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APPLICATION OF GENERATING FUNCTIONS TO

PROBLEMS OF RANDOM WALK

S.V. GRISHIN

Abstract. We consider a problem on determining the first hit time of the positive semi-axis
under a homogenous discrete integer random walk on a line. More precisely, the object of
our study is the graph of the generating function of the mentioned random variable. For the
random walk with the maximal positive increment 1, we obtain the equation on the implicit
generating function, which implies the rationality of the inverse generating function. In this
case, we find the mathematical expectation and dispersion for the first hit time of a positive
semi-axis under a homogenous discrete integer random walk on a line. We describe a general
method for deriving systems of equations for the first hit time of a positive semi-axis under
a homogenous discrete integer random walk on a line. For a random walk with increments
−1, 0, 1, 2 we derive an algebraic equation for the implicit generating function. We prove
that a corresponding planar algebraic curve containing the graph of generating function is
rational. We formulate and prove several general properties of the generating function the
first hit time of the positive semi-axis under a homogenous discrete integer random walk on
a line.
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1. Introduction

1.1. Brief background. In this work we study a random walk. Following [1], we give a
definition of this notion.

Definition 1.1. A homogeneous discrete integer random walk on a straight line with param-
eters 𝑝1, 𝑎1, . . ., 𝑝𝑛, 𝑎𝑛, where 𝑝𝑖 ∈ R, 𝑝𝑖 ⩾ 0,

∑︀𝑛
𝑖=1 𝑝𝑖 = 1 and 𝑎𝑖 ∈ Z is a discrete Markov

process 𝜂𝑘, the propagator of which is equal to 𝑃 (𝜂𝑘+1 = 𝑛 + 𝑎𝑖|𝜂𝑘 = 𝑛) = 𝑝𝑖. The quantity
𝜉 = min{𝑛 | 𝜂𝑛 > 0} is called the first hit of the positive semi-axis. If 𝜂𝑘 < 0, then one lets
𝜉 = ∞.

In what follows, if else is not said, by the random walk we always mean the homogeneous
discrete integer random walk on the straight line.
The random walk, as the entire probability theory, appeared from gambling, where 𝑎𝑖 are

interpreted as a possible value of the payoff per step in conventional units, while 𝑝𝑖 is the
probability of this payoff. The game theory appeared first in XVIII century, but systematically
it was presented during the Second World War in monograph [2]. At that time it had already
separated from the probability theory. The game theory has many applications in economics,
where the role of payoff is played by a profit that was mentioned in [2] as well as in work [3],
brought the author the Nobel Prize in Economics. In the last work, one more application of
game theory is indicated: in military affairs.
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Random walks have also applications in physics, namely, in the problem on diffusion and
Brownian motion related to the physical kinetics; a model of one-dimensional Brownian motion
is as follows: per time unit, a particle changes its coordinates by 𝑎𝑖 with a probability 𝑝𝑖. In
our case, a diffusion equation from [4] is rewritten as 𝜕𝑛

𝜕𝑡
+ 𝑣 𝜕𝑛

𝜕𝑥
= 𝐷 𝜕2𝑛

𝜕𝑥2 , where the flow velocity
𝑣 =

∑︀𝑛
𝑖=1 𝑝𝑖𝑎𝑖 is the mathematical expectation of the coordinate increment per time unit, while

the diffusion coefficient 𝐷 = 1
2

∑︀𝑛
𝑖=1 𝑝𝑖(𝑎𝑖− 𝑣)2 is the half of its dispersion. This theory belongs

to A. Einstein and M. Smolukhovsky.
We note that exactly statistical physics initiated a boost development of the theory of ran-

dom processes in XX century. The foundations of the mathematical theory were exposed, for
instance, in [5]. The first studied random process was a Wiener process being a continuous
analog of the random walk. This and other processes were studied by A. Erlang, N. Wiener,
A. Markov and others. More details can be found in [6]. The random walk is a particular case
of a discrete homogeneous random walk with independent increments.
The topic of random walk is discussed in all books on probability theory. For instance, in

book [1] so-called “trivial” (𝑛 = 2; 𝑎1 = 1; 𝑎2 = 0) and “symmetric” (𝑛 = 2; 𝑎1 = 1; 𝑎2 = −1)
random walks were discussed. For the latter in [4] the diffusion equation was derived. “Trivial”
corresponds to the number of successes in the Bernulli scheme, while “symmetric” does to an
antagonistic game of two players with equal bet. In [1] the following statements were also
formulated for the general case:

Theorem 1.1. If
∑︀𝑛

𝑖=1 𝑝𝑖𝑎𝑖 = 0, then with the probability 1 the sequence 𝜂𝑛 contains infin-
itely many zeroes.

Theorem 1.2. If
∑︀𝑛

𝑖=1 𝑝𝑖𝑎𝑖 < 0 (> 0), then with the probability 1 the sequence 𝜂𝑛 contains
only finitely many non-negative (respectively, non-positive) numbers.

In textbooks [7] there were considered random walks on the straight line in the most general
sense, not only integer and not necessarily with discrete increments. By means of the char-
acteristic function of the increment certain statements are proved being the generalizations of
Theorems 1.1 and 1.2. We restrict ourselves by a more narrow class: the increment can take
only finitely many integer values. We shall consider the generating function of the variable 𝜉
from Definition 1.1.

1.2. Formulation of problem and survey of related topics. We are interesting in the
first hit time of the positive semi-axis. From the point of view of the game theory, this is
a problem on continuing the game until the pure payoff. The age of this problem is to be
estimated as approximately 300 years, since it was in fact studied by Huygens for the case of
the “trivial” walk (he studied the first appearance of six when playing dice) and Moivre for the
“symmetric” walk. The former obtained explicit formulae for the probability of the event that
the game is over in 𝑛 steps, see [6]. The physical interpretation of the problem is that from the
positive side of the particle an adsorbing screen is installed.
As it follows from Theorems 1.1 and 1.2, the probability of the infinite value of the quan-

tity 𝜉 in Definition 1.1 is non-zero if and only if the expectation of the increment is negative:∑︀𝑛
𝑖=1 𝑝𝑖𝑎𝑖 < 0.
Since our random variable takes only natural values except for ∞, it is reasonable to consider

the generating function.

Definition 1.2 ([8]). A generating function of the quantity 𝜉 is a function of a complex
variable continuous on the unit circle and holomorphic inside denoted by 𝑓𝜉(𝑧) and defined by
the sum of the series

∑︀∞
𝑘=1 𝑝(𝜉 = 𝑘)𝑧𝑘.

It is obvious that 𝑓𝜉(0) = 0; 𝑓 ′
𝜉(0) =

∑︀
𝑎𝑖>0 𝑝𝑖; 𝑓𝜉(1) = 1− 𝑝(𝜉 = ∞), while in the case of the

positive expectation of the increment the meaning of 𝑓 ′
𝜉(1) is the expectation of the time of the
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game. For the cases described in the above cases in [1] the following formulae were obtained:

𝑓𝜉(𝑧) =
𝑝1𝑧

1−𝑝2𝑧
for “trivial” and 𝑓𝜉(𝑧) =

1−
√

1−4𝑝1𝑝2𝑧2

2𝑝2𝑧
for “symmetric” random walk.

In work [9] there was considered a problem similar to the above formulated but for multi-
dimensional periodic lattices. It arises in the physics of crystals. The generating functions are
derived by means of the Green’s function.
Monograph [10] is devoted to an important problem of the insurance economy, the problem

of ruin. It considers random walks with continuous time (positive increments are equal to one
and occur periodically, but negative increments are randomly distributed in value and time).
Differential-integral equations were obtained for characteristic functions.
In [11], a connection between random walks on the half-line and orthogonal systems of

polynomials was discussed. In contrast to our problem, the random walks here were non-
homogeneous. In order to study them, the so-called Carlin-McGregor formula was used, which
gives a representation for probabilities in the form of an integral with respect to some special
measure.
In [12], random walks with an arbitrary distribution of increments and a small negative

expectation of the increment were treated. An asymptotic estimate was obtained for the time
distribution of the first passage of the level 𝑥. The generating function of moments of increment
was employed.
In [13] the distribution of the number of records (values greater that all previous ones) over

a fixed number of steps of a symmetric integer random walk were studied. The generating
function of this distribution turned out to be transcendental.
The work [14] is devoted to a two-dimensional random walk in a quarter-plane, in which

each step changes each coordinate by at most 1 and all possible variants of the step are equally
probable. Equations for the generating function of three variables were obtained; these three
variables were the number of steps, the number of hits of the horizontal half-line and the number
of hits of the vertical half-line. For some cases, it was possible to find an algebraic solution,
for others, a differential-algebraic solution was determined; a relation involved derivatives with
respect to the variable reflecting the number of steps in the relation.
For a hexagonal lattice, some generating functions and explicit formulas for probabilities

were obtained in [15].
For a multidimensional lattice and arbitrary increment distributions, it is possible to find

the probability that 0 does not lie in the convex hull of several values. The formula contains
coefficients specified by their generating function (see [16]).
In [17] a problem of the number of points visited exactly 𝑘 times in 𝑛 random walk steps was

studied. The generating function was calculated by using the graph theory.
A special case of our problem was considered in [18] (𝑛 = 3, 𝑎1 = −1, 𝑎2 = 0, 𝑎3 =

1). Explicit probability formulae containing hypergeometric functions were obtained, and a
generating function was derived for the first hit time of an arbitrary point.
In [19], there was presented a method for solving our problem using multi-dimensional Galton-

Watson branching processes. The calculations were made for the case from [18] and the case
𝑛 = 3, 𝑎1 = −2, 𝑎2 = −1, 𝑎3 = 1. There were obtained equations, which were special cases
of our main result and it was proved that the generating functions were their smallest real
solutions.
We obtain relations for generating functions 𝑓𝜉(𝑧) for general random walks by more elemen-

tary methods. As we can see, the random walk topic has been actively developed in recent
decades, and our result will allow us to apply algebraic-geometric methods in it, in particular,
methods of the birational geometry.
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2. Main results

2.1. Case admitting a complete studying. The main result of the present work is the
following statement.

Theorem 2.1. Let in the definition of the random we have 𝑛 > 1, 𝑎1 = 1, 𝑎𝑖 ⩽ 0, 1 < 𝑖 ⩽ 𝑛.
Then for 𝑤 = 𝑓𝜉(𝑧) the relation

𝑤 = 𝑧

𝑛∑︁
𝑖=1

𝑝𝑖𝑤
1−𝑎𝑖 (2.1)

holds. In other words, while substituting 𝑤 = 𝑓𝜉(𝑧) into (2.1), we get the identity.

Proof. Let us obtain a recurrent formula for 𝑐𝑘 = 𝑝(𝜉 = 𝑘). It is clear that 𝑐1 = 𝑝1. Let 𝑘 > 1.
Then 𝜂1 = 𝑎𝑖, 𝑖 > 1 with probability 𝑝𝑖. In order to achieve a positive result 1, we need to
pass through −𝑎𝑖 intermediate values 𝑎𝑖 + 1, . . . , 0 and this is why remaining 𝑘 − 1 steps are
split into 1− 𝑎𝑖 terms, each of which can be interpreted as the first achievement of the payoff
1 in comparison with the previous step. Since all steps are independent, if the partition is of
form 𝑘− 1 = 𝑘1+ . . .+𝑘1−𝑎𝑖 , the corresponding probability is equal to Π1−𝑎𝑖

𝑗=1 𝑐𝑘𝑗 . Summing over
all possible first terms and partitions (the order of the terms in the partitions are obviously
inessential), we obtain the relation

𝑐𝑘+1 =
𝑛∑︁

𝑖=2

(︃
𝑝𝑖

∑︁
𝑘1,...,𝑘1−𝑎𝑖

>0;
∑︀1−𝑎𝑖

𝑗=1 𝑘𝑗=𝑘

Π1−𝑎𝑖
𝑗=1 𝑐𝑘𝑗

)︃
. (2.2)

It remains to substitute the Taylor series
∑︀∞

𝑘=1 𝑐𝑘𝑧
𝑘 instead of 𝑤 into relation (2.1), to take into

consideration that 𝑤0 = 1 and by equating the coefficients at the like powers of 𝑧, we confirm
that recurrent relations (2.2) transform this relation into identity.

For further studying we shall use such notions of the algebraic geometry as an algebraic
curve and a rational curve. Following [20] and employing standard notation 𝐶[. . .] for the ring
of polynomials of the set of variables inside the square brackets and 𝐶(. . .) for the field of
rational functions of the set of variables inside the round brackets, we recall their definitions:

Definition 2.1. A planar algebraic curve is the set of points 𝐶2 satisfying the equation
𝑃 (𝑥, 𝑦) = 0, where 𝑥, 𝑦 are Cartesian coordinates, 𝑃 ∈ 𝐶[𝑥, 𝑦] is some polynomnial of two
variables with complex coefficients. The degree of the polynomial is also called the degree of
the corresponding algebraic curve. There are special titles for some powers, for instance, conic
(degree 2), cubic (degree 3), quartic (power 4), quintic (power 5). If the polynomial is simple,
that is, it is not factorized into non-constant factors, we say that the curve defined by this
polynomial is irreducible, otherwise we say it consists of several components each being a curve
defined by one of its simple factors.

Definition 2.2. An irreducible planar algebraic curve is called rational if there exist two
rational functions of one variable with complex coefficients 𝑥(𝑡), 𝑦(𝑡) ∈ 𝐶(𝑡), the substitution of
which into the equation of the curve turns it into the identity; 𝑡 is called a rational parameter
of the curve.

Definition 2.3. The set {(𝑧, 𝑓(𝑧))|𝑧 ∈ 𝐷(𝑓)} ⊂ 𝐶2, where 𝐷(𝑓) is the domain of the
function 𝑓 is called the graph of the function 𝑓 . If the function is meromorphic on its domain,
we say that the graph is a smooth curve. At the same time, the straight line {(𝑧0 + 𝑡, 𝑓(𝑧0) +
𝑓 ′(𝑧0)𝑡) | 𝑡 ∈ 𝐶} is called an oblique tangent line to the graph of the function 𝑓 at the point
𝑧0 ∈ 𝐷(𝑓) not being a pole of the derivative. If 𝑓 ′(𝑧) has a pole at the point 𝑧0, then the straight
line {(𝑧0, 𝑡) | 𝑡 ∈ 𝐶} is called a vertical tangential line to the graph of the function 𝑓 at the point
𝑧0.
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It follows from Theorem 2.1 that the graph of the function 𝑓𝜉(𝑧) is a subset of a planar
algebraic curve of degree 2−min{𝑎2, . . . , 𝑎𝑛} defined by equation (2.1). This curve is irreducible
since for each value 𝑤 at most one value 𝑧 corresponds to (otherwise each component of the
curve would give a correspondence 𝑧(𝑤)) and it is rational with the rational parameter 𝑤. The
function inverse to the generating one is rational with the denominator 𝑤.
Differentiating relation (2.1) and substituting 𝑤 = 𝑧 = 1, we find the expectation of the

duration of the game. It is equal to 1
𝑀
. Here 𝑀 =

∑︀𝑛
𝑖=1 𝑝𝑖𝑎𝑖 is the expectation of the payoff in

one step. This result is a particular case of the following fact mentioned in [1].

Theorem 2.2. The expectation of the sum of random number of independent identically
distributed terms is equal to the product the expectation of the number of the terms by the
expectation of each term.

Finding the second derivative at the same point

𝑑2𝑤

𝑑𝑧2
=

1
𝑑𝑧
𝑑𝑤

𝑑

𝑑𝑤

(︃
1
𝑑𝑧
𝑑𝑤

)︃
, (2.3)

we can also calculate the dispersion of the duration of the game, which turns out to be equal
to 𝐷

𝑀3 , where 𝑀 is the same as above and 𝐷 =
∑︀𝑛

𝑖=1 𝑝𝑖(𝑎𝑖 −𝑀)2 is the dispersion of the payoff
in one step.

2.2. General case. It is interesting to consider the problem in the general case. Let us
formulate a few rather obvious statements.

Theorem 2.3. if 𝑎𝑖 ⩽ 0, then 𝑓𝜉(𝑧) = 0.

Proof. In the mentioned case all 𝜂𝑖 in Definition 1.1 are non-positive and hence, we surely have
𝜉 = ∞. This is why 𝑃 (𝜉 = 𝑛) = 0 for each natural 𝑛 and therefore, 𝑓𝜉(𝑧) = 0.

Theorem 2.4. If 𝑎𝑖 ⩾ 0, then the quantity 𝜉 has the same expectation as for the “trivial”
walk with 𝑝2 = 𝑝𝑖 for 𝑖 such that 𝑎𝑖 = 0 and 𝑝2 = 0 if all 𝑎𝑖 satisfy 𝑎𝑖 > 0; 𝑝1 = 1− 𝑝2.

Proof. In this case all 𝜂𝑖 obey 𝜂𝑖 ⩾ 0 and this is why

𝜉 = min{𝑛|𝜂𝑛 > 0} = min{𝑛|𝜂𝑛 ̸= 0}.

This corresponds to the “trivial” random walk with the probability 𝑝1 equalling to the sum of
probabilities of all non-zero values of increments and 𝑝2 equalling to the probability of the zero
increment of the zero increment (if it exists).

In what follows we assume that there exist 𝑎𝑖 of different signs.

Theorem 2.5. If the greatest common divisor of all 𝑎𝑖 is equal to 𝑑 > 1, then the random
walk with the parameters 𝑛, 𝑝𝑖, 𝑎𝑖 = 𝑎𝑖/𝑑 (let us call it reduced) has the same distribution of the
first hit time of the positive axis as the initial one.

Proof. It is sufficient to observe that for the initial process all 𝜂𝑛 obey 𝜂𝑛 ∈ 𝑑Z and the linear
change of the coordinates 𝑥′ = 𝑥/𝑑 on the straight line transforms this lattice into Z and does
our walk into the reduced one. This changes does not influence the positivity of 𝜂𝑛 and this is
why 𝜉 is mapped into itself.

This means that without loss of generality we can regard the set 𝑎𝑖 being coprime.
We consider an example not covered by Theorem 2.1: 𝑛 = 4, 𝑎1 = −1, 𝑎2 = 0, 𝑎3 = 1,

𝑎4 = 2.



38 S.V. GRISHIN

Theorem 2.6. The recurrent relations in this example read as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑐𝑘 = 𝑐
(1)
𝑘 + 𝑐

(2)
𝑘 ,

𝑐
(1)
1 = 𝑝3,

𝑐
(2)
1 = 𝑝4,

𝑐
(1)
𝑘+1 = 𝑝1(𝑐

(2)
𝑘 +

∑︀𝑘−1
𝑗=1 𝑐

(1)
𝑗 𝑐

(1)
𝑘−𝑗) + 𝑝2𝑐

(1)
𝑘 ,

𝑐
(2)
𝑘+1 = 𝑝1

∑︀𝑘−1
𝑗=1 𝑐

(1)
𝑗 𝑐

(2)
𝑘−𝑗 + 𝑝2𝑐

(2)
𝑘 .

Proof. In this example at the moment of the end of the game two cases are possible: 𝜂𝑛 = 1
and 𝜂𝑛 = 2. Further arguing is similar to the proof of Theorem 2.1. For instance, if 𝜂1 = −1,
then we can achieve the value 1 either by achieving first the value 0 or avoiding 0, while the
value 2 can be achieved only via the value 0.

Corollary 2.1. The generating function satisfies the system of equations⎧⎪⎨⎪⎩
𝑓𝜉(𝑧) = 𝑓1(𝑧) + 𝑓2(𝑧),

𝑓1(𝑧) = 𝑧(𝑝1(𝑓2(𝑧) + 𝑓 2
1 (𝑧)) + 𝑝2𝑓1(𝑧) + 𝑝3),

𝑓2(𝑧) = 𝑧(𝑝1𝑓1(𝑧)𝑓2(𝑧) + 𝑝2𝑓2(𝑧) + 𝑝4).

Making certain transformations, we obtain that the graph of the function 𝑓𝜉(𝑧) is a subset
of a planar algebraic curve, quantic:

𝐴𝑤3𝑧2 +𝐵𝑤2𝑧2 + 𝐶𝑤2𝑧 +𝐷𝑤𝑧2 + 𝐸𝑤𝑧 + 𝐹𝑧2 + 𝑤 +𝐺𝑧 = 0, (2.4)

where

𝐴 = 𝑝21, 𝐵 = 𝑝1(2𝑝2 + 𝑝3), 𝐶 = −2𝑝1, 𝐷 = 𝑝2 + 𝑝1(𝑝3 − 𝑝2 + 3𝑝4),

𝐸 = 𝑝1 − 𝑝2 − 1, 𝐹 = (𝑝3 + 𝑝4)(1− 𝑝1)− 𝑝1𝑝4, 𝐺 = −(𝑝3 + 𝑝4).

Theorem 2.7. If 𝑝1 > 0 and 𝑝4 > 0, then quintic (2.4) is irreducible and rational.

Proof. By the change of the coordinates
(︁
𝑡 = 𝑃 (𝑤)𝑧+𝑄(𝑤)

𝑤−1
, 𝑤
)︁
, where 𝑃 , 𝑄 are some polynonmials

and this quintic is transformed into a conic of form 𝑡2 = 𝑘𝑤 + 𝑙 with some coefficients 𝑘, 𝑙; the
polynomials and the coefficients depend on the values 𝑝𝑖, and if 𝑝1 > 0 and 𝑝4 > 0, then 𝑃 ̸= 0
and 𝑘 ̸= 0. At the same time, it possesses only finitely many singular points with respect to
the aforementioned change of coordinates and this is why it is irreducible since the number of
the components in old and new coordinates coincide and the conic 𝑡2 = 𝑘𝑤 + 𝑙 is irreducible.
It also follows from the change that 𝑡 is a rational parameter of our curve.

In the general case the idea is the same, but we deal with more equations, they involve more
terms of higher degree and despite from this system we can derive a polynomial relation for 𝑧,
𝑤 = 𝑓(𝑧), but the corresponding polynomial has a higher degree even for 𝑎𝑖 with small absolute
values. The issue whether the corresponding planar algebraic curve is rational remains open.
We can say only the following:

Theorem 2.8. The planar algebraic curve containing the graph of the function 𝑓𝜉(𝑧) for
random walk with parameters 𝑝1, 𝑎1, . . . , 𝑝𝑛, 𝑎𝑛 possesses the following properties:

1) The linear part of the curve is of the form 𝑤− 𝑧
∑︀

𝑎𝑖>0 𝑝𝑖, then the terms of degree 2 and
higher come;

2) The curve passes through the point 𝑤 = 𝑧 = 1;
3) As 𝑀 > 0, there is an oblique tangential line 𝑤 − 1 = 𝑘(𝑧 − 1) at this point, where

1
𝑀

⩽ 𝑘 ⩽ max{𝑎1,...,𝑎𝑛}
𝑀

, while in the “critical” case 𝑀 = 0 this is a vertical tangential line 𝑧 = 1.
Here 𝑀 is the same as in Section 2.1.
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Proof. 1) Linearizing system of equations (2.1) (the linear part is responsible for the “recursion
base”), we obtain {︃

𝑓𝜉(𝑧) =
∑︀𝑚𝑎𝑥{𝑎1,...,𝑎𝑛}

𝑗=1 𝑓𝑗(𝑧),

𝑓𝑗(𝑧) = 𝑧𝑝𝑖𝑗 ,

where 𝑖𝑗 are chosen so that 𝑎𝑖𝑗 = 𝑗 and if there is no such index, we suppose 𝑝𝑖𝑗 = 0. Substituting
all equations of the system into the first one, we obtain the linearized equation of the curve.
2) We consider the problem with fixed 𝑎𝑖 and varying 𝑝𝑖. The equation of the curve is a

polynomial of 𝑧, 𝑤, 𝑝1, . . . , 𝑝𝑛. We substitute 𝑤 = 𝑧 = 1. We obtain a polynomial 𝑄(𝑝1, . . . , 𝑝𝑛)
of 𝑛 of real variables equalling zero on the polyhedron {𝑝𝑖 ⩾ 0,

∑︀
𝑖 𝑝𝑖𝑎𝑖 ⩾ 0} in the hyperplane∑︀

𝑖 𝑝𝑖 = 1 since in this case 𝑓𝜉(1) = 1, see Section 1.2. This implies that inside the orthogonal
projection of this polyhedron on the hyperplane 𝑝1 = 0 all the derivatives of a polynomial of
(𝑛− 1) variables obtained by substituting 𝑝1 = 1− 𝑝2 − . . .− 𝑝𝑛 into 𝑄 vanish. This is why it
vanishes identically and hence 𝑄 = 0 on the entire hyperplane

∑︀
𝑖 𝑝𝑖 = 1. This means that for

all 𝑝𝑖 the point 𝑤 = 𝑧 = 1 lies on the corresponding curve.
3) It follows from Theorem 2.2 that the product of 𝑀 by the expectation of the quantity 𝜉

making sense for 𝑀 > 0 and equalling in this case to 𝑓 ′
𝜉(1) is equal to the expectation of 𝜂𝑛 at

the moment of the end of the game. The latter quantity takes values from 1 tillmax{𝑎1, . . . , 𝑎𝑛},
and therefore, its expectation is between these values. This gives an estimate for the slope of
the tangential line to the graph of the function 𝑓𝜉(𝑧) at the point (1, 𝑓𝜉(1) = 1), which is equal
to the derivative of this function at this point. This tangential line is one of the tangential
lines to our curve at the given point. The case 𝑀 = 0 is obtained by passing to the limit
as 𝑀 → +0 (as it was mentioned above, the equation of the curve is polynomial and hence,
depends continuously on 𝑝𝑖).
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