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SINGULAR HAHN–HAMILTONIAN SYSTEMS

B.P. ALLAHVERDIEV, H. TUNA

Abstract. In this work, we study a Hahn–Hamiltonian system in the singular case. For
this system, the Titchmarsh–Weyl theory is established. In this context, the first part
provides a summary of the relevant literature and some necessary fundamental concepts of
the Hahn calculus. To pass from the Hahn difference expression to operators, we define
the Hilbert space 𝐿2

𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛) in the second part of the work. The corresponding
maximal operator 𝐿max are introduced. For the Hahn–Hamiltonian system, we proved
Green formula. Then we introduce a regular self-adjoint Hahn–Hamiltonian system. In the
third part of the work, we study Titchmarsh-Weyl functions 𝑀(𝜆) and circles 𝒞(𝑎, 𝜆) for
this system. These circles proved to be embedded one to another. The number of square-
integrable solutions of the Hahn–Hamilton system is studied. In the fourth part of the
work, we obtain boundary conditions in the singular case. Finally, we define a self-adjoint
operator in the fifth part of the work.
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1. Introduction

In this paper, we consider singular Hahn–Hamiltonian systems defined as

𝐽𝒵 [ℎ](𝑥)−𝐵(𝑥)𝒵(𝑥) = 𝜆𝑊 (𝑥)𝒵(𝑥), 𝑥 ∈ [𝜔0,∞), (1.1)

where the matrices

𝐵(𝑥) =

(︂
𝐵1(𝑥) 𝐵*

2(𝑥)
𝐵2(𝑥) 𝐵3(𝑥)

)︂
and 𝑊 (·) are 2𝑛× 2𝑛 complex Hermitian matrix-valued functions defined on [𝜔0,∞) and are
continuous at 𝜔0; 𝒵(𝑥) is 2𝑛× 1 vector-valued function;

𝒵 [ℎ](𝑥) =

(︂
𝐷𝜔,𝑞𝒵1(𝑥)

1
𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒵2(𝑥)

)︂
=

(︂
𝐷𝜔,𝑞𝒵1(𝑥)

1
𝑞
𝐷𝜔,𝑞𝒵2 (ℎ

−1(𝑥))

)︂
,

and

𝐽 =

(︂
0 −𝐼𝑛
𝐼𝑛 0

)︂
,

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix. The theory of Hamiltonian systems is well developed,
see [5], [6], [9]–[12], [14]–[16] and it plays important role in modeling various physical systems,
for example, in the study of electromechanical, electrical, and complex network systems with
negligible dissipation, see [18]. However, to the best knowledge of the authors of this paper,
there is no study on the Hahn–Hamiltonian system, though there are some results about the
Hahn–Dirac systems in the literature, see [1], [2], [13]. In this paper, our main aim is to develop
the Titchmarsh–Weyl theory for singular Hahn–Hamiltonian systems. In our analysis we mostly
follow the development of the theory in [14], [15], [17].
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For the reader’s convenience, we recall main concepts. For further details, we refer the reader
to [1]–[4], [7], [8], [13]. Throughout the paper, we let 𝜔 > 0, ℎ(𝑥) := 𝜔 + 𝑞𝑥 and 𝑞 ∈ (0, 1).
Let 𝐼 be a real interval containing 𝜔0, where 𝜔0 :=

𝜔
1−𝑞

.

Definition 1.1 ([7],[8]). Let 𝑢 : 𝐼 → R be a function. If 𝑢 is differentiable at 𝜔0, then the
Hahn operator 𝐷𝜔,𝑞 is given by the formula

𝐷𝜔,𝑞𝑢(𝑥) =

{︃
(𝜔 + (𝑞 − 1)𝑥)−1 (𝑢 (𝜔 + 𝑞𝑥)− 𝑢(𝑥)) , 𝑥 ̸= 𝜔0,

𝑢′ (𝜔0) , 𝑥 = 𝜔0.

We have the following theorem.

Theorem 1.1 ([3]). Let 𝑢, 𝑣 : 𝐼 → R be Hahn-differentiable at 𝑥 ∈ 𝐼. Then

i) 𝐷𝜔,𝑞 (𝑢𝑣) (𝑥) = (𝐷𝜔,𝑞𝑢(𝑥)) 𝑣(𝑥) + 𝑢 (𝜔 + 𝑥𝑞)𝐷𝜔,𝑞𝑣(𝑥),

ii) 𝐷𝜔,𝑞 (𝑎𝑢+ 𝑏𝑣) (𝑥) = 𝑎𝐷𝜔,𝑞𝑢(𝑥) + 𝑏𝐷𝜔,𝑞𝑣(𝑥), 𝑎, 𝑏 ∈ 𝐼,

iii) 𝐷𝜔,𝑞 (𝑢/𝑣) (𝑥) = (𝑣(𝑥)𝑣 (𝜔 + 𝑥𝑞))−1 (𝐷𝜔,𝑞 (𝑢(𝑥)) 𝑣(𝑥)− 𝑢(𝑥)𝐷𝜔,𝑞𝑣(𝑥)) ,

iv) 𝐷𝜔,𝑞𝑢 (ℎ
−1(𝑥)) = 𝐷−𝜔𝑞−1,𝑞−1𝑢(𝑥),

where ℎ−1(𝑥) = 𝑞−1(𝑥− 𝜔), and 𝑥 ∈ 𝐼.

Definition 1.2 ([3]). Let 𝑢 : 𝐼 → R be a function and 𝑎, 𝑏, 𝜔0 ∈ 𝐼. The 𝜔, 𝑞-integral of the
function 𝑢 is given by

𝑏∫︁
𝑎

𝑢(𝑥)𝑑𝜔,𝑞𝑥 :=

𝑏∫︁
𝜔0

𝑢(𝑥)𝑑𝜔,𝑞𝑥−
𝑎∫︁

𝜔0

𝑢(𝑥)𝑑𝜔,𝑞𝑥,

where
𝑥∫︁

𝜔0

𝑢(𝑥)𝑑𝜔,𝑞𝑥 := ((1− 𝑞)𝑥− 𝜔)
∞∑︁
𝑛=0

𝑞𝑛𝑢

(︂
𝜔
1− 𝑞𝑛

1− 𝑞
+ 𝑥𝑞𝑛

)︂
, 𝑥 ∈ 𝐼,

provided the series converges.

2. Singular Hahn–Hamiltonian system

We consider the following system:

Γ (𝒵) := 𝐽𝒵 [ℎ](𝑥)−𝐵(𝑥)𝒵(𝑥) = 𝜆𝑊 (𝑥)𝒵(𝑥), 𝑥 ∈ [𝜔0,∞), (2.1)

assuming that 𝜆 is a complex spectral parameter, 𝐼 + ((𝑞 − 1)𝑥+ 𝜔)𝐵2(𝑥) is invertible, and
𝑊 (·) is nonnegative definite.
By 𝐿2

𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛) we denote the Hilbert space of all 2𝑛-dimensional vector-valued
functions 𝒵 defined on [𝜔0,∞) satisfying the condition

∞∫︁
𝜔0

(𝑊𝒵,𝒵)C2𝑛 𝑑𝜔,𝑞𝑥 <∞

with the scalar product

(𝒵,𝒴) :=

∞∫︁
𝜔0

(𝑊𝒵,𝒴)C2𝑛 𝑑𝜔,𝑞𝑥
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=

∞∫︁
𝜔0

𝒴*(𝑥)𝑊 (𝑥)𝒵(𝑥)𝑑𝜔,𝑞𝑥.

We assume that if Γ (𝒵) = 𝑊𝐹 and 𝑊𝒵 = 0, then 𝒵 = 0. Furthermore, throughout this
work, we assume that the following definiteness condition holds: for every nontrivial solution
𝒵 of (2.1), we have

∞∫︁
𝜔0

𝒵*(𝑥)𝑊 (𝑥)𝒵(𝑥)𝑑𝜔,𝑞𝑥 > 0.

We define a maximal operator 𝐿max by the formula 𝐿max𝒵 =𝐹 for all 𝒵 ∈ 𝒟max, where

𝒟max :=

⎧⎪⎨⎪⎩
𝒵 ∈ 𝐿2

𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛) : 𝒵 is a continuous at 𝜔0,

𝐽𝒵 [ℎ](𝑥)−𝐵(𝑥)𝒵(𝑥) = 𝑊 (𝑥)𝐹 (𝑥) is well-defined in (𝜔0,∞),

𝐹 ∈ 𝐿2
𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛)

⎫⎪⎬⎪⎭ .

The next theorem introduces a Green formula.

Theorem 2.1. For all functions 𝒰 ,𝒱 ∈ 𝐷max we have the following relation:

(𝐿max𝒰 ,𝒱)− (𝒰 , 𝐿max𝒱) = ̂︀𝒱*(𝑡)𝐽 ̂︀𝒰(𝑡)− ̂︀𝒱*(𝜔0)𝐽 ̂︀𝒰(𝜔0), (2.2)

where 𝑡 ∈ [𝜔0,∞).

Proof. For 𝒰 ,𝒱 ∈ 𝐷max, there exist 𝐹,𝐺 ∈ ℋ such that 𝐿max𝒰 = 𝐹 and 𝐿max𝒱 = 𝐺. Then we
get

(𝐿max𝒰 ,𝒱)− (𝒰 , 𝐿max𝒱) = (𝐹,𝒱)− (𝒰 , 𝐺)

=

𝑡∫︁
𝜔0

𝒱*(𝑥)𝑊 (𝑥)𝐹 (𝑥)𝑑𝜔,𝑞𝑥−
𝑡∫︁

𝜔0

𝐺*(𝑥)𝑊 (𝑥)𝒰(𝑥)𝑑𝜔,𝑞𝑥

=

𝑡∫︁
𝜔0

𝒱*(𝑥)Γ (𝒰) 𝑑𝜔,𝑞𝑥−
𝑡∫︁

𝜔0

(Γ (𝒱))* 𝒰(𝑥)𝑑𝜔,𝑞𝑥

=

𝑡∫︁
𝜔0

𝒱*(𝑥)
(︀
𝐽𝒰 [ℎ](𝑥) + (𝜆𝑊 (𝑥) +𝐵(𝑥))𝒰(𝑥)

)︀
𝑑𝜔,𝑞𝑥

−
𝑡∫︁

𝜔0

(︀
𝐽𝒱 [ℎ](𝑥) + (𝜆𝑊 (𝑥) +𝐵(𝑥))𝒱(𝑥)

)︀* 𝒰(𝑥)𝑑𝜔,𝑞𝑥
=

𝑡∫︁
𝜔0

𝒱*(𝑥)𝐽𝒰 [ℎ](𝑥)𝑑𝜔,𝑞𝑥−
𝑡∫︁

𝜔0

(︀
𝐽𝒱 [ℎ](𝑥)

)︀* 𝒰(𝑥)𝑑𝜔,𝑞𝑥
=

𝑡∫︁
𝜔0

(︂
−1

𝑞
𝒱*
1 (𝑥)𝐷−𝜔𝑞−1,𝑞−1𝒰2(𝑥) + 𝒱*

2 (𝑥)𝐷𝜔,𝑞𝒰1(𝑥)

)︂
𝑑𝜔,𝑞𝑥

−
𝑡∫︁

𝜔0

(︂(︂
−1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒱*

2 (𝑥)

)︂
𝒰1(𝑥) +𝐷𝜔,𝑞𝒱*

1 (𝑥)𝒰2(𝑥)

)︂
𝑑𝜔,𝑞𝑥
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=

𝑡∫︁
𝜔0

(︂
𝒱*
1 (𝑥)

(︂
−1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒰2(𝑥)

)︂
−𝐷𝜔,𝑞𝒱*

1 (𝑥)𝒰2(𝑥)

)︂
𝑑𝜔,𝑞𝑥

+

𝑡∫︁
𝜔0

(︂
𝒱*
2 (𝑥)𝐷𝜔,𝑞𝒰1(𝑥)−

(︂
−1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒱*

2 (𝑥)

)︂
𝒰1(𝑥)

)︂
𝑑𝜔,𝑞𝑥.

On the other hand,

𝐷𝜔,𝑞

(︀
𝒱*
1 (𝑥)𝒰2

(︀
ℎ−1(𝑥)

)︀)︀
= 𝒱*

1 (𝑥)𝐷𝜔,𝑞𝒰2

(︀
ℎ−1(𝑥)

)︀
𝐷𝜔,𝑞ℎ

−1(𝑥) +𝐷𝜔,𝑞𝒱*
1 (𝑥)𝒰2(𝑥)

=𝒱*
1 (𝑥)

1

𝑞
(𝐷−𝜔𝑞−1,𝑞−1𝒰2(𝑥)) + (𝐷𝜔,𝑞𝒱1(𝑥))

* 𝒰2(𝑥)

and

𝐷𝜔,𝑞

(︀
𝒱*
2

(︀
ℎ−1(𝑥)

)︀
𝒰1(𝑥)

)︀
= 𝐷𝜔,𝑞𝒱*

2

(︀
ℎ−1(𝑥)

)︀
𝐷𝜔,𝑞

(︀
ℎ−1(𝑥)

)︀
𝒰1(𝑥) + 𝒱*

2 (𝑥)𝐷𝜔,𝑞𝒰1(𝑥)

=
1

𝑞
(𝐷−𝜔𝑞−1,𝑞−1𝒱*

2 (𝑥))𝒰1(𝑥) + 𝒱*
2 (𝑥)𝐷𝜔,𝑞𝒰1(𝑥).

Therefore,
𝑡∫︁

𝜔0

𝒱*(𝑥) (Γ (𝒰)) 𝑑𝜔,𝑞𝑥−
𝑡∫︁

𝜔0

(Γ (𝒱))* 𝒰(𝑥)𝑑𝜔,𝑞𝑥 =

𝑡∫︁
𝜔0

𝐷𝜔,𝑞

(︂
−𝒱*

1 (𝑥)𝒰2 (ℎ
−1(𝑥))

+𝒱*
2 (ℎ

−1(𝑥))𝒰1(𝑥)

)︂
𝑑𝜔,𝑞𝑥

=̂︀𝒱*(𝑡)𝐽 ̂︀𝒰(𝑡)− ̂︀𝒱*(𝜔0)𝐽̂︀𝑦(𝜔0).

The proof is complete.

Let 𝜁1, 𝜁2, 𝛾1, 𝛾2 be matrices satisfying

𝜁1𝜁
*
1 + 𝜁2𝜁

*
2 = 𝐼𝑛, 𝜁1𝜁

*
2 − 𝜁2𝜁

*
1 = 0, (2.3)

𝛾1𝛾
*
1 + 𝛾2𝛾

*
2 = 𝐼𝑛, 𝛾1𝛾

*
2 − 𝛾2𝛾

*
1 = 0, (2.4)

and
rank

(︀
𝜁1 𝜁2

)︀
= rank

(︀
𝛾1 𝛾2

)︀
= 𝑛.

We impose the following boundary conditions:

Σ ̂︀𝒵 (𝜔0) = 0, (2.5)

Ξ ̂︀𝒵(𝑎) = 0, (2.6)

where

Σ =

(︂
𝜁1 𝜁2
0 0

)︂
, Ξ =

(︂
0 0
𝛾1 𝛾2

)︂
,

and ̂︀𝒵(𝑥) =

(︂
𝒵1(𝑥)

𝒵2 (ℎ
−1(𝑥))

)︂
.

It follows from (2.5) that Σ𝐽Σ* = 0 and Ξ𝐽Ξ* = 0. It is obvious that (2.1) with conditions
(2.5), (2.6) defines a regular self-adjoint problem.
We denote by

𝑍 =
(︀
𝜙 𝜓

)︀
=

(︂
𝜙1 𝜓1

𝜙2 𝜓2

)︂
(2.7)

the fundamental matrix for Γ (𝒵) = 𝜆𝑊𝒵 satisfying

̂︀𝑍 (𝜔0) = 𝐸 :=

(︂
𝜁*1 −𝜁*2
𝜁*2 𝜁*1

)︂
.
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Thus,
(︀
𝜁1 𝜁2

)︀ ̂︀𝜙 (𝜔0) = 𝐼𝑛, and
(︀
𝜁1 𝜁2

)︀ ̂︀𝜓 (𝜔0) = 0.

Lemma 2.1. The following relation holdŝ︀𝑍* (𝑥, 𝜆) 𝐽 ̂︀𝑍 (𝑥, 𝜆) = 𝐽. (2.8)

Proof. From Theorem 2.1, we see that

0 =

𝑥∫︁
𝜔0

𝑍* (𝑡, 𝜆) Γ(𝑍(𝑡, 𝜆))𝑑𝜔,𝑞𝑡−
𝑥∫︁

𝜔0

Γ(𝑍*(𝑡, 𝜆)𝑍(𝑡, 𝜆)𝑑𝜔,𝑞𝑡

= ̂︀𝑍* (𝑥, 𝜆) 𝐽 ̂︀𝑍 (𝑥, 𝜆)− ̂︀𝑍* (𝜔0, 𝜆) 𝐽 ̂︀𝑍 (𝜔0, 𝜆) .

Thus, ̂︀𝑍* (𝑥, 𝜆) 𝐽 ̂︀𝑍 (𝑥, 𝜆) = ̂︀𝑍* (𝜔0, 𝜆) 𝐽 ̂︀𝑍 (𝜔0, 𝜆) .

Since ̂︀𝑍 (𝜔0, 𝜆) = 𝐸, we obtain ̂︀𝑍* (𝑥, 𝜆) 𝐽 ̂︀𝑍 (𝑥, 𝜆) = 𝐽.

The proof is complete.

3. The Titchmarsh–Weyl function

In this section, we construct the Titchmarsh–Weyl function 𝑀 (𝜆) for system (2.1), (2.5).

Definition 3.1. Let ̂︀𝑌𝑎 (𝑥, 𝜆) = ̂︀𝑍 (𝑥, 𝜆)

(︂
𝐼𝑛

𝑀 (𝑎, 𝜆)

)︂
,

where Im𝜆 ̸= 0 and 𝑀 (𝑎, 𝜆) is a 𝑛 × 𝑛 matrix-valued function. Then 𝑀 (𝑎, 𝜆) is called the
Titchmarsh–Weyl function for boundary value problem (2.1), (2.5), (2.6).

The following theorem holds true.

Theorem 3.1. Let (︀
𝛾1 𝛾2

)︀ ̂︀𝑌𝑎 (𝑎, 𝜆) = 0. (3.1)

Then

𝑀 (𝑎, 𝜆) = −
(︀
𝛾1𝜓1(𝑎) + 𝛾2𝜓2

(︀
ℎ−1(𝑎)

)︀)︀−1 (︀
𝛾1𝜙1(𝑎) + 𝛾2𝜙2

(︀
ℎ−1(𝑎)

)︀)︀
,

and ̂︀𝑌 *
𝑎 (𝑎, 𝜆) 𝐽 ̂︀𝑌𝑎 (𝑎, 𝜆) = 0,

where 𝛾1 and 𝛾2 are defined in (2.4). And vice versa, if ̂︀𝑌𝑎 satisfieŝ︀𝑌 *
𝑎 (𝑎, 𝜆) 𝐽 ̂︀𝑌𝑎 (𝑎, 𝜆) = 0,

then there exists 𝛾1, 𝛾2 satisfying (2.4) such that(︀
𝛾1 𝛾2

)︀ ̂︀𝑌𝑎 (𝑎, 𝜆) = 0,

and

𝑀 (𝑎, 𝜆) = −
(︀
𝛾1𝜓1(𝑎) + 𝛾2𝜓2

(︀
ℎ−1(𝑎)

)︀)︀−1 (︀
𝛾1𝜙1(𝑎) + 𝛾2𝜙2

(︀
ℎ−1(𝑎)

)︀)︀
.

Proof. Let
(︀
𝛾1 𝛾2

)︀ ̂︀𝑌𝑎 (𝑎, 𝜆) = 0. Then we get[︀
𝛾1𝜓1(𝑎) + 𝛾2𝜓2

(︀
ℎ−1(𝑎)

)︀]︀
𝑀 (𝑎, 𝜆) = −

(︀
𝛾1𝜙1(𝑎) + 𝛾2𝜙2

(︀
ℎ−1(𝑎)

)︀)︀
,

and

𝑀 (𝑎, 𝜆) = −
(︀
𝛾1𝜓1(𝑎) + 𝛾2𝜓2

(︀
ℎ−1(𝑎)

)︀)︀−1 (︀
𝛾1𝜙1(𝑎) + 𝛾2𝜙2

(︀
ℎ−1(𝑎)

)︀)︀
.
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Since 𝜆 is not an eigenvalue of the self-adjoint problem on [𝜔0, 𝑎], the inverse of the matrix
𝛾1𝜓1(𝑎) + 𝛾2𝜓2 (ℎ

−1(𝑎)) exists. By (3.1), we see that

̂︀𝑌𝑎 (𝑎, 𝜆) = (︂ 0 −𝐼𝑛
𝐼𝑛 0

)︂(︂
𝛾*1
𝛾*2

)︂
𝐾

for (︀
𝛾1 𝛾2

)︀(︂ 0 −𝐼𝑛
𝐼𝑛 0

)︂(︂
𝛾*1
𝛾*2

)︂
𝐾 = 0.

Hence, (︀
𝐼𝑛 𝑀* (𝑎, 𝜆)

)︀ ̂︀𝑍* (𝑎, 𝜆) 𝐽 ̂︀𝑍 (𝑎, 𝜆)

(︂
𝐼𝑛

𝑀 (𝑎, 𝜆)

)︂
= 0,

that is, ̂︀𝑌 *
𝑎 (𝑎, 𝜆) 𝐽 ̂︀𝑌𝑎 (𝑎, 𝜆) = 0.

Vice versa, for some 𝑀 we let

̂︀𝑌 *
𝑎 (𝑎, 𝜆) 𝐽 ̂︀𝑌𝑎 (𝑎, 𝜆) = (︀𝐼𝑛 𝑀* (𝑎, 𝜆)

)︀ ̂︀𝑍* (𝑎, 𝜆) 𝐽 ̂︀𝑍 (𝑎, 𝜆)

(︂
𝐼𝑛

𝑀 (𝑎, 𝜆)

)︂
= 0.

We let (︀
𝛾1 𝛾2

)︀
=
(︀
𝐼𝑛 𝑀* (𝑎, 𝜆)

)︀ ̂︀𝑍* (𝑎, 𝜆) 𝐽

and we get the desired results. The proof is complete.

We introduce Titchmarsh–Weyl circles.

Definition 3.2. Let

𝒞 (𝑎, 𝜆) =
(︀
𝐼𝑛 𝑀* (𝑎, 𝜆)

)︀(︂Θ1 Θ*
2

Θ2 Θ3

)︂(︂
𝐼𝑛

𝑀 (𝑎, 𝜆)

)︂
= 0, (3.2)

where Θ𝑚 are 𝑛× 𝑛 matrices for 𝑚 = 1, 2, 3 and(︂
Θ1 Θ*

2

Θ2 Θ3

)︂
= − sgn (Im𝜆) ̂︀𝑍* (︀𝑎, 𝜆)︀ (𝐽/𝑖) ̂︀𝑍 (𝑎, 𝜆) . (3.3)

Then 𝒞 (𝑎, 𝜆) is called the Titchmarsh–Weyl circle for boundary value problem (2.1), (2.5),
(2.6).

From the above definition we deduce that

𝒞 (𝑎, 𝜆) =
(︀
𝑀𝑎 +Θ−1

3 Θ2

)︀*
Θ4

(︀
𝑀𝑎 +Θ−1

3 Θ2

)︀
+Θ1 −Θ*

2Θ
−1
3 Θ2

= (𝑀𝑎 −Θ4)𝐾
−2
1 (𝑀𝑎 −Θ4)−𝐾2

2 = 0,

where
Θ4 = −Θ−1

3 Θ2, 𝐾−2
1 = Θ−1

3 , 𝐾2
2 = Θ*

2Θ
−1
3 Θ2 −Θ1.

Lemma 3.1. The inequality Θ3 > 0 holds true.

Proof. From (2.7) and (3.3) we see that(︂
Θ1 Θ*

2

Θ2 Θ3

)︂
=− sgn (Im𝜆)

(︂
𝜙*
1(𝑥) 𝜙*

2 (ℎ
−1(𝑥))

𝜓*
1(𝑥) 𝜓*

2 (ℎ
−1(𝑥))

)︂
·
(︂

0 𝑖𝐼𝑛
−𝑖𝐼𝑛 0

)︂(︂
𝜙1(𝑥) 𝜓1(𝑥)

𝜙2 (ℎ
−1(𝑥)) 𝜓2 (ℎ

−1(𝑥))

)︂
=− sgn (Im𝜆)

(︃ ̂︀𝜙* (𝐽/𝑖) ̂︀𝜙 ̂︀𝜙* (𝐽/𝑖) ̂︀𝜓
𝑖 ̂︀𝜓* (𝐽/𝑖) ̂︀𝜙 ̂︀𝜓* (𝐽/𝑖) ̂︀𝜓

)︃
.

Hence,

Θ3 = − sgn (Im𝜆) ̂︀𝜓* (𝐽/𝑖) ̂︀𝜓.
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Straightforward calculations give:

2 Im𝜆

⎛⎝ 𝑎∫︁
𝜔0

𝜓*𝑊𝜓𝑑𝜔,𝑞𝑥

⎞⎠ = ̂︀𝜓* (𝐽/𝑖) ̂︀𝜓(𝑎)− ̂︀𝜓* (𝐽/𝑖) ̂︀𝜓 (𝜔0) .

Since ̂︀𝜓* (𝐽/𝑖) ̂︀𝜓 (𝜔0) = 0, we get the desired result.

Lemma 3.2. The inequality

Θ*
2Θ

−1
3 Θ2 −Θ1 = Θ3

−1
> 0

holds, where Θ3
−1

:= Θ−1
3

(︀
𝜆
)︀
.

Proof. It follows from (2.8) that ̂︀𝑍 (𝑥, 𝜆) 𝐽 ̂︀𝑍* (𝑥, 𝜆) = 𝐽. Thus,

𝐽 = ̂︀𝑍* (︀𝑥, 𝜆)︀ (︁−𝐽 ̂︀𝑍 (𝑥, 𝜆) 𝐽 ̂︀𝑍* (𝑥, 𝜆) 𝐽
)︁ ̂︀𝑍 (︀𝑥, 𝜆)︀

=−
(︁ ̂︀𝑍* (︀𝑥, 𝜆)︀ (𝐽/𝑖) ̂︀𝑍 (𝑥, 𝜆)

)︁
𝐽
(︁
− ̂︀𝑍* (𝑥, 𝜆) (𝐽/𝑖) ̂︀𝑍 (︀𝑥, 𝜆)︀)︁ ,

and (︂
0 −𝐼𝑛
𝐼𝑛 0

)︂
= −

(︂
Θ1 Θ*

2

Θ2 Θ3

)︂(︂
0 −𝐼𝑛
𝐼𝑛 0

)︂(︂
Θ1 Θ

*
2

Θ2 Θ3

)︂
,

since there is a sign change in the matrix when 𝜆 replaces 𝜆. Therefore,

0 = Θ1Θ2 −Θ*
2Θ1, − 𝐼𝑛 = Θ1Θ3 −Θ*

2Θ2,

𝐼𝑛 = Θ2Θ2 −Θ3Θ1, 0 = Θ2Θ3 −Θ3Θ*
2.

The last and second identities imply that

Θ3
−1

= Θ*
2Θ

−1
3 Θ2 −Θ1.

This completes the proof.

Corollary 3.1. 𝐾2 = 𝐾1

Theorem 3.2. As 𝑎 increases, Θ3, 𝐾1 and 𝐾2 decrease.

Proof. Since

Θ3 = 2 |Im𝜆|

⎛⎝ 𝑎∫︁
𝜔0

𝜓*𝑊𝜓𝑑𝜔,𝑞𝑥

⎞⎠ ,

we get the desired results.

Corollary 3.2. The following limits exist

lim
𝑎→∞

𝐾1 (𝑎, 𝜆) = 𝐾0, lim
𝑎→∞

𝐾2 (𝑎, 𝜆) = 𝐾0,

where 𝐾0 ⩾ 0 and 𝐾0 ⩾ 0.

Theorem 3.3. As 𝑎→ ∞, the circles 𝒞 (𝑎, 𝜆) = 0 are embedded.

Proof. The interior of the circle is

− sgn (Im𝜆)
(︀
𝐼𝑛 𝑀* (𝑎, 𝜆)

)︀ ̂︀𝑍* (︀𝑎, 𝜆)︀ (𝐽/𝑖) ̂︀𝑍 (𝑎, 𝜆)

(︂
𝐼𝑛

𝑀 (𝑎, 𝜆)

)︂
⩽ 0.

By (3.2) we see that

𝒞 (𝑎, 𝜆) = 2 |Im𝜆|

⎛⎝ 𝑎∫︁
𝜔0

𝑌 *
𝑎𝑊𝑌𝑎𝑑𝜔,𝑞𝑥

⎞⎠± 1

𝑖
(𝑀*

𝑎 −𝑀𝑎) .
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If 𝑀𝑎 is in the circle at 𝑎2 ∈ 𝐼, 𝑎2 > 𝑎, then 𝒞 (𝑎, 𝜆) ⩽ 0 at the point 𝑎2. At the point 𝑎2,
𝒞 (𝑎, 𝜆) is certainly smaller, and so 𝒞 (𝑎, 𝜆) is in the circle at the point 𝑎2 as well. Hence, the
circles 𝒞 (𝑎, 𝜆) = 0 are embedded as 𝑎→ ∞.

Theorem 3.4. The following limit exists

lim
𝑎→∞

𝒞 (𝑎, 𝜆) = 𝒞0.

Proof. From (3.2), we conclude that

𝒞 (𝑎, 𝜆) = (𝑀𝑎 −𝐷)*𝐾−2
1 (𝑀𝑎 −𝐷)−𝐾2

2 = 0.

Therefore, (︁
𝐾−1

1 (𝑀𝑎 −𝐷)𝐾−1
1

)︁* (︁
𝐾−1

1 (𝑀𝑎 −𝐷)𝐾−1
1

)︁
= 𝐼𝑛. (3.4)

It follows from (3.4) that 𝑈 = 𝐾−1
1 (𝑀𝑎 −𝐷)𝐾−1

1 , where 𝑈 is a unitary matrix, i.e., 𝑈*𝑈 = 𝐼𝑛.
Thus,

𝑀𝑎 (𝜆) = 𝐷 +𝐾1𝑈𝐾1. (3.5)

As 𝑈 ranges over the 𝑛× 𝑛 unit sphere, 𝑀𝑎 (𝜆) ranges over a circle with center 𝐷.
Let 𝐷1 be the center at 𝑎

′ ∈ 𝐼, 𝐷2 be the center at 𝑎
′′ ∈ 𝐼, 𝑎′′ < 𝑎′. By Theorem 3.7, we see

that 𝒞 (𝑎′′, 𝜆) ⊂ 𝒞 (𝑎′, 𝜆) . By (3.5) we find that

𝑀𝑎′ (𝜆) = 𝐷1 +𝐾1(𝑎
′)𝑈1𝐾1(𝑎′),

and

𝑀𝑎′′ (𝜆) = 𝐷2 +𝐾1 (𝑎
′′)𝑈2𝐾1(𝑎′′). (3.6)

Since 𝒞 (𝑎′′, 𝜆) ⊂ 𝒞 (𝑎′, 𝜆) , we conclude that

𝑀𝑎′′ (𝜆) = 𝐷1 +𝐾1 (𝑎
′)𝑉1𝐾1(𝑎′), (3.7)

where 𝑉1 is a contraction. Subtracting (3.6) from (3.7) yields

𝐷1 −𝐷2 = 𝐾1(𝑎
′′)𝑈2𝐾1 (𝑎′′)−𝐾1(𝑎

′)𝑉1𝐾1(𝑎′).

This gives:

𝑉1 =
[︁
𝐷1 −𝐷2 +𝐾1(𝑎

′)𝑉1𝐾1(𝑎′)
]︁
.

We define a mapping Υ by the formula Υ(𝑈2) = 𝑉1. The mapping Υ is a continuous one
from the unit ball into itself. Hence, it has a unique fixed point. Replacing 𝑈2 and 𝑉1 by 𝑈, we
conclude that

‖𝐷1 −𝐷2‖ =
⃦⃦⃦
𝐾1(𝑎

′′)𝑈𝐾1(𝑎′′)−𝐾1(𝑎
′)𝑈𝐾1(𝑎′)

⃦⃦⃦

⩽ ‖𝐾1(𝑎
′′)‖
⃦⃦⃦
𝐾1(𝑎′′)−𝐾1(𝑎′)

⃦⃦⃦
+ ‖𝐾1(𝑎

′′)−𝐾1(𝑎
′)‖
⃦⃦⃦
𝐾1(𝑎′)

⃦⃦⃦
.

As 𝑎′ and 𝑎′′ approach 𝑎, 𝐾1 and 𝐾1 have limits. The centers form a Cauchy sequence and
converge.
Straightforward calculations give:

Θ2 = ±

⎛⎝2 Im𝜆

⎛⎝ 𝑎′∫︁
𝜔0

𝜓*𝑊𝜙𝑑𝜔,𝑞𝑥

⎞⎠− 𝑖𝐼𝑛

⎞⎠ .

Thus, at 𝑎′, the center

𝐷 = −Θ−1
3 Θ2
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= −

⎛⎝2 Im𝜆

⎛⎝ 𝑎′∫︁
𝜔0

𝜓*𝑊1𝜓𝑑𝜔,𝑞𝑥

⎞⎠⎞⎠−1⎛⎝2 Im𝜆

⎛⎝ 𝑎′∫︁
𝜔0

𝜓*𝑊1𝜓𝑑𝜔,𝑞𝑥

⎞⎠− 𝑖𝐼𝑛

⎞⎠ .

Hence, we obtain

lim
𝑎′→∞

𝒞 (𝑎′, 𝜆) = 𝒞0.

The proof is complete.

It is obvious that 𝑀 (𝜆) = 𝐷 +𝐾1𝑈𝐾1 is well defined. As 𝑈 ranges over the unit circle in
𝑛× 𝑛 space, the limit circle or point 𝒞 is covered.
Now we investigate the number of square-integrable solutions to (2.1).

Theorem 3.5. Let 𝑀 be a point inside 𝒞0 ⩽ 0. Let 𝜒 = 𝜙+ 𝜓𝑀. Then

𝜒 ∈ 𝐿2
𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛).

Proof. Since

𝒞 (𝑎, 𝜆) = 2 |Im𝜆|

⎛⎝ 𝑎∫︁
𝜔0

𝜒*𝑊𝜒𝑑𝜔,𝑞𝑥

⎞⎠± 1

𝑖
[𝑀 −𝑀*] ⩽ 0,

we obtain

0 ⩽

𝑎∫︁
𝜔0

𝜒*𝑊𝜒𝑑𝜔,𝑞𝑥 ⩽
1

2𝑖 |Im𝜆|
[𝑀 −𝑀*] .

As 𝑎→ ∞, the upper bound is fixed. The proof is complete.

Lemma 3.3. Let rank𝐾1 = 𝑟 and 𝑆 (𝑈) = 𝐾1𝑈𝐾1, where 𝑈 is unitary. Then we have the
following relations:
𝑖) rank𝑆 (𝑈) ⩽ 𝑟,

𝑖𝑖) sup𝑈 rank𝑆(𝑈) = 𝑟.

The proof follows clearly from the matrix theory.

Theorem 3.6. Let𝑚 = 𝑛+𝑟. For Im𝜆 ̸= 0, there exists at least𝑚 square integrable solutions
of (2.1), 𝑛 ⩽ 𝑚 ⩽ 2𝑛.

Proof. 𝜙+𝐷𝜓 consists of 𝑛 solutions in the space 𝐿2
𝑞,𝑊 ((𝜔0, 𝑎);C

2𝑛). As 𝑈 varies, 𝜓
(︀
𝐾1𝑈𝐾1

)︀
gives 𝑚− 𝑛 additional linearly independent solutions. By the reflection principles, the number
of solutions is the same for Im𝜆 < 0 or Im𝜆 > 0. This completes the proof.

4. Boundary conditions in singular case

Theorem 4.1. Let 𝒴 be a solution of the equation

𝐽𝒴 [ℎ](𝑥) = (𝜆0𝑊 +𝐵)𝒴 ,

where Im𝜆0 ̸= 0. Then for all 𝒵 ∈ 𝒟max, the following limit

𝐴 (𝒵) = lim
𝑥→∞

̂︀𝒴*𝐽 ̂︀𝒵
exists if and only if 𝒴 ∈ 𝐿2

𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛).
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Proof. From the following equalities

𝐽𝒵 [ℎ](𝑥)−𝐵(𝑥)𝒵(𝑥) = 𝑊 (𝑥)𝐹 (𝑥),

and

𝐽𝒴 [ℎ](𝑥)−𝐵(𝑥)𝒴(𝑥) = 𝜆0𝑊 (𝑥)𝒴(𝑥),

we obtain
𝑥∫︁

𝜔0

𝒴*(𝑥)𝑊 (𝑥)
(︀
𝐹 (𝑥)− 𝜆0𝒵(𝑥)

)︀
𝑑𝜔,𝑞𝑥 =

𝑥∫︁
𝜔0

(︂
𝒴*(𝑥)

(︀
𝐽𝒵 [ℎ](𝑥)−𝐵(𝑥)𝒵(𝑥)

)︀
−
(︀
𝐽𝒴 [ℎ](𝑥)−𝐵(𝑥)𝒴(𝑥)

)︀*𝒵(𝑥)

)︂
𝑑𝜔,𝑞𝑥

=

𝑥∫︁
𝜔0

𝒴*(𝑥)𝐽𝒵 [ℎ](𝑥)𝑑𝜔,𝑞𝑥−
𝑥∫︁

𝜔0

(︀
𝐽𝒴 [ℎ](𝑥)

)︀*𝒵(𝑥)𝑑𝜔,𝑞𝑥

=

𝑥∫︁
𝜔0

(︂
𝒴*

1 (𝑥)

(︂
−1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒵2(𝑥)

)︂
+ 𝒴*

2 (𝑥)𝐷𝜔,𝑞𝒵1(𝑥)

)︂
𝑑𝜔,𝑞𝑥

−
𝑥∫︁

𝜔0

(︂(︂
−1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒴*

2 (𝑥)

)︂
𝒵1(𝑥) +𝐷𝜔,𝑞𝒴*

1 (𝑥)𝒵2(𝑥)

)︂
𝑑𝜔,𝑞𝑥

=

𝑥∫︁
𝜔0

(︂
𝒴*

1 (𝑥)[

(︂
−1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒵2(𝑥)

)︂
−𝐷𝜔,𝑞𝒴*

1 (𝑥)𝒵2(𝑥)

)︂
𝑑𝜔,𝑞𝑥

+

𝑥∫︁
𝜔0

(︂
𝒴*

2 (𝑥)𝐷𝜔,𝑞𝒵1(𝑥)−
(︂
−1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒴*

2 (𝑥)

)︂
𝒵1(𝑥)

)︂
𝑑𝜔,𝑞𝑥.

Since

𝐷𝜔,𝑞

(︀
𝒴*

1 (𝑥)𝒵2

(︀
ℎ−1(𝑥)

)︀)︀
= 𝒴*

1 (𝑥)𝐷𝜔,𝑞𝒵2

(︀
ℎ−1(𝑥)

)︀
𝐷𝜔,𝑞

(︀
ℎ−1(𝑥)

)︀
+𝐷𝜔,𝑞𝒴*

1 (𝑥)𝒵2(𝑥)

= 𝒴*
1 (𝑥)

(︂
1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒵2(𝑥)

)︂
+𝐷𝜔,𝑞𝒴*

1 (𝑥)𝒵2(𝑥)

and

𝐷𝜔,𝑞

(︀
𝒴*

2

(︀
ℎ−1(𝑥)

)︀
𝒵1(𝑥)

)︀
= (𝐷𝜔,𝑞𝒴*

2

(︀
ℎ−1(𝑥)

)︀
𝐷𝜔,𝑞

(︀
ℎ−1(𝑥)

)︀
𝒵1(𝑥) + 𝒴*

2 (𝑥)𝐷𝜔,𝑞𝒵1(𝑥)

=

(︂
1

𝑞
𝐷−𝜔𝑞−1,𝑞−1𝒴*

2 (𝑥)

)︂
𝒵1(𝑥) + 𝒴*

2 (𝑥)𝐷𝜔,𝑞𝒵1(𝑥).

Hence,
𝑥∫︁

𝜔0

𝒴*(𝑥)𝑊 (𝑥) (𝐹 (𝑥)− 𝜆0𝒵(𝑥)) 𝑑𝜔,𝑞𝑥

=

𝑥∫︁
𝜔0

𝐷𝜔,𝑞

{︀
𝒴*

2

(︀
ℎ−1(𝑥)

)︀
𝒵1(𝑥)− 𝒴*

1 (𝑥)𝒵2

(︀
ℎ−1(𝑥)

)︀}︀
𝑑𝜔,𝑞𝑥

= ̂︀𝒴*𝐽 ̂︀𝒵(𝑥)− ̂︀𝒴*𝐽 ̂︀𝒵 (𝜔0) .

(4.1)

If 𝒴 ∈ 𝐿2
𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛), then as 𝑥→ ∞, the integral in (4.1) converges, and the limit

lim
𝑥→∞

( ̂︀𝒴*𝐽 ̂︀𝒵)(𝑥)
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exists. And vice versa, suppose that the integral in (4.1) converges for all

𝒵, 𝐹 ∈ 𝐿2
𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛).

By the Hahn–Banach theorem on existence of a linear bounded functional and the Riesz rep-
resentation theorem, we see that

𝒴 ∈ 𝐿2
𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛).

The proof is complete.

Suppose that 𝜆0 is fixed, where Im𝜆0 ̸= 0.

Definition 4.1. Let

𝑀𝑎

(︀
𝜆
)︀
= 𝐷 +𝐾1𝑈𝐾1

be on the limit circle. Let

𝜒
(︀
𝑥, 𝜆0

)︀
= 𝜙

(︀
𝑥, 𝜆0

)︀
+ 𝜓

(︀
𝑥, 𝜆0

)︀
𝑀
(︀
𝜆0
)︀
∈ 𝐿2

𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛)

and let 𝜒
(︀
𝑥, 𝜆0

)︀
satisfies the equation

𝐽𝒵 [ℎ](𝑥) = (𝜆0𝑊 (𝑥) +𝐵(𝑥))𝒵(𝑥).

Then we define 𝑆𝜆0 (𝒵) by the formula

𝑆𝜆0 (𝒵) = lim
𝑥→∞

̂︀𝜒* (𝑥, 𝜆0) 𝐽 ̂︀𝒵(𝑥)

for all 𝒵 ∈ 𝒟max.

5. Self-adjoint operator

Here we define a self-adjoint operator. We suppose that the number of solutions of (2.1) is
𝑚. Then we define the operator 𝐿 by the rule

𝐿 : 𝒟 → 𝐿2
𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛),

𝒵→𝐿𝒵 = 𝐹 if and only if Γ (𝒵) = 𝑊𝐹,

where

𝒟 :=
{︁
𝒵 ∈ 𝒟max : Σ ̂︀𝒵 (𝜔0) = 0 and 𝑆𝜆0 (𝒵) = 0, Im𝜆0 ̸= 0

}︁
.

The following theorem holds true.

Theorem 5.1. If 𝐽𝒵 [ℎ](𝑥)− 𝐵(𝑥)𝒵(𝑥) = 𝑊 (𝑥)𝐹 (𝑥), 𝑊𝒵 = 0 implies 𝒵 = 0, then the set
𝒟 is dense in 𝐿2

𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛).

Proof. Suppose that 𝒟 is not dense in 𝐿2
𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛). Then there exists

𝐺 ∈ 𝐿2
𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛)

such that 𝐺 is orthogonal to the set 𝒟. Let 𝒴 satisfy 𝒴 ∈ 𝒟,

𝐽𝒴 [ℎ](𝑥)−𝐵(𝑥)𝒴(𝑥) = 𝜆0𝑊 (𝑥)𝒴(𝑥) +𝑊 (𝑥)𝐺(𝑥)

for Im𝜆0 ̸= 0. Then for 𝒵 ∈ 𝒟, we see that

0 = (𝒵, 𝐺) =
∞∫︁

𝜔0

𝐺*𝑊𝒵𝑑𝜔,𝑞𝑥

=

∞∫︁
𝜔0

(︀
𝐽𝒴 [ℎ](𝑥)−𝐵(𝑥)𝒴(𝑥)− 𝜆0𝑊 (𝑥)𝒴(𝑥)

)︀*𝒵𝑑𝜔,𝑞𝑥
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=

∞∫︁
𝜔0

𝒴* (︀𝐽𝒵 [ℎ](𝑥)−𝐵(𝑥)𝒵(𝑥)− 𝜆0𝑊 (𝑥)𝒵(𝑥)
)︀
𝑑𝜔,𝑞𝑥.

We define

𝐽𝒵 [ℎ](𝑥)−𝐵(𝑥)𝒵(𝑥)− 𝜆0𝑊 (𝑥)𝒵(𝑥) = 𝑊 (𝑥)𝐹 (𝑥).

Then we have

0 = (𝐹,𝒴) =

∞∫︁
𝜔0

𝒴*𝑊𝐹𝑑𝜔,𝑞𝑥. (5.1)

Since 𝐹 is arbitrary, we take 𝐹 = 𝒴 . By (5.1), we see that 𝒴 = 0 which yields 𝑊𝐺 = 0 and
𝐺 = 0 in 𝐿2

𝜔,𝑞,𝑊 ((𝜔0,∞);C2𝑛). The proof is complete.

Define

(𝐿− 𝜆𝐼)−1 =

∞∫︁
𝜔0

𝐺 (𝜆, 𝑥, 𝑡)𝑊 (𝑡)𝐹 (𝑡)𝑑𝜔,𝑞𝑡, (5.2)

where Im𝜆 ̸= 0 and

𝐺 (𝜆, 𝑥, 𝑡) =

{︂
𝜒 (𝑥, 𝜆)𝜓* (𝑡, 𝜆) , 𝜔0 ⩽ 𝑡 ⩽ 𝑥 <∞,

𝜓 (𝑥, 𝜆)𝜒* (𝑡, 𝜆) , 𝜔0 ⩽ 𝑥 ⩽ 𝑡 <∞.

The following theorem holds.

Theorem 5.2. 𝐿 is a self-adjoint operator.

Proof. Let 𝐿𝒵 − 𝜆0𝒵 = 𝐹 and 𝐿*𝒵 − 𝜆0𝒵 = 𝐻 (Im𝜆0 ̸= 0). Then

(︀
(𝐿− 𝜆0𝐼)

−1 𝐹,𝐻
)︀
=

∞∫︁
𝜔0

𝐻*(𝑥)𝑊 (𝑥)

(︂∫︁ ∞

𝜔0

𝐺 (𝜆0, 𝑥, 𝑡)𝑊 (𝑡)𝐹 (𝑡)𝑑𝜔,𝑞𝑡

)︂
𝑑𝜔,𝑞𝑥

=

∞∫︁
𝜔0

⎛⎝ ∞∫︁
𝜔0

(𝐺 (𝜆0, 𝑥, 𝑡))
*𝑊 (𝑥)𝐻(𝑥)𝑑𝜔,𝑞𝑥

⎞⎠*

𝑊 (𝑡)𝐹 (𝑡)𝑑𝜔,𝑞𝑡

=

∞∫︁
𝜔0

⎛⎝ ∞∫︁
𝜔0

(𝐺
(︀
𝜆0, 𝑡, 𝑥

)︀
𝑊 (𝑥)𝐻(𝑥)𝑑𝜔,𝑞𝑥

⎞⎠*

𝑊 (𝑡)𝐹 (𝑡)𝑑𝜔,𝑞𝑡

=

∞∫︁
𝜔0

⎛⎝ ∞∫︁
𝜔0

𝐺
(︀
𝜆0, 𝑥, 𝑡

)︀
𝑊 (𝑡)𝐻(𝑡) 𝑑𝜔,𝑞𝑡

⎞⎠*

𝑊 (𝑥)𝐹 (𝑥)𝑑𝜔,𝑞𝑥

=
(︁
𝐹,
(︀
𝐿− 𝜆0𝐼

)︀−1
𝐻
)︁
,

due to 𝐺
(︀
𝜆0, 𝑡, 𝑥

)︀
= (𝐺(𝜆0, 𝑥, 𝑡))

*.
Since (︀

(𝐿− 𝜆0𝐼)
−1 𝐹,𝐻

)︀
=
(︁
𝐹,
(︀
𝐿* − 𝜆0𝐼

)︀−1
𝐻
)︁
,

we see that (︀
𝐿− 𝜆0𝐼

)︀−1
=
(︀
𝐿* − 𝜆0𝐼

)︀−1
.

We thus get 𝐿 = 𝐿*. The proof is complete.



SINGULAR HAHN–HAMILTONIAN SYSTEMS 139

Theorem 5.3. Let Im𝜆0 ̸= 0. The operator (𝐿− 𝜆0𝐼)
−1 defined by the formula (5.2) is a

bounded operator and ⃦⃦
(𝐿− 𝜆0𝐼)

−1
⃦⃦
⩽

1

|Im𝜆0|
.

Proof. Let (𝐿− 𝜆0𝐼)𝒵 =𝐹. Then

(𝒵, 𝐹 )− (𝐹,𝒵) = (𝒵, (𝐿− 𝜆0𝐼)𝒵)− ( (𝐿− 𝜆0𝐼)𝒵,𝒵)

=
(︀
𝜆0 − 𝜆0

)︀
(𝒵,𝒵) .

Using Cauchy-Schwartz inequality, we obtain

2 |Im𝜆0| ‖𝒵‖2 ⩽ 2 ‖𝒵‖ ‖𝐹‖ .
Hence, ⃦⃦

(𝐿− 𝜆0𝐼)
−1 𝐹

⃦⃦
⩽

1

|Im𝜆0|
‖𝐹‖

yields the result.

Theorem 5.4. Let
𝜒 (𝑥, 𝜆0) = 𝜙 (𝑥, 𝜆0) + 𝜓 (𝑥, 𝜆0)𝑀 (𝜆0) ,

where Im𝜆0 ̸= 0. Then we have

lim
𝑥→∞

̂︀𝜒* (𝑥, 𝜆0) 𝐽 ̂︀𝜒 (𝑥, 𝜆0) = 0.

Proof. Since

̂︀𝜒* (𝑥, 𝜆0) 𝐽 ̂︀𝜒 (𝑥, 𝜆0) = (︀𝐼𝑛 𝑀* (𝜆0)
)︀ ̂︀𝒵* (𝑥, 𝜆0) 𝐽 ̂︀𝒵 (𝑥, 𝜆0)

(︂
𝐼𝑛

𝑀 (𝜆0)

)︂
=
(︀
𝐼𝑛 𝑀* (𝜆0)

)︀
𝐽

(︂
𝐼𝑛

𝑀 (𝜆0)

)︂
= 0,

we get the desired result. The proof is complete.
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