑟)
= −∞.

However, even for an arbitrary non-constant entire function 𝑓 of zero order the answer to the
question on the existence of such sequence {𝑟𝑛} ensuring relations (1.2) and (1.3) for at least
some value 𝑑 is not known to us. This is why we restrict ourselves by considering a particular
case: the function 𝑓 is a canonical product of zero genus with roots lying on a single ray; for
the sake of definiteness, this ray is positive. Namely, we consider all functions of form

𝑓(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜆𝑛

)︂
, (1.4)

where {𝜆𝑛}𝑛∈N is an arbitrary scalar sequence obeying the conditions

0 < 𝜆𝑛 ⩽ 𝜆𝑛+1 ∀𝑛 ∈ N,
∞∑︁
𝑛=1

1

𝜆𝑛
< +∞. (1.5)

As it is known [5, Ch. 2], each entire function of order less than 1 different from a polynomial
is obtained by multiplying an infinite product of form (1.4) with arbitrary complex roots, the
series of reciprocals of their moduli converges, by 𝑎𝑧𝑚, where 𝑎 ∈ C ∖ {0}, 𝑚 ∈ Z+. The
belonging of all roots to a single ray (which is R+ in our case) is a rather strict restriction. For
all functions (1.4), the roots of which satisfy condition (1.5), the identities hold:

𝑚(𝑓 ; 𝑟) = |𝑓(𝑟)|, 𝑀(𝑓 ; 𝑟) = 𝑓(−𝑟), 𝑟 > 0. (1.6)

But even for such narrow subclass of entire functions we known only two results on the above
formulated problem. The first was obtained by A.M. Gaisin [10] for even canonical products

𝐿(𝑤) =
∞∏︁
𝑛=1

(︂
1− 𝑤2

𝜇2
𝑛

)︂
(1.7)

with real roots {±𝜇𝑛}, for which the series
∞∑︀
𝑛=1

𝜇−2
𝑛 converges. Gaisin proved that for each

function of form (1.7) there exists an increasing sequence 𝑅𝑛 → +∞ satisfying the condition
𝑅𝑛+1 ⩽ 4𝑅𝑛 for all 𝑛 ∈ N such that the estimate 𝑚(𝐿;𝑅𝑛) > 𝑀−20(𝐿;𝑅𝑛) is true.
This theorem was improved in [11], see also [12]: it was proved that for each function (1.4)

with roots obeying condition (1.5) there exists a sequence 𝑟𝑛 ↑ +∞ such that the restriction
𝑟𝑛+1 ⩽ 3𝑟𝑛+1 holds as well as the estimate 𝑚(𝑓 ; 𝑟𝑛) > 𝑀−9(𝑓 ; 𝑟𝑛). It is easy to confirm that if
we take an arbitrary function 𝐿 of form (1.7) and let 𝜆𝑛 = 𝜇2

𝑛, then by applying the formulated
result from [11] to the function

𝑓(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜇2
𝑛

)︂
=

∞∏︁
𝑛=1

(︂
1− 𝑧

𝜆𝑛

)︂
,
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taking into consideration an obvious identity 𝑓(𝑤2) = 𝐿(𝑤), we obtain the existence of the
sequence 𝑅𝑛 =

√
𝑟𝑛 ↑ +∞ such that the restriction 𝑅𝑛+1 ⩽

√
3𝑅𝑛 + 1 holds as well as the

estimate 𝑚(𝐿;𝑅𝑛) > 𝑀−9(𝐿;𝑅𝑛).
At the same time, the cited result of work [11] was obtained from the theorem, proven also

in the same work, on the lower bound for max
𝑞𝑟⩽𝑥⩽𝑟

𝑚(𝑓 ;𝑥) in terms of the negative power of

𝑀(𝑓 ;𝐴𝑟), where a number 𝐴 > 1 depends on the value of the parameter 𝑞 ∈ (0, 1) and the
exponent of the maximum of the modulus; this lower bound held for an arbitrary non-constant
entire function 𝑓 . The features of products (1.4) with positive roots was used only while
obtaining the asymptotic estimate 𝑀(𝑓 ;𝐴𝑟) = 𝑜(𝑀𝐴(𝑓 ; 𝑟)), 𝑟 → +∞, 𝐴 > 1, allowed us to
estimate the maximum of the modulus of the function 𝑓 on a larger circumference in terms of a
power of the maximum of the modulus on a smaller circumference. This is why it is natural to
expect that for the products of zero genus with the roots on a single ray one can get a stronger
result. We prove the following theorem in Section 3.

Theorem 1.1. Let 𝑓 be an arbitrary function of form (1.4), the roots of which obey condi-
tion (1.5). Then for each 𝑅 > 0 there exists a point 𝑟 ∈ (𝑅, 9𝑅/4), at which the inequality

𝑚(𝑓 ; 𝑟) > 𝑀−3(𝑓 ; 𝑟) (1.8)

holds. Moreover, the product
Π(𝑡) ≡ 𝑚(𝑓 ; 𝑡)𝑀3(𝑓 ; 𝑡)

exceeds 1 “in mean” on each segment [𝑅, 9𝑅/4] in the sense that

9𝑅/4∫︁
𝑅

𝑡−3 lnΠ(𝑡)𝑑𝑡 > 0 for all 𝑅 > 0. (1.9)

Corollary 1.1. Let 𝐿 be an arbitrary function of form (1.7) with real roots {±𝜇𝑛}𝑛∈N. Then
for each 𝑅 > 0 there exists a point 𝑟 ∈ (𝑅, 3𝑅/2), at which the inequality

|𝐿(𝑟)| = 𝑚(𝐿; 𝑟) > 𝑀−3(𝐿; 𝑟) = 𝐿−3(𝑖𝑟)

is satisfied.

The impossibility of an essential strengthening of inequality (1.8), namely, the change of the
exponent in the power of maximum of the modulus in (1.8) by −2 is due to the following result
proved in Section 2.

Theorem 1.2. For each value 𝜌 ∈ (0, 1) and an arbitrarily “fast” tending to +∞ sequence
of positive numbers {𝑅𝑛}𝑛∈N, that is, such that lim

𝑛→∞
(𝑅𝑛/𝑅𝑛+1) = 0, there exists an entire

function 𝐹 of order 𝜌 being a canonical product of zero order with positive roots, for which the
limiting relation holds:

lim
𝑛→∞

max

{︂
𝑚(𝐹 ; 𝑟)𝑀2(𝐹 ; 𝑟) | 𝑅𝑛 ⩽ 𝑟 ⩽

9

4
𝑅𝑛

}︂
= 0.

Theorems 1.1 and 1.2 demonstrate an essential difference between the problems on obtaining
lower bounds for the minimum of the modulus of an entire function of order 𝜌 ∈ (0, 1) in terms
of the power of the maximum of its modulus on a sequence of the circumferences tending to
infinity with no restrictions for the frequency of their radii, or with a weak condition for the
quotient of the logarithms of the neighbouring radii, and under the presence of a corresponding
estimate on each segment with a constant quotient of its ends. As we see by cos(𝜋𝜌)-theorem,
in the first case exactly the order of the function determines the best possible exponent in the
power of the maximum of the modulus in estimate (1.1). In the second case, when we need
to obtain a power estimate for 𝑚(𝑓 ; 𝑟) in terms of 𝑀(𝑓 ; 𝑟) at some appropriate point in the
segment 𝑅 ⩽ 𝑟 ⩽ 𝑎𝑅 (in Theorems 1.1, 1.2 we consider the value 𝑎 = 9

4
), the order of the
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function 𝑓 possibly plays some role (we failed trying to clarify it) but it is not principal: as we
have established, the best exponent 𝑑 in estimate (1.2) lies between the numbers 2 and 3.

Let us give a rigorous definition of the optimal exponent in power estimate (1.2) on the class
of products (1.4) with conditions on roots (1.5), when the quotient 𝑟𝑛+1/𝑟𝑛 is bounded from
above by a given number. We preliminary formulate one result.

In Section 2 we prove the following theorem. For an arbitrary 𝑎 > 1 we denote

𝑠(𝑎) =
ln 1

1−1/𝑎

ln(1 + 1/𝑎)
. (1.10)

We note that 𝑠(𝑎) > 1 for all 𝑎 > 1.

Theorem 1.3. For an arbitrary 𝜌 ∈ (0, 1) and an arbitrary scalar sequence 𝑅𝑛 → +∞ such
that lim

𝑛→∞
(𝑅𝑛/𝑅𝑛+1) = 0 there exists an entire function 𝑓 of order 𝜌 being canonical product (1.4)

with condition for the roots (1.5), for which the limiting relation

lim
𝑛→∞

max
𝑅𝑛⩽𝑟⩽𝑎𝑅𝑛

(︀
𝑚(𝑓 ; 𝑟)𝑀 𝑠(𝑎)(𝑓 ; 𝑟)

)︀
= 0

holds with the exponent 𝑠(𝑎) given by formula (1.10).

Definition 1.1. An optimal exponent 𝑑(𝑎) is the supremum of all values 𝑠, for which a
statement similar to Theorem 1.3 holds, namely, there exists a canonical product 𝑓 of form (1.4),
(1.5) and a sequence 𝑅𝑛 → +∞, for which

lim
𝑛→∞

max
𝑅𝑛⩽𝑟⩽𝑎𝑅𝑛

(𝑚(𝑓 ; 𝑟)𝑀 𝑠(𝑓 ; 𝑟)) = 0.

This definition yields that if we take an arbitrary exponent 𝑑 > 𝑑(𝑎), then for each canonical
product 𝑓 of form (1.4), (1.5) the quantity

max
𝑅⩽𝑟⩽𝑎𝑅

(︀
𝑚(𝑓 ; 𝑟)𝑀𝑑(𝑓 ; 𝑟)

)︀
(1.11)

is separated from zero for all sufficiently large 𝑅. By the arbitrariness 𝑑 > 𝑑(𝑎) in this statement
we immediately obtain that the maximum in (1.11) tends to infinity +∞ as 𝑅 → +∞ if 𝑓 differs
from the identical constant.

Theorems 1.1, 1.2 show that a two-sided inequality holds:

2 ⩽ 𝑑

(︂
9

4

)︂
⩽ 3; (1.12)

as we shall find below, with strict signs, while Theorem 1.3 implies the lower bound

𝑑(𝑎) ⩾ 𝑠(𝑎) =
ln 1

1−1/𝑎

ln(1 + 1/𝑎)
> 1 (1.13)

for each 𝑎 ∈ (1,+∞). We find the asymptotics

𝑑(𝑎) =
ln 1

𝑎−1

ln 2
+𝑂(1) = log2

1

𝑎− 1
+𝑂(1), 𝑎→ 1 + . (1.14)

A more detailed result is given by the following theorem, see Section 3.

Theorem 1.4. For each 𝑎 ∈ (1, 9/8] the two-sided inequality

log2
1

𝑎− 1
< 𝑑(𝑎) < log2

1

𝑎− 1
+

7

2
(1.15)

holds, which implies asymptotics (1.14).
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2. Lower bound for optimal exponent

Here we construct canonical products of zero genus, for which there exists a sequence of
segment tending to infinity in the real line with a constant quotient of the ends such that on
each circumference in the complex plane of a radius belonging to this system of the segments,
the minimum of the modulus of the product is less than some fixed negative power of the
maximum of the modulus.

We shall employ a simple statement. Let {𝐴𝑛}𝑛∈N be an increasing sequence of positive
numbers tending to +∞ fast enough so that the identity lim

𝑛→∞
(𝐴𝑛/𝐴𝑛+1) = 0 holds. Then the

following asymptotic estimates hold:

𝑛−1∑︁
𝑗=1

𝐴𝑗 = 𝑜 (𝐴𝑛) ,
∞∑︁

𝑗=𝑛+1

𝐴−1
𝑗 = 𝑜

(︀
𝐴−1

𝑛

)︀
, 𝑛→ ∞. (2.1)

Let 𝑃 be a polynomial, deg𝑃 = 𝑝, all roots 𝑥1, . . . , 𝑥𝑝 are real and positive but not necessarily
different. Supposing that 𝑃 (0) = 1, we write the polynomial 𝑃 as the product

𝑃 (𝑧) =

𝑝∏︁
𝑘=1

(︂
1− 𝑧

𝑥𝑘

)︂
. (2.2)

Lemma 2.1. Let 𝑎 > 1, 𝑑 > 0 and the inequality

𝜇 ≡ max
1⩽𝑥⩽𝑎

(︀
|𝑃 (𝑥)|𝑃 𝑑(−𝑥)

)︀
< 1 (2.3)

be satisfied and {𝑅𝑛}𝑛∈N be an arbitrary increasing and fast tending to +∞ sequence of positive
numbers obeying the identity

lim
𝑛→∞

𝑅𝑛

𝑅𝑛+1

= 0. (2.4)

Then for each 𝜌 ∈ (0, 1) there exists an entire function 𝐹 of normal type for order 𝜌 being a
canonical product of zero genus with roots located at the ray (0,+∞) of the real axis such that
the limiting relation

lim
𝑛→∞

max
{︀
𝑚(𝐹 ; 𝑟)𝑀𝑑(𝐹 ; 𝑟) | 𝑅𝑛 ⩽ 𝑟 ⩽ 𝑎𝑅𝑛

}︀
= 0 (2.5)

holds true.

Proof. We choose an arbitrary increasing sequence of natural numbers 𝜈𝑛 obeying the order
relation

𝜈𝑛 ≍ 𝑅𝜌
𝑛, 𝑛→ ∞. (2.6)

By (2.4), (2.6) we see that {𝜈𝑛}, as well as {𝑅𝑛}, very fast tends to infinity and is very lacunary:

lim
𝑛→∞

𝜈𝑛
𝜈𝑛+1

= 0. (2.7)

It is easy to confirm that by the Lindelöf theorem, see, for instance, [5, Ch. 2, Sect. 2.9],
by (2.6) the infinite product

𝐹 (𝑧) =
∞∏︁
𝑛=1

𝑃 𝜈𝑛

(︂
𝑧

𝑅𝑛

)︂
(2.8)

is an entire function of normal type for order 𝜌 and all its roots are located on the ray (0,+∞)
of the real axis and 𝐹 (0) = 1. In other words, the function 𝐹 is a canonical product of zero
genus:

𝐹 (𝑧) =
∞∏︁
𝑙=1

(1− 𝜉𝑙𝑧) , 𝜉𝑙 > 0,
∞∑︁
𝑙=1

𝜉𝑙 < +∞. (2.9)
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This identity implies

𝑚(𝐹 ; 𝑟) = |𝐹 (𝑟)| , 𝑀(𝐹 ; 𝑟) = 𝐹 (−𝑟), 𝑟 > 0, (2.10)

and similar relations

𝑚(𝑃 ; 𝑟) = |𝑃 (𝑟)| , 𝑀(𝑃 ; 𝑟) = 𝑃 (−𝑟), 𝑟 > 0, (2.11)

hold true for polynomial (2.2). Formulae (2.8), (2.10), (2.11) show that the function
𝑚(𝐹 ; 𝑟)𝑀𝑑(𝐹 ; 𝑟) to be maximized in (2.5) is expanded into the following product

𝑚(𝐹 ; 𝑟)𝑀𝑑(𝐹 ; 𝑟) =
∞∏︁
𝑛=1

⃒⃒⃒
𝑃 𝜈𝑛

(︂
𝑟

𝑅𝑛

)︂⃒⃒⃒
𝑃 𝑑𝜈𝑛

(︂
− 𝑟

𝑅𝑛

)︂
, 𝑟 > 0.

This implies that for each 𝑛 ∈ N the relation hold:

𝛾𝑛 ≡ max
𝑅𝑛⩽𝑟⩽𝑎𝑅𝑛

(︀
𝑚(𝐹 ; 𝑟)𝑀𝑑(𝐹 ; 𝑟)

)︀
= max

1⩽𝑥⩽𝑎

∞∏︁
𝑗=1

⃒⃒⃒
𝑃 𝜈𝑗

(︂
𝑥𝑅𝑛

𝑅𝑗

)︂⃒⃒⃒
𝑃 𝑑𝜈𝑗

(︂
−𝑥𝑅𝑛

𝑅𝑗

)︂
⩽ 𝛾𝑛,1𝛾𝑛,2𝛾𝑛,3,

(2.12)

where 𝛾1,1 ≡ 1,

𝛾𝑛,1 ≡ max
1⩽𝑥⩽𝑎

𝑛−1∏︁
𝑗=1

⃒⃒⃒
𝑃 𝜈𝑗

(︂
𝑥𝑅𝑛

𝑅𝑗

)︂⃒⃒⃒
𝑃 𝑑𝜈𝑗

(︂
−𝑥𝑅𝑛

𝑅𝑗

)︂
⩽ 𝛾𝑛,1 ≡

𝑛−1∏︁
𝑗=1

𝑃 (1+𝑑)𝜈𝑗

(︂
−𝑎𝑅𝑛

𝑅𝑗

)︂
, 𝑛 ⩾ 2, (2.13)

𝛾𝑛,2 ≡ max
1⩽𝑥⩽𝑎

|𝑃 𝜈𝑛(𝑥)|𝑃 𝑑𝜈𝑛(−𝑥) = max
1⩽𝑥⩽𝑎

(︀
|𝑃 (𝑥)|𝑃 𝑑(−𝑥)

)︀𝜈𝑛
, (2.14)

𝛾𝑛,3 ≡ max
1⩽𝑥⩽𝑎

∞∏︁
𝑗=𝑛+1

⃒⃒⃒
𝑃 𝜈𝑗

(︂
𝑥𝑅𝑛

𝑅𝑗

)︂⃒⃒⃒
𝑃 𝑑𝜈𝑗

(︂
−𝑥𝑅𝑛

𝑅𝑗

)︂
⩽ 𝛾𝑛,3 ≡

∞∏︁
𝑗=𝑛+1

𝑃 (1+𝑑)𝜈𝑗

(︂
−𝑎𝑅𝑛

𝑅𝑗

)︂
. (2.15)

In view of (2.3), (2.14), the identity holds:

𝛾𝑛,2 = 𝜇𝜈𝑛 . (2.16)

We need to show that the sequence 𝛾𝑛 tends to zero. By (2.12)–(2.16) we see that in order
to do this, it is sufficient to obtain asymptotic estimates:

ln 𝛾𝑛,1 = 𝑜(𝜈𝑛), ln 𝛾𝑛,3 = 𝑜(𝜈𝑛), 𝑛→ ∞. (2.17)

In (2.17) only upper bounds are to be proved since the quantities ln 𝛾𝑛,1, ln 𝛾𝑛,3 are positive:
the inequality 𝛾𝑛,1 > 1, 𝛾𝑛,3 > 1 are implied immediately by the fact that 𝑃 (−𝑡) > 1 for each
𝑡 > 0 according (2.2).

The inequality ln(1 + 𝑢) < 𝑢 for 𝑢 > 0 allows to obtain from (2.2) the estimate

ln𝑃 (−𝑡) < 𝑐 𝑡, 𝑡 > 0, where 𝑐 =

𝑝∑︁
𝑘=1

𝑥−1
𝑘 . (2.18)

By (2.18), (2.15), (2.6) we find

ln 𝛾𝑛,3 ⩽ 𝑂

(︃
𝑅𝑛

∞∑︁
𝑗=𝑛+1

𝜈𝑗𝑅
−1
𝑗

)︃
= 𝑂

(︃
𝑅𝑛

∞∑︁
𝑗=𝑛+1

𝑅𝜌−1
𝑗

)︃
, 𝑛→ ∞. (2.19)

Due to restriction (2.4) the sequence 𝐴𝑛 ≡ 𝑅1−𝜌
𝑛 is very lacunary, that is, lim

𝑛→∞
(𝐴𝑛/𝐴𝑛+1) = 0.

This is according to (2.1) we have:
∞∑︁

𝑗=𝑛+1

𝑅𝜌−1
𝑗 = 𝑜

(︀
𝑅𝜌−1

𝑛

)︀
, 𝑛→ ∞. (2.20)
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By (2.19), (2.20), (2.6) we obtain the needed upper bound:

ln 𝛾𝑛,3 ⩽ 𝑜
(︀
𝑅𝑛 ·𝑅𝜌−1

𝑛

)︀
= 𝑜 (𝑅𝜌

𝑛) = 𝑜(𝜈𝑛), 𝑛→ ∞.

Assuming that the roots of the polynomial 𝑃 are taken in the non-ascending order, apart of
estimate (2.18), which is good for “small” values of 𝑡, we have another estimate

𝑃 (−𝑡) ⩽
(︂
2𝑡

𝑥1

)︂𝑝

, 𝑡 ⩾ 𝑥1,

appropriate for “large” 𝑡. Therefore,

ln𝑃 (−𝑡) < 2𝑝 ln 𝑡, 𝑡 > 𝑥1 +
2

𝑥1
.

Hence, in view of (2.13), for sufficiently large 𝑛 we find:

ln 𝛾𝑛,1 ⩽ 𝑂

(︃
𝑛−1∑︁
𝑗=1

𝜈𝑗 ln

(︂
𝑎𝑅𝑛

𝑅𝑗

)︂)︃
.

By order relation (2.6) we have

ln

(︂
𝑅𝑛

𝑅𝑗

)︂
= ln

(︂
𝜈𝑛
𝜈𝑗

)︂
+𝑂(1) = 𝑂

(︃
ln

(︂
𝜈𝑛
𝜈𝑗

)︂)︃
, 1 ⩽ 𝑗 ⩽ 𝑛− 1.

Thus,

ln 𝛾𝑛,1 ⩽ 𝑂

(︃
𝑛−1∑︁
𝑗=1

𝜈𝑗 ln

(︂
𝜈𝑛
𝜈𝑗

)︂)︃
.

This shows that in order to obtain first asymptotic estimate (2.17), it remains to show that the
sum

𝑛−1∑︁
𝑗=1

𝜈𝑗
𝜈𝑛

ln

(︂
𝜈𝑛
𝜈𝑗

)︂
<

𝑛−1∑︁
𝑗=1

(︂
𝜈𝑗
𝜈𝑛

)︂1/2

tends to zero. This is immediately implied by (2.1) since the sequence 𝐴𝑛 ≡ 𝜈
1/2
𝑛 , due to (2.4)

and (2.6), satisfy the condition lim
𝑛→∞

(𝐴𝑛/𝐴𝑛+1) = 0. The asymptotic estimates (2.17) have been

obtained and this completes the proof of the lemma.

Lemma 2.1 shows that to prove Theorem 1.3, it is sufficient for each 𝑎 > 1 to provide a
polynomial 𝑃𝑎 with positive roots and 𝑃𝑎(0) = 1 such that

max
1⩽𝑥⩽𝑎

(︁
|𝑃𝑎(𝑥)| (𝑃𝑎(−𝑥))𝑠(𝑎)

)︁
< 1. (2.21)

If we take 𝑃𝑎(𝑧) = 1 − 𝑧/𝑎, it turns out that the maximum in the left hand side of (2.21) is
exactly 1. Let us show that relation (2.21) holds for the binomial 𝑃𝑎(𝑧) = 1 − 𝑧/𝑐 under the
choice

𝑐 = 𝑐(𝑎) = 𝑎
(︀
1 + 2−𝑠(𝑎)−1/2

)︀−1
, 𝑎 > 1. (2.22)

First we provide a general description of the behavior of the quantity 𝑠(𝑎) in (1.10).

Lemma 2.2. The function 𝑠(𝑎) decays on the ray 1 < 𝑎 < +∞. Moreover,

lim
𝑎→1+

𝑠(𝑎) = +∞, lim
𝑎→+∞

𝑠(𝑎) = 1, (2.23)

max

{︂
1, log2

1

𝑎− 1

}︂
< 𝑠(𝑎) <

𝑎+ 1

𝑎− 1
, 𝑎 > 1. (2.24)
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Proof. A direct calculation based on the formula

𝑠(𝑎) =
ln 𝑎− ln(𝑎− 1)

ln(𝑎+ 1)− ln 𝑎
, 𝑎 > 1,

leads to the following relations

𝑠′(𝑎)𝑎(𝑎2 − 1) ln2(1 + 1/𝑎) = 𝜓(𝑎)− 𝜓(𝑎+ 1), (2.25)

𝑠′(𝑎)𝑎(𝑎2 − 1) ln(1 + 1/𝑎) = 𝑠(𝑎)(𝑎− 1)− (𝑎+ 1). (2.26)

Here

𝜓(𝑎) ≡ 𝑎 ln 𝑎− (𝑎− 1) ln(𝑎− 1), 𝑎 > 1. (2.27)

Since auxiliary function (2.27) increases as 𝑎 > 1, then for all such 𝑎, by (2.25) we have 𝑠′(𝑎) < 0.
This is why the function 𝑠(𝑎) decays on the ray 1 < 𝑎 < +∞. Using then identity (2.26) and
taking into consideration that its left hand side is negative as 𝑎 > 1, we obtain the right hand
side of (2.24).

Let us obtain the left hand side of inequality (2.24). The simplest estimate 𝑠(𝑎) > 1 was
mentioned in Section 1. In addition, it follows immediately from Definition (1.10) that

𝑠(𝑎) ≡
ln 1

1−1/𝑎

ln(1 + 1/𝑎)
>

ln 1
𝑎−1

ln 2
= log2

1

𝑎− 1
, 𝑎 > 1.

This completes the proof of two-sided estimate (2.24). Finally, both limiting relations (2.23)
are easily obtained both from original formula (1.10) and (2.24). The proof is complete.

We proceed to proving Theorem 1.3. For an arbitrary 𝑎 > 1 we define a quantity 𝑐 = 𝑐(𝑎)
by the rule (2.22) and construct a binomial 𝑃𝑎(𝑧) = 1− 𝑧/𝑐. We first confirm that

1 < 𝑐 ≡ 𝑎
(︀
1 + 2−𝑠(𝑎)−1/2

)︀−1
< 𝑎. (2.28)

The inequality 𝑐 < 𝑎 is obvious. We rewrite inequality 𝑐 > 1 in an equivalent form

2−𝑠(𝑎)−1/2 < 𝑎− 1 ⇔ 𝑠(𝑎) > −1

2
+ log2

1

𝑎− 1
,

which is true due to (2.24).
We are going to confirm that the function

ℎ(𝑥) ≡ |𝑃𝑎(𝑥)| (𝑃𝑎(−𝑥))𝑠(𝑎) =
⃒⃒⃒
1− 𝑥

𝑐

⃒⃒⃒ (︁
1 +

𝑥

𝑐

)︁𝑠(𝑎)
decreases on the segment 1 ⩽ 𝑥 ⩽ 𝑐 and increases on the segment 𝑐 ⩽ 𝑥 ⩽ 𝑎. Indeed, for
𝑥 ∈ [1, 𝑐) we have:

lnℎ(𝑥) = ln
(︁
1− 𝑥

𝑐

)︁
+ 𝑠(𝑎) ln

(︁
1 +

𝑥

𝑐

)︁
,

and hence

ℎ′(𝑥) = ℎ(𝑥)

(︂
𝑠(𝑎)

𝑐+ 𝑥
− 1

𝑐− 𝑥

)︂
=

ℎ(𝑥)

𝑐2 − 𝑥2
(𝑐 (𝑠(𝑎)− 1)− (𝑠(𝑎) + 1) 𝑥) .

Since

𝑐 (𝑠(𝑎)− 1)− (𝑠(𝑎) + 1) 𝑥 < 𝑎 (𝑠(𝑎)− 1)− (𝑠(𝑎) + 1) = (𝑎− 1)𝑠(𝑎)− (𝑎+ 1) < 0

due to (2.28), (2.24), then ℎ′(𝑥) < 0 as 1 ⩽ 𝑥 < 𝑐 and the function ℎ(𝑥) decreases on the
segment 1 ⩽ 𝑥 ⩽ 𝑐. The increasing of the function ℎ(𝑥) on the segment 𝑐 ⩽ 𝑥 ⩽ 𝑎 is obvious
since here it becomes

ℎ(𝑥) =
(︁𝑥
𝑐
− 1
)︁(︁

1 +
𝑥

𝑐

)︁𝑠(𝑎)
being the product of two positive and increasing as 𝑥 ∈ (𝑐, 𝑎] functions.
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As we see,

max
1⩽𝑥⩽𝑎

ℎ(𝑥) = max {ℎ(1), ℎ(𝑎)} . (2.29)

It remains to show that maximum in (2.29) is less than 1. First,

ℎ(1) =

(︂
1− 1

𝑐

)︂(︂
1 +

1

𝑐

)︂𝑠(𝑎)

< 1.

Indeed, the inequality ℎ(1) < 1 is equivalent to the following one:

ln

(︂
1− 1

𝑐

)︂
+ 𝑠(𝑎) ln

(︂
1 +

1

𝑐

)︂
< 0,

or, which is the same,

𝑠(𝑎) <
ln 1

1−1/𝑐

ln(1 + 1/𝑐)
≡ 𝑠(𝑐).

But inequality 𝑠(𝑎) < 𝑠(𝑐) is true since 𝑎 > 𝑐 > 1 and by Lemma 2.2 the function (1.10)
decreases on the ray (1,+∞). Second, in view of (2.22) we write

ℎ(𝑎) =
(︁𝑎
𝑐
− 1
)︁(︁

1 +
𝑎

𝑐

)︁𝑠(𝑎)
= 2−𝑠(𝑎)−1/2

(︀
2 + 2−𝑠(𝑎)−1/2

)︀𝑠(𝑎)
= 2−1/2

(︀
1 + 2−𝑠(𝑎)−3/2

)︀𝑠(𝑎)
.

Then we successively employ elementary estimates:

1 + 𝑢 < 𝑒𝑢 as 𝑢 = 2−𝑠(𝑎)−3/2 > 0 and 𝑣2−𝑣 ⩽ 1/(𝑒 ln 2) as 𝑣 = 𝑠(𝑎) > 1.

As a result we obtain that

ℎ(𝑎) < 2−1/2 exp
(︀
𝑠(𝑎)2−𝑠(𝑎)−3/2

)︀
⩽

1√
2
exp

(︂
1√

8𝑒 ln 2

)︂
< 0.86.

Thus, by (2.29), for each 𝑎 > 1, for the binomial 𝑃𝑎(𝑧) = 1− 𝑧/𝑐(𝑎) we have:

max
1⩽𝑥⩽𝑎

(︁
|𝑃𝑎(𝑥)| (𝑃𝑎(−𝑥))𝑠(𝑎)

)︁
= max

1⩽𝑥⩽𝑎
ℎ(𝑥) = max {ℎ(1), ℎ(𝑎)} < 1

if we choose the coefficient 𝑐(𝑎) by rule (2.22), while the coefficient 𝑠(𝑎) is to be chosen by
rule (1.10). In other words, relation (2.21) holds. Applying Lemma 2.1, we complete the proof
of Theorem 1.3.

We proceed to proving Theorem 1.2. We are going to show that once we take

𝑃 (𝑧) =

(︂
1− 8

11
𝑧

)︂(︂
1− 7

15
𝑧

)︂
,

the inequality holds:

max
1⩽𝑥⩽9/4

{︀
|𝑃 (𝑥)| (𝑃 (−𝑥))2.04

}︀
< 0.996. (2.30)

According to Lemma 2.1, this implies the validity of Theorem 1.2 in a strong version. Namely,
the lower bound in (1.12) is specified: 2.04 < 𝑑(9/4). We also mention that estimate (1.13)
following Theorem 1.3, for 𝑎 = 9/4 gives

𝑑(9/4) ⩾ 𝑠(9/4) =
ln(9/5)

ln(13/9)
= 1.59 . . . ,

but this is insufficient for our closest aim.
Let us estimate from above the maximums of the function

𝐻(𝑥) ≡ |𝑃 (𝑥)|𝑃 2(−𝑥) =
⃒⃒⃒⃒
1− 8

11
𝑥

⃒⃒⃒⃒ ⃒⃒⃒⃒
1− 7

15
𝑥

⃒⃒⃒⃒ (︂
1 +

8

11
𝑥

)︂2(︂
1 +

7

15
𝑥

)︂2
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on the segments [1, 11/8] and [11/8, 9/4]. First we are going to prove the decreasing of the
function 𝐻 on the segment [1, 11/8]. Together with the relations

𝐻(1) =
3

11
· 8

15

(︂
19

11
· 22
15

)︂2

=
8

55

(︂
38

15

)︂2

< 0.94

this will gives the estimate

max

{︃
𝐻(𝑥) | 1 ⩽ 𝑥 ⩽

11

8

}︃
= 𝐻(1) < 0.94. (2.31)

For 𝑥 ∈ [1, 11/8) we have

𝑙(𝑥) ≡ ln𝐻(𝑥) = ln

(︂
1− 8𝑥

11

)︂
+ ln

(︂
1− 7𝑥

15

)︂
+ 2 ln

(︂
1 +

8𝑥

11

)︂
+ 2 ln

(︂
1 +

7𝑥

15

)︂
,

𝑙′(𝑥) =
14

15 + 7𝑥
+

16

11 + 8𝑥
− 8

11− 8𝑥
− 7

15− 7𝑥
.

This immediately shows the decreasing of the derivative 𝑙′ on the semi-interval [1, 11/8). This
implies the estimate

𝑙′(𝑥) ⩽ 𝑙′(1) =
7

11
+

16

19
− 8

3
− 7

8
< 0,

which shows the decreasing of the function 𝑙 on the semi-interval [1, 11/8), and hence, the
decreasing of the function 𝐻 on the segment [1, 11/8].
The increasing of the function

𝐻(𝑥) =

(︂
8𝑥

11
− 1

)︂(︂
7𝑥

15
− 1

)︂(︂
1 +

8𝑥

11

)︂2(︂
1 +

7𝑥

15

)︂2

, 𝑥 ⩾
15

7
,

on the ray [15/7,+∞) is obvious and this is why

max
15/7⩽𝑥⩽9/4

𝐻(𝑥) = 𝐻

(︂
9

4

)︂
=

(︂
18

11
− 1

)︂(︂
21

20
− 1

)︂(︂
1 +

18

11

)︂2(︂
1 +

21

20

)︂2

< 0.93. (2.32)

Let us estimate the maximum of the function 𝐻 on the segment [11/8, 15/7]. We have:

𝐻

(︂
11

8

)︂
= 𝐻

(︂
15

7

)︂
= 0, 𝐻(𝑥) =

(︂
8𝑥

11
− 1

)︂(︂
1− 7𝑥

15

)︂(︂
1 +

8𝑥

11

)︂2(︂
1 +

7𝑥

15

)︂2

,

𝑙(𝑥) = ln𝐻(𝑥) = ln

(︂
8𝑥

11
− 1

)︂
+ ln

(︂
1− 7𝑥

15

)︂
+ 2 ln

(︂
1 +

8𝑥

11

)︂
+ 2 ln

(︂
1 +

7𝑥

15

)︂
,

𝑙′(𝑥) =
14

15 + 7𝑥
+

16

11 + 8𝑥
+

8

8𝑥− 11
− 7

15− 7𝑥
, 𝑥 ∈

(︂
11

8
,
15

7

)︂
.

Elementary arguing show the decreasing of 𝑙′ on the interval (11/8, 15/7). And since

lim
𝑥→ 11

8
+
𝑙′(𝑥) = +∞, lim

𝑥→ 15
7
−
𝑙′(𝑥) = −∞,

by the continuity of the 𝑙′ there exists a point 𝑥0 ∈ (11/8, 15/7) such that

𝑙′(𝑥) > 0 as 𝑥 ∈
(︂
11

8
, 𝑥0

)︂
, 𝑙′(𝑥0) = 0, 𝑙′(𝑥) < 0 as 𝑥 ∈

(︂
𝑥0,

15

7

)︂
.

This is why the function 𝐻 increases on the segment [11/8, 𝑥0] and decreases on the segment
[𝑥0, 15/7]. At the point 𝑥0, the function 𝐻 attains the maximum on the segment [11/8, 15/7]
and we are going to show that

𝐻(𝑥0) = max

{︃
𝐻(𝑥) | 11

8
⩽ 𝑥 ⩽

15

7

}︃
< 0.91. (2.33)



86 A.YU. POPOV, V.B. SHERSTYUKOV

By straightforward calculations we confirm the validity of the inequalities

𝑙′
(︂
24

13

)︂
< 0 < 𝑙′

(︂
11

6

)︂
<

1

11
,

by which we find

11

6
< 𝑥0 <

24

13
, 0 < 𝑙′(𝑥) <

1

11
∀𝑥 ∈

(︂
11

6
, 𝑥0

)︂
. (2.34)

We also have

𝐻

(︂
11

6

)︂
=

1

3
· 13
90

·
(︂
7 · 167
3 · 90

)︂2

< 0.903.

This is why

𝑙

(︂
11

6

)︂
< ln 0.903 < −0.1. (2.35)

By (2.34), (2.35) we get the inequalities

𝑙(𝑥0)− 𝑙

(︂
11

6

)︂
=

𝑥0∫︁
11/6

𝑙′(𝑥)𝑑𝑥 <
1

11

(︂
𝑥0 −

11

6

)︂
<

1

11

(︂
24

13
− 11

6

)︂
=

1

858
,

𝑙(𝑥0) < 𝑙

(︂
11

6

)︂
+

1

858
< −0.098 =⇒ 𝐻(𝑥0) < exp(−0.098) < 0.91.

This proves relation (2.33). By (2.32), (2.33) we get the following estimate for the maximum
of the function 𝐻 on the segment [11/8, 9/4]:

max

{︃
𝐻(𝑥) | 11

8
⩽ 𝑥 ⩽

9

4

}︃
< 0.93. (2.36)

Now let us obtain inequality (2.30) from inequalities (2.31), (2.36). In view of the increasing
of the square trinomial

𝑃 (−𝑥) =
(︂
1 +

8𝑥

11

)︂(︂
1 +

7𝑥

15

)︂
on the ray (0,+∞), we have:

max

{︂
𝑃 (−𝑥) | 1 ⩽ 𝑥 ⩽

11

8

}︂
= 𝑃

(︂
−11

8

)︂
= 2

(︂
1 +

77

120

)︂
=

197

60
< exp(1.2), (2.37)

max

{︂
𝑃 (−𝑥) | 11

8
⩽ 𝑥 ⩽

9

4

}︂
= 𝑃

(︂
−9

4

)︂
=

(︂
1 +

18

11

)︂(︂
1 +

21

20

)︂
=

1189

220
< exp(1.69). (2.38)

Then (2.31), (2.37) imply the estimate

max
1⩽𝑥⩽11/8

{︀
|𝑃 (𝑥)| (𝑃 (−𝑥))2.04

}︀
< 0.94 exp(0.048) < 0.987,

and by (2.36), (2.38) we find:

max
11/8⩽𝑥⩽9/4

{︀
|𝑃 (𝑥)| (𝑃 (−𝑥))2.04

}︀
< 0.93 exp(1.69 · 0.04) < 0.996.

Thus, we have provided a polynomial 𝑃 of second degree obeying condition (2.30). For such
polynomial relation (2.3) is surely obeyed with the values 𝑎 = 9/4 and 𝑑 = 2.04. Applying
Lemma 2.1, we complete the proof of Theorem 1.2.
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3. Upper bound for optimal exponent

The method for estimating the quantity 𝑑(𝑎) from above is based on the following lemma.

Lemma 3.1. If the numbers 𝑎 > 1, 𝑏 > 1, 𝛼 ∈ R are such that the function

Φ(𝑥; 𝑎, 𝑏, 𝛼) ≡
𝑎𝑥∫︁
𝑥

𝑡𝛼 (ln |1− 𝑡|+ 𝑏 ln(1 + 𝑡)) 𝑑𝑡

is positive on the ray 0 < 𝑥 < +∞, then for each 𝑅 > 0 for arbitrary canonical product (1.4)
with condition (1.5) for the roots, the inequality

𝑎𝑅∫︁
𝑅

𝑡𝛼 ln
(︀
𝑚(𝑓 ; 𝑡)𝑀 𝑏(𝑓 ; 𝑡)

)︀
𝑑𝑡 > 0 (3.1)

holds true. In particular, for each 𝑅 > 0 there exists a point 𝑟 ∈ (𝑅, 𝑎𝑅), for which

𝑚(𝑓 ; 𝑟) > 𝑀−𝑏(𝑓 ; 𝑟).

Proof. According to (1.4), (1.6), on the ray 𝑡 > 0 outside the roots of the function 𝑓 we have

ln
(︀
𝑚(𝑓 ; 𝑡)𝑀 𝑏(𝑓 ; 𝑡)

)︀
=

∞∑︁
𝑛=1

(︃
ln

⃒⃒⃒⃒
1− 𝑡

𝜆𝑛

⃒⃒⃒⃒
+ 𝑏 ln

(︂
1 +

𝑡

𝜆𝑛

)︂)︃
. (3.2)

For a fixed 𝑅 > 0 as 𝑡 ∈ [𝑅, 𝑎𝑅] all terms of the series in (3.2) are integrable in the improper
sense. Moreover, except for a possibly finitely many terms depending on 𝑅 > 0 and 𝑎 > 1, this
series consists of continuous on the segment [𝑅, 𝑎𝑅] functions

𝑢𝑛(𝑡) ≡ ln

⃒⃒⃒⃒
1− 𝑡

𝜆𝑛

⃒⃒⃒⃒
+ 𝑏 ln

(︂
1 +

𝑡

𝜆𝑛

)︂
⩽

(1 + 𝑏)𝑎𝑅

𝜆𝑛
, 𝑛 ⩾ 𝑛0, 𝑡 ∈ [𝑅, 𝑎𝑅],

and the series
∞∑︀

𝑛=𝑛0

𝑢𝑛(𝑡) converges uniformly on such segment due to (1.5). We multiply both

sides of the identity (3.2) by 𝑡𝛼 and integrated this product over the segment [𝑅, 𝑎𝑅]. Since we
can integrated the series in (3.2) term-by-term, then

𝑎𝑅∫︁
𝑅

𝑡𝛼 ln
(︀
𝑚(𝑓 ; 𝑡)𝑀 𝑏(𝑓 ; 𝑡)

)︀
𝑑𝑡 =

∞∑︁
𝑛=1

𝑎𝑅∫︁
𝑅

𝑡𝛼

(︃
ln

⃒⃒⃒⃒
1− 𝑡

𝜆𝑛

⃒⃒⃒⃒
+ 𝑏 ln

(︂
1 +

𝑡

𝜆𝑛

)︂)︃
𝑑𝑡

=
∞∑︁
𝑛=1

𝜆𝛼+1
𝑛

𝑎𝑅/𝜆𝑛∫︁
𝑅/𝜆𝑛

𝑢𝛼 (ln(1− 𝑢) + 𝑏 ln(1 + 𝑢)) 𝑑𝑢

=
∞∑︁
𝑛=1

𝜆𝛼+1
𝑛 Φ

(︂
𝑅

𝜆𝑛
; 𝑎, 𝑏, 𝛼

)︂
.

We have obtained a representation for the integral in (3.1) as the sum of a converging scalar
series

𝑎𝑅∫︁
𝑅

𝑡𝛼 ln
(︀
𝑚(𝑓 ; 𝑡)𝑀 𝑏(𝑓 ; 𝑡)

)︀
𝑑𝑡 =

∞∑︁
𝑛=1

𝜆𝛼+1
𝑛 Φ

(︂
𝑅

𝜆𝑛
; 𝑎, 𝑏, 𝛼

)︂
. (3.3)

We mention that the definition of the function Φ implies easily the asymptotic estimate

Φ(𝑥; 𝑎, 𝑏, 𝛼) = 𝑂
(︀
𝑥𝛼+2

)︀
, 𝑥→ 0+,

which together with (1.5) confirms the convergence of the series in (3.3).
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By the assumptions of the lemma, the function Φ is positive. This is why the sum of the series
in (3.3) is positive and the same is true for the integral in (3.1). The proof is complete.

We proceed to proving Theorem 1.1. As Lemma 3.1 shows, it is sufficient to confirm the
positivity of the function Φ(𝑥; 9/4, 3,−3) for each 𝑥 > 0. We move a needed fact into a separate
statement.

Lemma 3.2. The function

Φ(𝑥) = Φ

(︂
𝑥;

9

4
, 3,−3

)︂
≡

9𝑥/4∫︁
𝑥

𝑡−3 (ln |1− 𝑡|+ 3 ln(1 + 𝑡)) 𝑑𝑡 (3.4)

is positive on the ray 𝑥 > 0.

Proof. By definition (3.4) we see that Φ(𝑥) is continuous as 𝑥 > 0. We denote

𝜙(𝑥) ≡ ln |1− 𝑥|+ 3 ln(1 + 𝑥), 𝑥 > 0, 𝑥 ̸= 1, (3.5)

and integrate in (3.4) by parts. After elementary calculations we arrive at the representation

2Φ(𝑥) ≡ 2

9𝑥/4∫︁
𝑥

𝑡−3𝜙(𝑡)𝑑𝑡

=

(︂
1− 16

81𝑥2

)︂
𝜙

(︂
9𝑥

4

)︂
−
(︂
1− 1

𝑥2

)︂
𝜙(𝑥)− 8 ln

3

2
+

10

9𝑥
, 𝑥 > 0.

(3.6)

We mention that despite the identity lim
𝑥→1

𝜙(𝑥) = −∞, expression (3.6) at the points 𝑥 = 4/9

and 𝑥 = 1 has no jumps and take finite values

2Φ

(︂
4

9

)︂
=

65

16
𝜙

(︂
4

9

)︂
− 8 ln

3

2
+

5

2
= 1.35 . . . , 2Φ(1) =

65

81
𝜙

(︂
9

4

)︂
− 8 ln

3

2
+

10

9
= 0.88 . . . .

Let us confirm the validity of the limiting relations

lim
𝑥→0+

Φ(𝑥) = +∞, lim
𝑥→+∞

Φ(𝑥) = 0. (3.7)

On the other hand, as 𝑥 ∈ (0, 4/9), according to (3.5), (3.6) the function 2Φ(𝑥) coincides with
the quantity(︂
1− 16

81𝑥2

)︂(︃
ln

(︂
1− 9𝑥

4

)︂
+3 ln

(︂
1 +

9𝑥

4

)︂)︃
−
(︂
1− 1

𝑥2

)︂
(ln(1− 𝑥) + 3 ln(1 + 𝑥))−8 ln

3

2
+
10

9𝑥
.

This is why, taking the asymptotics of the logarithms,

ln

(︂
1± 9𝑥

4

)︂
= ±9𝑥

4
+𝑂

(︀
𝑥2
)︀
, ln(1± 𝑥) = ±𝑥+𝑂

(︀
𝑥2
)︀
, 𝑥→ 0+,

we arrive at the relation

2Φ(𝑥) =

(︂
1− 16

81𝑥2

)︂(︂
9𝑥

2
+𝑂

(︀
𝑥2
)︀)︂

−
(︂
1− 1

𝑥2

)︂(︀
2𝑥+𝑂

(︀
𝑥2
)︀)︀

− 8 ln
3

2
+

10

9𝑥
=

20

9𝑥
+𝑂(1),

where 𝑥→ 0+.
On the other hand, as 𝑥 ∈ (1,+∞), for the function 2Φ(𝑥) we obtain the expression(︂
1− 16

81𝑥2

)︂(︃
ln

(︂
9𝑥

4
− 1

)︂
+3 ln

(︂
9𝑥

4
+ 1

)︂)︃
−
(︂
1− 1

𝑥2

)︂
(ln(𝑥− 1) + 3 ln(𝑥+ 1))−8 ln

3

2
+
10

9𝑥
.
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This is why, taking the asymptotics of the logarithms,

ln

(︂
9𝑥

4
± 1

)︂
= ln

9𝑥

4
+ 𝑜(1), ln(𝑥± 1) = ln 𝑥+ 𝑜(1), 𝑥→ +∞,

we arrive at the relation

2Φ(𝑥) = 4 ln
9𝑥

4
− 4 ln𝑥− 8 ln

3

2
+ 𝑜(1) = 𝑜(1), 𝑥→ +∞.

This justifies identities (3.7).
Differentiating (3.4), we obtain

𝑥3Φ′(𝑥) =
16

81
𝜙

(︂
9𝑥

4

)︂
− 𝜙(𝑥), 𝑥 > 0, (3.8)

with the specification Φ′(4/9) = −∞, Φ′(1) = +∞. At the other points of the semi-axis
0 < 𝑥 < +∞ the derivative Φ′ is finite, and its sign, according to (3.8), coincides with the sign
of the function

𝜓(𝑥) ≡ 16

81
𝜙

(︂
9𝑥

4

)︂
− 𝜙(𝑥), 𝑥 > 0, 𝑥 ̸= 4

9
, 𝑥 ̸= 1. (3.9)

To determine the latter, we take into consideration the relations

lim
𝑥→0+

𝜓(𝑥) = 0, lim
𝑥→4/9

𝜓(𝑥) = −∞, lim
𝑥→1

𝜓(𝑥) = +∞, lim
𝑥→+∞

𝜓(𝑥) = −∞ (3.10)

easily implied by definitions (3.5), (3.9). Straightforward calculations, also based on formu-
lae (3.5), (3.9), show that

𝜓′(𝑥) = −10(234𝑥3 − 133𝑥2 + 16)

9(81𝑥2 − 16)(𝑥2 − 1)
(3.11)

for all 𝑥 ∈ (0, 4/9) ∪ (4/9, 1) ∪ (1,+∞). Since 234𝑥3 − 133𝑥2 + 16 > 0 as 𝑥 > 0, in view
of (3.10), (3.11), the function 𝜓 on the interval (0, 4/9) decreases from 0 to −∞ and then, on
the interval (4/9, 1), it increases from −∞ to +∞, and finally, on the ray (1,+∞) it decreases
from +∞ to −∞. Therefore, there exist points 𝑥1 ∈ (4/9, 1), 𝑥2 ∈ (1,+∞) such that 𝜓(𝑥) < 0
as 𝑥 ∈ (0, 4/9) ∪ (4/9, 𝑥1) ∪ (𝑥2,+∞) as 𝜓(𝑥) > 0 as 𝑥 ∈ (𝑥1, 1) ∪ (1, 𝑥2).
Combining (3.7)–(3.9), we make the following conclusion on the behavior of integral (3.4)

on the positive semi-axis: on the interval (0, 𝑥1) the function Φ decreases from +∞ to the
value Φ(𝑥1); on the segment [𝑥1, 𝑥2] the function Φ increases from Φ(𝑥1) to Φ(𝑥2); on the ray
(𝑥2,+∞) the function Φ decreases from Φ(𝑥2) to 0. As an additional information we say that
the graph of the function Φ has four inflection points and vertical tangentials at two of these
points with the abscissas 4/9 and 1.

Thus, to prove inequality Φ(𝑥) > 0 for 𝑥 > 0, it is sufficient to check the positivity of the
function Φ only at the point of the minimum 𝑥1 ∈ (4/9, 1). Since Φ′(𝑥1) = 0, then, see (3.8),
the identity

𝜙

(︂
9𝑥1
4

)︂
=

81

16
𝜙(𝑥1)

holds. Employing it in (3.6), we obtain

2Φ(𝑥1) =

(︂
1− 16

81𝑥21

)︂
81

16
𝜙(𝑥1)−

(︂
1− 1

𝑥21

)︂
𝜙(𝑥1)− 8 ln

3

2
+

10

9𝑥1
=

65

16
𝜙(𝑥1)− 8 ln

3

2
+

10

9𝑥1
.

We introduce an auxiliary function

𝜒(𝑥) ≡ 65

16
𝜙(𝑥) +

10

9𝑥
=

65

16
(ln(1− 𝑥) + 3 ln(1 + 𝑥)) +

10

9𝑥
, 𝑥 ∈ (4/9, 1),



90 A.YU. POPOV, V.B. SHERSTYUKOV

in order to write the latter result in a compact form:

2Φ(𝑥1) = 𝜒(𝑥1)− 8 ln
3

2
. (3.12)

It remains to estimate from below quantity (3.12). In order to do this, let us confirm that
𝑥1 < 0.68 = 17/25. Indeed, since

16

81
𝜓

(︂
153

100

)︂
− 𝜓

(︂
17

25

)︂
=

16

81

(︂
ln

53

100
+ 3 ln

253

100

)︂
−
(︂
ln

8

25
+ 3 ln

42

25

)︂
> 0.0077,

then Φ′(17/25) > 0 due to (3.8). But 17/25 ∈ (4/9, 1) and this gives a specified localization of
the minimum point: 𝑥1 ∈ (4/9, 17/25). The decreasing of the function 𝜒 on the entire interval
(4/9, 1) implies the inequality 𝜒(𝑥1) > 𝜒(17/25). Applying this inequality in (3.12), we write

2Φ(𝑥1) > 𝜒(17/25)− 8 ln
3

2
=

65

16

(︂
ln

8

25
+ 3 ln

42

25

)︂
+

250

153
− 8 ln

3

2
> 0.0841.

Thus, for all 𝑥 > 0 we have Φ(𝑥) ⩾ Φ(𝑥1) > 0. The proof is complete.

According to Lemmata 3.1, 3.2 the choice of the parameters 𝑎 = 9/4, 𝑏 = 3, 𝛼 = −3
ensure inequality (3.1). In other words, (1.9) holds with obvious corollary (1.8). This com-
pletes the proof Theorem 1.1. The upper estimate in (1.12) implied by this theorem allows
a little strengthening: 𝑑(9/4) < 2.95. As computer-assisted calculations show, the function
Φ(𝑥; 9/4, 𝑏,−3) with the parameters 𝑏 ∈ (2.91, 2.95) is positive for all 𝑥 > 0, while the function
Φ(𝑥; 9/4, 2.9,−3) already does not possess such property.
Finally, in the proof of Theorem 1.4 we shall need the following auxiliary fact.

Lemma 3.3. The function

Φ(𝑥) = Φ (𝑥; 𝑎, 𝑠(𝑎) + 3, 0) ≡
𝑎𝑥∫︁
𝑥

(ln |1− 𝑡|+ (𝑠(𝑎) + 3) ln(1 + 𝑡)) 𝑑𝑡 (3.13)

is positive everywhere on the ray 0 < 𝑥 < +∞ for each value of the parameter 𝑎 ∈ (1, 9/8].

Proof. We argue for a fixed 𝑎 ∈ (1, 9/8]. The positivity of integral (3.13) on the interval
0 < 𝑥 < 𝑎−2 follows from the positivity of the integrand on the segments [𝑥, 𝑎𝑥] ⊂ (0, 𝑎−1).
Indeed, the function

ℒ(𝑡) ≡ ln(1− 𝑡) + 𝑠(𝑎) ln(1 + 𝑡)

is continuous and concave on the semi-interval [0, 1). The identities ℒ(0) = ℒ(𝑎−1) = 0 are
also true. This implies immediately the positivity of ℒ(𝑡) as 𝑡 ∈ (0, 𝑎−1). Thus, the integrand
in (3.13) on all segments [𝑥, 𝑎𝑥] for 0 < 𝑥 < 𝑎−2 exceed the quantity 3 ln(1 + 𝑡) > 0.
We further have
1∫︁

1/𝑎

ln(1− 𝑡)𝑑𝑡 =

(︂
1− 1

𝑎

)︂
ln

(︂
1− 1

𝑎

)︂
−
(︂
1− 1

𝑎

)︂
,

1∫︁
1/𝑎

ln(1 + 𝑡)𝑑𝑡 >

(︂
1− 1

𝑎

)︂
ln

(︂
1 +

1

𝑎

)︂
.

By (3.13) this implies

Φ

(︂
1

𝑎

)︂
>

(︂
1− 1

𝑎

)︂
ln

(︂
1− 1

𝑎

)︂
−
(︂
1− 1

𝑎

)︂
+ (𝑠(𝑎) + 3)

(︂
1− 1

𝑎

)︂
ln

(︂
1 +

1

𝑎

)︂
=

(︂
1− 1

𝑎

)︂[︃
ln

(︂
1− 1

𝑎

)︂
− 1 + ln

1

1− 1/𝑎
+ 3 ln

(︂
1 +

1

𝑎

)︂]︃

=

(︂
1− 1

𝑎

)︂(︃
3 ln

(︂
1 +

1

𝑎

)︂
− 1

)︃
⩾

(︂
1− 1

𝑎

)︂(︃
3 ln

17

9
− 1

)︃
.
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This is why

Φ

(︂
1

𝑎

)︂
> 0.9

(︂
1− 1

𝑎

)︂
. (3.14)

Since the function Φ, being continuous on R, is differentiable on the interval (−1/𝑎, 1/𝑎) and
its derivative is absolutely integrable on this interval, then

Φ

(︂
1

𝑎

)︂
− Φ(𝑥) =

1/𝑎∫︁
𝑥

Φ′(𝑦)𝑑𝑦, 𝑥 ∈
(︂
−1

𝑎
,
1

𝑎

)︂
.

And if we succeed to get an upper bound

Φ′(𝑦) ⩽ 𝐶 ∀𝑦 ∈
(︀
𝑎−2, 𝑎−1

)︀
(3.15)

(we observe that on the interval (𝑎−2, 𝑎−1) the derivative is not bounded from below), then for
each value 𝑥 ∈ [𝑎−2, 𝑎−1) we obtain the inequality

Φ(𝑥) = Φ

(︂
1

𝑎

)︂
−

1/𝑎∫︁
𝑥

Φ′(𝑦)𝑑𝑦 ⩾ Φ

(︂
1

𝑎

)︂
− 𝐶

(︂
1

𝑎
− 𝑥

)︂
⩾ Φ

(︂
1

𝑎

)︂
− 𝐶

(︂
1

𝑎
− 1

𝑎2

)︂
. (3.16)

By (3.14), (3.16) for all 𝑥 ∈ [𝑎−2, 𝑎−1) we have

Φ(𝑥) ⩾ 0.9

(︂
1− 1

𝑎

)︂
− 𝐶

𝑎

(︂
1− 1

𝑎

)︂
=

(︂
1− 1

𝑎

)︂(︂
0.9− 𝐶

𝑎

)︂
>

(︂
1− 1

𝑎

)︂
(0.9− 𝐶) . (3.17)

Let us show that estimate (3.15) is true once we take 𝐶 = 0.7. Then according to (3.14), (3.17),
this will imply the positivity Φ(𝑥) for 𝑎−2 ⩽ 𝑥 ⩽ 𝑎−1. For 𝑥 ∈ (𝑎−2, 𝑎−1) we write

Φ′(𝑥) = 𝑎 (ln(1− 𝑎𝑥) + (𝑠(𝑎) + 3) ln(1 + 𝑎𝑥))− (ln(1− 𝑥) + (𝑠(𝑎) + 3) ln(1 + 𝑥))

= (𝑎− 1) (ln(1− 𝑎𝑥) + (𝑠(𝑎) + 3) ln(1 + 𝑎𝑥)) + ln
1− 𝑎𝑥

1− 𝑥
+ (𝑠(𝑎) + 3) ln

1 + 𝑎𝑥

1 + 𝑥
.

In view of the identities

max

{︂
1− 𝑎𝑥

1− 𝑥
| 1

𝑎2
⩽ 𝑥 ⩽

1

𝑎

}︂
=

1− 1/𝑎

1− 1/𝑎2
=

𝑎

𝑎+ 1
,

max

{︂
1 + 𝑎𝑥

1 + 𝑥
| 1

𝑎2
⩽ 𝑥 ⩽

1

𝑎

}︂
=

2

1 + 1/𝑎
=

2𝑎

𝑎+ 1

and the negativity of the function ℒ on the interval (𝑎−1, 1), the estimate holds:

Φ′(𝑥) <
𝑎− 1

2
(𝑠(𝑎) + 3 + 6 ln 2) + ln

𝑎

𝑎+ 1
, 𝑥 ∈

(︀
𝑎−2, 𝑎−1

)︀
. (3.18)

Indeed, for such 𝑥 we have

Φ′(𝑥) < (𝑎− 1) (ln(1− 𝑎𝑥) + (𝑠(𝑎) + 3) ln(1 + 𝑎𝑥)) + ln
𝑎

𝑎+ 1
+ (𝑠(𝑎) + 3) ln

2𝑎

𝑎+ 1

= (𝑎− 1)ℒ(𝑎𝑥) + 3(𝑎− 1) ln(1 + 𝑎𝑥) + ln
𝑎

𝑎+ 1
+ (𝑠(𝑎) + 3) ln

(︂
1 +

𝑎− 1

𝑎+ 1

)︂
< 3(𝑎− 1) ln 2 + ln

𝑎

𝑎+ 1
+
𝑎− 1

𝑎+ 1
(𝑠(𝑎) + 3) <

𝑎− 1

2
(𝑠(𝑎) + 3 + 6 ln 2) + ln

𝑎

𝑎+ 1
.

We denote 𝛿 = 𝑎− 1 and estimate from above the function

Φ1(𝑎) ≡ (𝑎−1)𝑠(𝑎) =
𝛿 (ln(1 + 𝛿)− ln 𝛿)

ln(1 + 1/𝑎)
⩽
𝛿 (ln(1 + 𝛿)− ln 𝛿)

ln(17/9)
<
𝛿 (𝛿 − ln 𝛿)

ln(17/9)
< 1.6 𝛿 (𝛿 − ln 𝛿) .
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It is easy to confirm that the function Φ2(𝛿) ≡ 𝛿 (𝛿 − ln 𝛿) increases on the ray 0 < 𝛿 < +∞.
This is why as 𝑎 ∈ (1, 9/8] the estimate holds:

Φ1(𝑎) < 1.6Φ2

(︂
1

8

)︂
=

1.6

8

(︂
1

8
+ ln 8

)︂
<

1

2
.

Together with (3.18) this gives the desired estimate for the derivative

Φ′(𝑥) <
1

4
+

(𝑎− 1)(3 + 6 ln 2)

2
⩽

1

4
+

3 + 6 ln 2

16
<

1

4
+

7.2

16
= 0.7, 𝑥 ∈

(︀
𝑎−2, 𝑎−1

)︀
.

This justifies the positivity of the function Φ on the semi-interval (0, 𝑎−1].
Similar to obtaining (3.14) we have

Φ(1) > (𝑎− 1) (ln(𝑎− 1)− 1 + 3 ln 2 + 𝑠(𝑎) ln 2) , (3.19)

since

Φ(1) =

𝑎∫︁
1

(ln(𝑡− 1) + (𝑠(𝑎) + 3) ln(𝑡+ 1)) 𝑑𝑡

= (𝑎− 1) ln(𝑎− 1)− (𝑎− 1) + (𝑠(𝑎) + 3)

𝑎∫︁
1

ln(𝑡+ 1)𝑑𝑡

> (𝑎− 1) ln(𝑎− 1)− (𝑎− 1) + (𝑎− 1) (𝑠(𝑎) + 3) ln 2

= (𝑎− 1) (ln(𝑎− 1)− 1 + 3 ln 2 + 𝑠(𝑎) ln 2) .

The definition of the quantity 𝑠(𝑎) immediately implies the lower bound

𝑠(𝑎) ln 2 > ln
1

𝑎− 1
∀𝑎 > 1,

which together with (3.19) gives the inequality

Φ(1) > (𝑎− 1)(3 ln 2− 1) > 𝑎− 1 > 0.

Now we see that to prove the positivity of the function Φ on the ray [1,+∞), it is sufficient to
prove the positivity of its derivative on (1,+∞). According to (3.13), for 𝑥 > 1 we have

Φ′(𝑥) = 𝑎 (ln(𝑎𝑥− 1) + (𝑠(𝑎) + 3) ln(𝑎𝑥+ 1))− (ln(𝑥− 1) + (𝑠(𝑎) + 3) ln(𝑥+ 1))

= (𝑎− 1) (ln(𝑎𝑥− 1) + (𝑠(𝑎) + 3) ln(𝑎𝑥+ 1)) + ln
𝑎𝑥− 1

𝑥− 1
+ (𝑠(𝑎) + 3) ln

𝑎𝑥+ 1

𝑥+ 1
> (𝑎− 1) (ln(𝑎𝑥− 1) + (𝑠(𝑎) + 3) ln(𝑎𝑥+ 1)) > (𝑎− 1) (ln(𝑎− 1) + (𝑠(𝑎) + 3) ln(𝑎+ 1)) ;

here we have employed the increasing of the functions ln(𝑡−1) and ln(𝑡+1) on the ray (1,+∞).
We straightforwardly confirm the positivity of the quantity ln(𝑎 − 1) + 𝑠(𝑎) ln(𝑎 + 1) for each
𝑎 > 1. This gives inequality Φ′(𝑥) > 3(𝑎− 1) ln(𝑎+ 1) for all 𝑥 > 1 and 𝑎 > 1 and this proves
the needed fact.

It remains to show the positivity of Φ(𝑥) on the interval 𝑎−1 < 𝑥 < 1. For such values of the
variable 𝑥, the identity holds:

𝐽(𝑥; 𝑎) ≡
𝑎𝑥∫︁
𝑥

ln |1− 𝑡|𝑑𝑡 = (𝑎𝑥− 1) ln(𝑎𝑥− 1) + (1− 𝑥) ln(1− 𝑥)− (𝑎𝑥− 𝑥).

Denoting 𝑢 = 𝑎𝑥− 1, 𝑣 = 1− 𝑥, we obtain

𝐽(𝑥; 𝑎) = 𝑢 ln𝑢+ 𝑣 ln 𝑣 − (𝑢+ 𝑣), 𝑢+ 𝑣 = 𝑥(𝑎− 1) < 𝑎− 1.

It is easy to confirm that the function of two variables 𝐻(𝑢, 𝑣) ≡ 𝑢 ln𝑢+ 𝑣 ln 𝑣 in the triangle

𝑇ℎ ≡
{︀
(𝑢, 𝑣) ∈ R2 | 𝑢 > 0, 𝑣 > 0, 𝑢+ 𝑣 ⩽ ℎ

}︀
,
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although it is not closed, takes its minimum at the point 𝑢 = 𝑣 = ℎ/2 for an arbitrary
ℎ ∈ (0, 1/𝑒). This is the upper bound holds:

𝐽(𝑥; 𝑎) ⩾ (𝑎− 1) ln
𝑎− 1

2
− (𝑎− 1) ∀𝑥 ∈ (𝑎−1, 1) ∀𝑎 ∈ (1, 1 + 1/𝑒). (3.20)

Let us estimate the integral

𝐼(𝑥; 𝑎) ≡
𝑎𝑥∫︁
𝑥

ln(1 + 𝑡)𝑑𝑡

from below. Since the function ln(1 + 𝑡) is concave on the ray 0 < 𝑡 < +∞, the integral of this
function over each segment on (0,+∞) is greater that the length of this segment multiplied
by the half of the sum of the values of ln(1 + 𝑡) at its ends. Therefore, for each 𝑥 > 𝑎−1, the
inequality holds

𝐼(𝑥; 𝑎) >

1∫︁
𝑎−1

ln(1 + 𝑡)𝑑𝑡 >

(︂
1− 1

𝑎

)︂
1

2

(︂
ln

(︂
1 +

1

𝑎

)︂
+ ln 2

)︂
, (3.21)

by which we find

𝑠(𝑎)𝐼(𝑥; 𝑎) >
𝑎− 1

𝑎
ln

(︂
𝑎

𝑎− 1

)︂(︂
1

2
+

1

2

ln 2

ln(1 + 1/𝑎)

)︂
∀𝑥 ∈ (𝑎−1, 1). (3.22)

And since according to (3.13) the representation holds

Φ(𝑥) = Φ (𝑥; 𝑎, 𝑠(𝑎) + 3, 0) = 𝐽(𝑥; 𝑎) + (𝑠(𝑎) + 3) 𝐼(𝑥; 𝑎),

then by (3.20)–(3.22) for 𝑥 ∈ (𝑎−1, 1) we obtain the estimate

Φ(𝑥) >(𝑎− 1) ln
𝑎− 1

2
− (𝑎− 1)

+
𝑎− 1

𝑎

(︂(︂
1

2
+

1

2

ln 2

ln(1 + 1/𝑎)

)︂
(ln 𝑎− ln(𝑎− 1)) +

3

2
ln

(︂
1 +

1

𝑎

)︂
+

3

2
ln 2

)︂
=
𝑎− 1

𝑎

(︂(︂
1

2
+

1

2

ln 2

ln(1 + 1/𝑎)
− 𝑎

)︂
ln

1

𝑎− 1
+

(︂
1

2
+

1

2

ln 2

ln(1 + 1/𝑎)

)︂
ln 𝑎

+
3

2
ln

(︂
1 +

1

𝑎

)︂
+

(︂
3

2
− 𝑎

)︂
ln 2− 𝑎

)︂
>
𝑎− 1

𝑎

(︂(︂
1

2
+

1

2

ln 2

ln(1 + 1/𝑎)
− 𝑎

)︂
ln

1

𝑎− 1
+ ln 𝑎+

3

2
ln

(︂
1 +

1

𝑎

)︂
+

(︂
3

2
− 𝑎

)︂
ln 2− 𝑎

)︂
.

In view of this, to complete the proof of the positivity of Φ(𝑥) on the ray 𝑥 > 0 for each
𝑎 ∈ (1, 9/8] we need to check the positivity of the function

𝜉(𝑎) = 𝜉1(𝑎) + 𝜉2(𝑎)

on the semi-interval (1, 9/8], where

𝜉1(𝑎) ≡
(︂
1

2
+

1

2

ln 2

ln(1 + 1/𝑎)
− 𝑎

)︂
ln

1

𝑎− 1
, 𝜉2(𝑎) ≡ ln 𝑎+

3

2
ln

(︂
1 +

1

𝑎

)︂
+

(︂
3

2
− 𝑎

)︂
ln 2−𝑎.

It is easy to confirm that the function 𝜉2(𝑎) decreases on the ray [1,+∞) and the inequality
holds:

𝜉2

(︂
9

8

)︂
= ln

9

8
+

3

2
ln

17

9
+

3

8
ln 2− 9

8
> 0.2.

Therefore,

𝜉2(𝑎) > 0.2 ∀𝑎 ∈ (1, 9/8]. (3.23)
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We then have:

𝜉1(𝑎) =

(︂
1− 𝑎+

1

2

(︂
ln 2

ln(1 + 1/𝑎)
− 1

)︂)︂
ln

1

𝑎− 1

=

(︃
1− 𝑎+

1

2

ln 2𝑎
𝑎+1

ln(1 + 1/𝑎)

)︃
ln

1

𝑎− 1
>

(︃
1− 𝑎+

ln 2𝑎
𝑎+1

2 ln 2

)︃
ln

1

𝑎− 1
.

Employing the well-known estimate for the logarithm ln 𝑡 > (𝑡 − 1)/𝑡 for all 𝑡 > 1, taking
𝑡 = 2𝑎/(𝑎+1) > 1 for the same 𝑎 ∈ (1, 9/8] and using then the decreasing of the function 𝑡 ln 𝑡
on the interval 0 < 𝑡 < 1/𝑒, we write

𝜉1(𝑎) >

(︂
1− 𝑎+

𝑎− 1

4𝑎 ln 2
− 1

)︂
ln

1

𝑎− 1
= (𝑎− 1)

(︂
1− 1

4𝑎 ln 2

)︂
ln(𝑎− 1)

⩾

(︂
1− 2

9 ln 2

)︂
(𝑎− 1) ln(𝑎− 1) ⩾

(︂
1− 2

9 ln 2

)︂
1

8
ln

1

8
= −3

8

(︂
ln 2− 2

9

)︂
.

Thus,

𝜉1(𝑎) > −0.18 ∀𝑎 ∈ (1, 9/8]. (3.24)

By (3.23), (3.24) for each 𝑎 ∈ (1, 9/8] we find

𝜉(𝑎) = 𝜉1(𝑎) + 𝜉2(𝑎) > 0.02,

and this completes the checking of the positivity of the function Φ on the interval (𝑎−1, 1).
Thus, integral (3.13) is positive for all 𝑥 > 0 and all value of the parameter 𝑎 ∈ (1, 9/8]. The

proof is complete.

The proof of Theorem 1.4, which is obtaining two-sided inequality (1.15), is simple. On one
hand, combining estimates (1.13) and (2.24), for each 𝑎 > 1 we obtain that

𝑑(𝑎) ⩾ 𝑠(𝑎) > log2
1

𝑎− 1
.

On the other hand, by Lemmata 3.1 and 3.3 for all 𝑎 ∈ (1, 9/8] the estimate

𝑑(𝑎) ⩽ 𝑠(𝑎) + 3

is true and we just need to check the inequality

𝑠(𝑎) < log2
1

𝑎− 1
+

1

2
∀𝑎 ∈ (1, 9/8].

For such 𝑎 we have

𝑠(𝑎)− log2
1

𝑎− 1
=

1

ln(1 + 1/𝑎)

(︂
ln 𝑎+ ln

2𝑎

𝑎+ 1
· log2

1

𝑎− 1

)︂
<

1

ln 17
9

(︂
ln

9

8
+
𝑎− 1

𝑎+ 1
log2

1

𝑎− 1

)︂
<

1

ln 17
9

(︂
ln

9

8
− 1

2 ln 2
(𝑎− 1) ln(𝑎− 1)

)︂
<

ln 9
8
+ 3

16

ln 17
9

< 0.49,

and this is the desired fact. The proof of inequality (1.15) is complete. Its obvious implication
is asymptotics (1.14). The proof of Theorem 1.4 is complete.

In conclusion we mention that the problem on studying the behavior of the optimal exponent
𝑑(𝑎) for large values of 𝑎 still waits for its solution. It should involve an upper bound for 𝑑(𝑎)
and a possible refining of inequality (1.13).
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