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HADAMARD TYPE OPERATORS IN SPACES OF

HOLOMORPHIC FUNCTIONS ON A BALL

O.A. IVANOVA, S.N. MELIKHOV

Abstract. We study Hadamard type operators in the spaces of functions holomorphic in
an open ball in C𝑁 centered at the origin. These are continuous linear operators, for which
each monomial is an eigenvector. We obtain a representation of Hadamard operators in the
form of a multiplicative convolution. The proof of this representation employs essentially
Fantappiè transformation realizing dual to the spaces of holomorphic functions and the
holomorphy property of the characteristic function of a continuous linear operator in them.
The applied method allows us to reduce the problem on representation of a Hadamard
operator to the problem on holomorphic continuation of a function holomorphic at the point
0 into a given open ball in C𝑁 with 𝑙1-norm. We prove that the space of the Hadamard
type operators from one mentioned space into another with the topology of the bounded
convergence is linearly topologically isomorphic to the strong dual to the space of the germs
of all functions holomorphic on a closed polydisk.
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1. Introduction

A natural interpretation of the Hadamard product of holomorphic functions in the operator
theory is the notion of a Hadamard type operator. This is the name for continuous linear
operators defined on a complex locally convex space containing all polynomials, for which all
monomials are eigenfunctions. At present, there is a complete description of the Hadamard
operators in the space of all functions holomorphic in an arbitrary simply connected domain
in C [2], [3], [6], [18]. In the case of many complex variables a corresponding result, as a corollary
of a more general description of the almost Hadamard type operators was obtained in [5] for
the space of all entire functions in C𝑁 . For the spaces of functions holomorphic in domains in
C𝑁 different from C𝑁 such description is absent. We mention a rather large number of such
results for the spaces of real analytic, infinitely differentiable functions and distributions of
both one and several variables [9]–[14], [19]–[23]. In the present work we study Hadamard type
operators acting from the space 𝐻(𝐵𝑟) of all functions holomorphic in an open ball 𝐵𝑟 of radius
𝑟 ∈ (0,∞) centered at the point 0 in C𝑁 into the space 𝐻(𝐵𝑅), 𝑅 ∈ (0,∞). The main result
of our paper is Theorem 2.1 in which we obtain a representation of Hadamard operators as a
multiplicative convolution. A similar description holds also for in all earlier studied situations.
An essential point in the proof of Theorem 2.1 is the employing of the Fantappiè transform, by
means of which we realize a natural duality for the spaces of holomorphic functions of many
variables. This allows us to reduce the problem on representing a Hadamard operator to the
problem on holomorphic continuation of a function holomorphic in a vicinity of the point 0
into a given open ball in C𝑁 with 𝑙1-norm. We also employ the property of the holomorphy
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of a characteristic function of a continuous linear operator acting in the spaces of holomorphic
functions.
The obtained representation is interpreted in terms of the Hadamard product of holomorphic

functions. In Theorem 2.2, also by means of Fantappiè transform and the corresponding family
of quotients defining it, we show that the space of Hadamard operators with a natural topology
of bounded convergence is topologically isomorphic to a strong dual to the space of all functions
holomorphic on a closed polydisk in C𝑁 and to the Fréchet space holomorphic in an open ball
in C𝑁 with 𝑙1-norm.
The facts from the theory of locally convex spaces, which we use here without citations, can

be found in [8].

2. Description of operators of Hadamard type

2.1. Representation of Hadamard operator as multiplicative convolution. We fix
𝑁 ∈ N. We let

|𝑧| :=

(︃
𝑁∑︁
𝑗=1

|𝑧𝑗|2
)︃1/2

, ⟨𝑡, 𝑧⟩ :=
𝑁∑︁
𝑗=1

𝑡𝑗𝑧𝑗, 𝑡𝑧 := (𝑡𝑗𝑧𝑗)
𝑁
𝑗=1, 𝑡, 𝑧 ∈ C𝑁 ,

𝐿 ·𝑀 := {𝑡𝑧 | 𝑡 ∈ 𝐿, 𝑧 ∈ 𝑀}, 𝑢𝑀 := {𝑢} ·𝑀 for sets 𝐿,𝑀 ⊂ C𝑁 , 𝑢 ∈ C𝑁 ,

𝐵𝑟 := {𝑧 ∈ C𝑁 | |𝑧| < 𝑟}, 𝐵𝑟 := {𝑧 ∈ C𝑁 | |𝑧| ⩽ 𝑟},
𝐷𝑟 := {𝑧 ∈ C𝑁 | |𝑧𝑗| < 𝑟, 1 ⩽ 𝑗 ⩽ 𝑁}, 𝐷𝑟 := {𝑧 ∈ C𝑁 | |𝑧𝑗| ⩽ 𝑟, 1 ⩽ 𝑗 ⩽ 𝑁},

𝑈𝑟 := {𝑧 ∈ C𝑁 |
𝑁∑︁
𝑗=1

|𝑧𝑗| < 𝑟}, 𝑈 𝑟 := {𝑧 ∈ C𝑁 |
𝑁∑︁
𝑗=1

|𝑧𝑗| ⩽ 𝑟}, 0 < 𝑟 < +∞,

𝑃𝑁 := {1, . . . , 𝑁}.
In what follows we shall use the sets of points with non-zero coordinates. We define C* :=

C ∖ {0} and for 𝑄 ⊂ C𝑁 we let 𝑄(0) := 𝑄
⋂︀
(C*)𝑁 .

Remark 2.1. For all 𝑟, 𝜌 ∈ (0,∞)
(i) 𝐵𝑟𝜌 = 𝐷𝑟 ·𝐵𝜌;
(ii) the set 𝑈𝑟𝜌 can be represented as the product of balls; one of them can be thinned out:

𝑈𝑟𝜌 = 𝐵𝑟 ·𝐵𝜌 = 𝐵(0)
𝑟 ·𝐵𝜌;

(iii) 𝑈 𝑟𝜌 = 𝐵𝑟 ·𝐵𝜌.

We define the quotients 𝑝𝑡(𝑧) :=
1

1−⟨𝑡,𝑧⟩ for 𝑡, 𝑧 ∈ C𝑁 such that ⟨𝑡, 𝑧⟩ ≠ 1. For a set 𝑄 ⊂ C𝑁 ,

the dual for 𝑄 set 𝑄* is defined by the identity

𝑄* := {𝑡 ∈ C𝑁 | ⟨𝑡, 𝑧⟩ ≠ 1 for each 𝑧 ∈ 𝑄}
[1], [17, Sect. 1], [7, Ch. 3, Sect. 12, 4], [15, Ch. IV, Sect. 4.7].

Example 2.1. Let 𝑟 ∈ (0,∞).
(i) According to [7, Ch. 3, Sect. 12, 4, Prop. 20]

𝐵*
𝑟 = 𝐵1/𝑟, 𝐵

*
𝑟 = 𝐵1/𝑟.

(ii) The identities hold 𝐷*
𝑟 = 𝑈1/𝑟, 𝐷

*
𝑟 = 𝑈1/𝑟.

Identities in (ii) can be confirmed by straightforward calculations.

For a domain 𝑄 in C𝑁 , by 𝐻(𝑄) we denote the space of all functions holomorphic in 𝑄 with
the topology of uniform convergence on compact sets in 𝑄. The symbol 𝐻(𝐷𝑟) with 𝑟 ∈ (0,∞)
stands for the space of all germs of the functions holomorphic on 𝐷𝑟. Let (𝑠𝑛)𝑛∈N be a strictly
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decreasing sequence of positive numbers such that 𝑠𝑛 → 𝑟 and 𝐻𝑐(𝐷𝑠𝑛) be the Banach space
of all holomorphic in 𝐷𝑠𝑛 and continuous on 𝐷𝑠𝑛 functions with a norm max

𝑧∈𝐷𝑠𝑛

|𝑓(𝑧)|, 𝑛 ∈ N.

Then 𝐻(𝐷𝑟) =
⋃︀
𝑛∈N

𝐻𝑐(𝐷𝑠𝑛) and in 𝐻(𝐷𝑟) we introduce a topology of inductive limit of the

spaces 𝐻𝑐(𝐷𝑠𝑛), 𝑛 ∈ N, with respect to their natural embeddings in 𝐻(𝐷𝑟). This topology is
independent of the choice of the sequence (𝑠𝑛)𝑛∈N as above. For a locally convex space 𝐸 the
symbol 𝐸 ′ denotes a topological dual to 𝐸 space and 𝐸 ′

𝑏 is a strong dual space for 𝐸.
The Fantappiè transform of a functional 𝜈 ∈ 𝐻(C𝑁)′ is defined by the identity

Φ(𝜈)(𝑡) := ̃︀𝜈(𝑡) := 𝜈(𝑝𝑡).

According to [15, Ch. 4, Sect. 4.7], a function ̃︀𝜈 is holomorphic at the point 0, that is, in some
neighbourhood of the point 0.
By [17, Thm. 2.2], [1], [15, Thm. 4.7.8], the following lemma is true.

Lemma 2.1. For each 𝑟 > 0, the transformation 𝜈 ↦→ Φ(𝜈) is a topological isomorphism of
𝐻(𝐷𝑟)

′
𝑏 onto 𝐻(𝑈1/𝑟).

We are going to prove a natural analog of a known result by G. Köthe [16, Thm. 19]
for many complex variables; this result is about characteristic functions of continuous linear
operators in the spaces of holomorphic functions of one complex variable. For 𝑟, 𝑅 ∈ (0,∞)
by ℒ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)) we denote the space of all continuous linear operators from 𝐻(𝐵𝑟) into
𝐻(𝐵𝑅). For 𝐴 ∈ ℒ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)) we let

𝑐ℎ(𝐴)(𝑡, 𝑧) := 𝐴(𝑝𝑡)(𝑧), 𝑡 ∈ 𝐵1/𝑟, 𝑧 ∈ 𝐵𝑅.

We introduce the orts 𝑒(𝑗) := (𝛿𝑗,𝑚)
𝑁
𝑚=1, 𝑗 ∈ 𝑃𝑁 . In what follows for numbers 𝑟, 𝑅 ∈ (0,∞)

we fix strictly increasing sequences of positive numbers (𝑟𝑛)𝑛∈N and (𝑅𝑛)𝑛∈N such that 𝑟𝑛 → 𝑟
and 𝑅𝑛 → 𝑅.

Lemma 2.2. Let 𝑟, 𝑅 ∈ (0,∞). For each operator 𝐴 ∈ ℒ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)), its characteristic
function 𝑐ℎ(𝐴) possesses the following holomorphy property: for each 𝑛 ∈ N there exists 𝑚 ∈ N
such that the function 𝑐ℎ(𝐴) is holomorphic on 𝐵1/𝑟𝑚 ×𝐵𝑅𝑛.

Proof. As in the one-dimensional case, this statement is a corollary of the continuity of 𝐴 and of
the properties of the function 𝑟𝑡. Since 𝐴 is continuous from 𝐻(𝐵𝑟) into 𝐻(𝐵𝑅), then for each
𝑛 ∈ N there exists 𝑚 ∈ N such that the operator 𝐴 can be uniquely continued to a continuous
linear operator 𝐴𝑛 from 𝐻(𝐵𝑟𝑚) into 𝐻(𝐵𝑅𝑛). We define a function 𝑔𝑛(𝑡, 𝑧) := 𝐴𝑛(𝑝𝑡)(𝑧),
𝑡 ∈ 𝐵1/𝑟𝑚 , 𝑧 ∈ 𝐵𝑅𝑛 . For all 𝑡 ∈ 𝐵1/𝑟𝑚 , 𝑗 ∈ 𝑃𝑁 , in the space 𝐻(𝐵𝑟𝑚), that is, uniformly in 𝑢 on
each compact set 𝐵𝑟𝑚 , there exists the limit

lim
ℎ∈C,ℎ→0

𝑝𝑡+ℎ𝑒(𝑗)(𝑢)− 𝑝𝑡(𝑢)

ℎ

being equal to
𝑢𝑗

(1−⟨𝑡,𝑢⟩)2 =: 𝑠𝑗,𝑡(𝑢). Then for all 𝑧 ∈ 𝐵𝑅𝑛 , 𝑡 ∈ 𝐵1/𝑟𝑚 , 𝑗 ∈ 𝑃𝑁 there exists a limit

lim
ℎ∈C,ℎ→0

𝑔𝑛(𝑡+ ℎ𝑒(𝑗), 𝑧)− 𝑔𝑛(𝑡, 𝑧)

ℎ
,

which is equal to 𝐴𝑛(𝑠𝑗,𝑡)(𝑧). Therefore, for each 𝑧 ∈ 𝐵𝑅𝑛 the function 𝑔𝑛(𝑡, 𝑧) is holomorphic
in 𝐵1/𝑟𝑚 in 𝑡. Moreover, for each 𝑡 ∈ 𝐵1/𝑟𝑚 the function 𝑔𝑚(𝑡, 𝑧) is holomorphic in 𝐵𝑅𝑚 in 𝑧.
By Hartogs theorem 𝑔𝑛 is holomorphic in 𝐵1/𝑟𝑚 ×𝐵𝑅𝑛 . Since the function 𝑐ℎ(𝐴) is equal to 𝑔𝑛
on 𝐵1/𝑟 ×𝐵𝑅𝑛 , we continue 𝑐ℎ(𝐴) holomorphically into 𝐵1/𝑟𝑚 ×𝐵𝑅𝑛 .

The main aim of the present work is to describe the operators of Hadamard type in the
spaces of functions holomorphic in a ball. We let 𝑓𝛼(𝑧) := 𝑧𝛼 := 𝑧𝛼1

1 · · · 𝑧𝛼𝑁
𝑁 , 𝛼 ∈ N𝑁

0 , 𝑧 ∈ C𝑁 .
An operator 𝐴 ∈ ℒ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)), 𝑟, 𝑅 ∈ (0,∞), is called an operator of Hadamard type
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(Hadamard operator) if all monomials 𝑓𝛼 are its eigenfunctions, that is, for each 𝛼 ∈ N𝑁
0 there

exists 𝑐𝛼 ∈ C, for which 𝐴(𝑓𝛼) = 𝑐𝛼𝑓𝛼. By ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)) we denote the set of all operators
of Hadamard type from 𝐻(𝐵𝑟) into 𝐻(𝐵𝑅). It is clear that ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)) is a subspace
in ℒ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)).
As usually, C[𝑧] is the space of all polynomials over C of variables 𝑧1, . . . , 𝑧𝑁 . We let 𝜕𝑗𝑓 :=

𝜕𝑓
𝜕𝑧𝑗

, 𝑗 ∈ 𝑃𝑁 ; |𝛼| :=
𝑁∑︀
𝑗=1

𝛼𝑗 for 𝛼 ∈ N𝑁
0 ; the latter notation coincides with the notation |𝑧| for

𝑧 ∈ C𝑁 but this produces no ambiguity. The subscript of the functional indicates the variables,
which respect to which it acts.

Theorem 2.1. For 𝑟, 𝑅 ∈ (0,∞) the following statements are equivalent:
(i) 𝐴 ∈ ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)).
(ii) There exists a functional 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)

′ such that 𝐴(𝑓)(𝑧) = 𝜙𝑡(𝑓(𝑡𝑧)) for all 𝑧 ∈ 𝐵𝑅,
𝑓 ∈ 𝐻(𝐵𝑟).

For each 𝐴 ∈ ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)) a functional 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)
′, for which 𝐴(𝑓)(𝑧) = 𝜙𝑡(𝑓(𝑡𝑧)),

𝑧 ∈ 𝐵𝑅, 𝑓 ∈ 𝐻(𝐵𝑟), is unique.

Proof. The implication (ii)⇒(i) is proved in a standard way. We fix a strictly decreasing
sequence of numbers (𝑠𝑛)𝑛∈N, for which 𝑠𝑛 → 𝑟/𝑅. First of all, for 𝑓 ∈ 𝐻(𝐵𝑟), 𝑧 ∈ 𝐵𝑅

the function 𝜙𝑡(𝑓(𝑡𝑧)) is well-defined since there exists 𝑘 ∈ N, for which 𝑠𝑘|𝑧| < 𝑟 and then
𝑧𝐷𝑠𝑘 ⊂ 𝐵𝑟. Moreover, 𝜙𝑡(𝑓(𝑡𝑧)) is holomorphic at each point 𝑧 ∈ 𝐵𝑅. Indeed, we choose 𝑘 for
𝑧 as above. The identity

𝑓(𝑡(𝑧 + ℎ𝑒(𝑗)))− 𝑓(𝑡𝑧) =

1∫︁
0

(𝜕𝑗𝑓)(𝑡(𝑧 + 𝜉ℎ𝑒(𝑗)))ℎ𝑡𝑗𝑑𝜉, 𝑡 ∈ 𝐷𝑠𝑘 ,

ℎ ∈ C, |ℎ| < 𝑟 − 𝑠𝑘|𝑧|
𝑠𝑘

,

implies that there exists a uniform in 𝑡 ∈ 𝐷𝑠𝑘 limit

lim
ℎ→0

𝑓(𝑡(𝑧 + ℎ𝑒(𝑗)))− 𝑓(𝑡𝑧)

ℎ
,

which is equal to 𝑡𝑗(𝜕𝑗𝑓)(𝑡𝑧). This implies that the function 𝜙𝑡(𝑓(𝑡𝑧)) is differentiable (in the
complex sense) in each variable in 𝐵𝑅 and hence, it is holomorphic in 𝐵𝑅. By the closed graph
theorem, the linear operator 𝐴 is continuous from 𝐻(𝐵𝑟) into 𝐻(𝐵𝑅). Since 𝐴(𝑓𝛼) = 𝜙(𝑓𝛼)𝑓𝛼,
𝛼 ∈ N𝑁

0 , then 𝐴 is an operator of Hadamard type.
(i)⇒(ii): Let 𝐴(𝑓𝛼) = 𝑐𝛼𝑓𝛼, 𝑐𝛼 ∈ C, 𝛼 ∈ N𝑁

0 . We define a functional

𝜙(𝑓) :=
∑︁
𝛼∈N𝑁

0

𝑐𝛼
𝛼!

𝑓 (𝛼)(0), 𝑓 ∈ 𝐻(C𝑁). (2.1)

Let us prove that the series in (2.1) converges absolutely for each function 𝑓 ∈ 𝐻(C𝑁). Due
to the continuity of the operator 𝐴 from 𝐻(𝐵𝑟) into 𝐻(𝐵𝑅) there exist 𝑚 ∈ N and a constant
𝐶 > 0 such that

max
|𝑧|⩽𝑅1

|𝐴(𝑓)(𝑧)| ⩽ 𝐶 max
|𝑧|⩽𝑟𝑚

|𝑓(𝑧)|, 𝑓 ∈ 𝐻(𝐵𝑟).

For 𝑓 := 𝑓𝛼 we obtain:

|𝑐𝛼| max
|𝑧|⩽𝑅1

|𝑧𝛼| ⩽ 𝐶 max
|𝑧|⩽𝑟𝑚

|𝑧𝛼| ⩽ 𝐶𝑟|𝛼|𝑚 .
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This implies: |𝑐𝛼|
(︁

𝑅1√
𝑁

)︁|𝛼|
⩽ 𝐶𝑟

|𝛼|
𝑚 and

|𝑐𝛼| ⩽ 𝐶

(︃
𝑟𝑚

√
𝑁

𝑅1

)︃|𝛼|

, 𝛼 ∈ N𝑁
0 . (2.2)

If 𝑓 ∈ 𝐻(C𝑁), then

lim
|𝛼|→∞

(︀
|𝑓 (𝛼)(0)|/𝛼!

)︀1/|𝛼|
= 0,

and hence, series (2.1) converges absolutely. By the Banach-Steinhaus theorem, a linear func-
tional 𝜙 is continuous on 𝐻(C𝑁). It follows from (2.2) that the series

∑︀
𝛼∈C𝑁

𝑐𝛼𝑧
𝛼 converges

absolutely in some polydisk 𝐷𝜌, 𝜌 > 0.
We introduce an operator

𝑆(𝑓)(𝑧) = 𝜙𝑡(𝑓(𝑡𝑧)), 𝑧 ∈ C𝑁 , 𝑓 ∈ 𝐻(C𝑁).

If

𝑓(𝑧) =
∑︁
𝛼∈N𝑁

0

𝑎𝛼𝑧
𝛼, 𝑧 ∈ C𝑁 ,

then for each 𝑧 ∈ C𝑁 the series
∑︀

𝛼∈N𝑁
0

𝑎𝛼𝑡
𝛼𝑧𝛼 converges to 𝑓(𝑡𝑧)absolutely in 𝑡 in C𝑁 and

uniformly on each compact set in C𝑁 . This is why

𝜙𝑡(𝑓(𝑡𝑧)) =
∑︁
𝛼∈N𝑁

0

𝑎𝛼𝜙(𝑓𝛼)𝑧
𝛼

for each 𝑧 ∈ C𝑁 and hence, 𝑆(𝑓) ∈ 𝐻(C𝑁) for each function 𝑓 ∈ 𝐻(C𝑁). The operator 𝑆 is
linear and continuous in 𝐻(C𝑁) and coincides with 𝐴 on C[𝑧], and therefore, on 𝐻(C𝑁). Let
us show that the functional 𝜙 can be linearly and continuously continued on 𝐻(𝐷𝑟/𝑅). In order
to do this, in view of Lemma 2.1, we need to show that the function ̃︀𝜙 can be holomorphically
continued into 𝑈𝑅/𝑟.
There exists 𝑀 ⩾ 𝑟 such that 𝑆 can be uniquely continued to a continuous linear operator

from 𝐻(𝐵𝑀) into 𝐻(𝐵𝑅) (we denote it again by 𝑆), while 𝜙 can be continued to a continuous
linear functional on 𝐻(𝐷𝑀/𝑅). The continued operator coincides with 𝐴 on 𝐻(𝐵𝑀). By
Statement (i) of this theorem, the operator 𝑓 ↦→ 𝜙𝑡(𝑓(𝑡𝑧)) is linear and continuous from 𝐻(𝐵𝑀)
into 𝐻(𝐵𝑅) and it coincides with 𝑆 on C[𝑧]. Hence, 𝑆(𝑓)(𝑧) = 𝜙𝑡(𝑓(𝑡𝑧)), 𝑧 ∈ 𝐵𝑅, 𝑓 ∈ 𝐻(𝐵𝑀).
By Lemma 2.2, for each 𝑧 ∈ 𝐵𝑅 there exists 𝜌(𝑧) > 1/𝑟, for which the function 𝑐ℎ(𝐴)(𝑡, 𝑧) is
holomorphic in 𝑡 in 𝐵𝜌(𝑧). For each 𝑡 ∈ 𝐵1/𝑟 the function 𝑐ℎ(𝐴)(𝑡, 𝑧) is holomorphic in 𝐵𝑅 in
𝑧. For each 𝑧 ∈ 𝐵𝑅 there exists 𝛿(𝑧) ∈ (0, 1/𝑀) such that if |𝑡| < 𝛿(𝑧), then identities hold:

̃︀𝜙(𝑡𝑧) = 𝜙𝑢

(︂
1

1− ⟨𝑡𝑧, 𝑢⟩

)︂
= 𝜙𝑢

(︂
1

1− ⟨𝑡, 𝑢𝑧⟩

)︂
= ch(𝑆)(𝑡, 𝑧) = ch(𝐴)(𝑡, 𝑧).

Thus, for each 𝑧 ∈ 𝐵
(0)
𝑅 , the function ̃︀𝜙 can be holomorphically continued into a convex domain

𝑧𝐵𝜌(𝑧) containing the point 0. Due to the principle of holomorphic continuation [4, Ch. 1,
Sect. 6], ̃︀𝜙 can be holomorphically continued in

⋃︀
𝑧∈𝐵(0)

𝑅

𝑧𝐵𝜌(𝑧). Since
⋃︀

𝑧∈𝐵(0)
𝑅

𝑧𝐵𝜌(𝑧) contains the set

𝐵
(0)
𝑅 · 𝐵1/𝑟 = 𝑈𝑅/𝑟, see Remark 2.1, then ̃︀𝜙 is continued holomorphically in 𝑈𝑅/𝑟. This implies

Statement (ii).
Let 𝐴 ∈ ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)) and 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)

′ be a functional, for which

𝐴(𝑓)(𝑧) = 𝜙𝑡(𝑓(𝑡𝑧)), 𝑧 ∈ 𝐵𝑅, 𝑓 ∈ 𝐻(𝐵𝑟).
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Due to the identities 𝐴(𝑓𝛼) = 𝜙(𝑓𝛼)𝑓𝛼, 𝛼 ∈ N𝑁
0 , and the density of the set of all polynomials

in 𝐻(𝐵𝑟) such functional 𝜙 is unique.

Remark 2.2. (i) Let 𝜙 be a functional defined by the identity (2.1). Then there exists 𝜀 > 0

such that ̃︀𝜙(𝑧) = ∑︀
𝛼∈N𝑁

0

𝑐𝛼|𝛼|!
𝛼!

𝑧𝛼 if 𝑧 ∈ 𝐷𝜀; the series converges absolutely in 𝐷𝜀 and the function

̃︀𝜙 is holomorphic in 𝐷𝜀.
(ii) Let us independently separate a statement established in the proof of the previous the-

orem. Let 𝐴 ∈ ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)) and 𝐴(𝑓𝛼) = 𝑐𝛼𝑓𝛼, 𝛼 ∈ N𝑁
0 . Then the series

∑︀
𝛼∈N𝑁

0

𝑐𝛼𝑧
𝛼

converges absolutely in some polydisk 𝐷𝜌, 𝜌 > 0, and a holomorphic at 0 function
∑︀

𝛼∈N𝑁
0

𝑐𝛼
|𝛼|!
𝛼!
𝑧𝛼

is holomorphically continued into 𝑈𝑅/𝑟.

Let us interpret the previous results in terms of the Hadamard product of holomorphic
functions. By 𝐻0 we denote the space of the germs of all functions holomorphic at the point 0.
For functions

𝑏(𝑧) =
∑︁
𝛼∈N𝑁

0

𝑏𝛼𝑧
𝛼, 𝑐(𝑧) :=

∑︁
𝛼∈N𝑁

0

𝑐𝛼𝑧
𝛼

from 𝐻0 their Hadamard product is defined by the identity

(𝑏 * 𝑐)(𝑧) :=
∑︁
𝛼∈N𝑁

0

𝑏𝛼𝑐𝛼𝑧
𝛼.

If the series
∑︀

𝛼∈N𝑁
0

𝑏𝛼𝑧
𝛼 converges absolutely in the polydisk 𝐷𝑟, and the series

∑︀
𝛼∈N𝑁

0

𝑐𝛼𝑧
𝛼

converges absolutely in 𝐷𝜌, where 𝑟, 𝜌 > 0, then the series
∑︀

𝛼∈N𝑁
0

𝑏𝛼𝑐𝛼𝑧
𝛼 converges absolutely in

𝐷𝑟𝜌, and hence, the function 𝑏 * 𝑐 is holomorphic in 𝐷𝑟𝜌. It follows from the Cauchy integral
formula that if 𝑓𝑛 ∈ 𝐻(𝐷𝑟), 𝑛 ∈ N, and 𝑓𝑛 → 0 in 𝐻(𝐷𝑟), then for each 𝑐 ∈ 𝐻(𝐷𝜌) we also
have 𝑓𝑛 * 𝑐 → 0 in 𝐻(𝐷𝑟𝜌).

Corollary 2.1. Let 𝑟, 𝑅 ∈ (0,∞), a function 𝑐(𝑧) :=
∑︀

𝛼∈N𝑁
0

𝑐𝛼𝑧
𝛼 be holomorphic at the point

0 (the series converges absolutely in some polydisk 𝐷𝜀, 𝜀 > 0). The following statements are
equivalent:

(i) For each holomorphic in 𝐵𝑟 function 𝑏(𝑧) =
∑︀

𝛼∈N0

𝑏𝛼𝑧
𝛼 the Hadamard product 𝑏 * 𝑐 is

holomorphically continued into 𝐵𝑅.
(ii) The function

∑︀
𝛼∈N𝑁

0

𝑐𝛼|𝛼|!
𝛼!

𝑧𝛼 is holomorphically continued into 𝑈𝑅/𝑟.

Proof. (i)⇒(ii): Let 𝐴 be an operator mapping a function 𝑏 ∈ 𝐻(𝐵𝑟) into a holomorphic
continuation 𝑏* 𝑐 into 𝐵𝑅. Due to the uniqueness of the holomorphic continuation the operator
𝐴 is well-defined. It is clear that the operator 𝐴 from 𝐻(𝐵𝑟) into 𝐻(𝐵𝑅) is linear. Let us show
that the graph of 𝐴 is closed. Let 𝑓𝑛 ∈ 𝐻(𝐵𝑟), 𝑛 ∈ N, 𝑓𝑛 → 0 in 𝐻(𝐵𝑟) and 𝐴(𝑓𝑛) → 𝑔 in
𝐻(𝐵𝑅). There exists 𝜌 ∈ (0, 𝑅) such that 𝑓𝑛 * 𝑐 → 0 in 𝐻(𝐷𝜌). Hence, 𝑔 ≡ 0 on 𝐷𝜌 and this is
why 𝑔 ≡ 0 in 𝐵𝑅. By the theorem on closed graph, 𝐴 ∈ ℒ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)). Since 𝐴(𝑓𝛼) = 𝑐𝛼𝑓𝛼
for each 𝛼 ∈ N𝑁

0 , the operator 𝐴 is Hadamard. By Remark 2.2 statement (ii) holds.

(ii)⇒ (i): We observe that the series
∑︀

𝛼∈N𝑁
0

𝑐𝛼|𝛼|!
𝛼!

𝑧𝛼 converges absolutely in some polydisk 𝐷𝛿,

𝛿 > 0, and the function 𝑑(𝑧) =
∑︀

𝛼∈N𝑁
0

𝑐𝛼|𝛼|!
𝛼!

𝑧𝛼 is holomorphic in 𝐷𝛿. Let 𝑑 be holomorphically

continued into 𝑈𝑅/𝑟. By Lemma 2.1, the functional 𝜙 := Φ−1(𝑑) is linear and continuous on
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𝐻(𝐷𝑟/𝑅), while by Theorem 2.1 the operator 𝐴(𝑓)(𝑧) := 𝜙𝑡(𝑓(𝑡𝑧)) is linear and continuous
from 𝐻(𝐵𝜌) into 𝐻(𝐵(𝜌𝑅)/𝑟) for each 𝜌 > 0. We take a function 𝑏(𝑧) =

∑︀
𝛼∈N𝑁

0

𝑏𝛼𝑧
𝛼 holomorphic

in 𝐵𝑟. There exists 𝜌 ∈ (0, 𝑟), for which the latter series converges absolutely in the space
𝐻(𝐵𝜌). Treating the operator 𝐴 as that from 𝐻(𝐵𝜌) into 𝐻(𝐵(𝜌𝑅)/𝑟) (we denote it by 𝐴0), we
obtain that

𝐴0(𝑏)(𝑧) = 𝐴0

(︃∑︁
𝛼∈N0

𝑏𝛼𝑓𝛼

)︃
(𝑧) =

∑︁
𝛼∈N0

𝑏𝛼𝐴0(𝑓𝛼)𝑧
𝛼 = (𝑏 * 𝑐)(𝑧), 𝑧 ∈ 𝐵(𝜌𝑅)/𝑟.

A holomorphic in 𝐵𝑅 function 𝐴(𝑏) (now we treat 𝐴 as an operator from 𝐻(𝐵𝑟) into 𝐻(𝐵𝑅))
is a holomorphic continuation 𝑏 * 𝑐 into 𝐵𝑅.

2.2. On topological isomorphism. Let 𝑟, 𝑅 ∈ (0,∞). The symbol ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏
denotes the space ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅)) with the topology of uniform convergence on the family
ℬ(𝐻(𝐵𝑟)) of all bounded subsets in 𝐻(𝐵𝑟). The set of seminorms

𝑞𝑇,𝑛(𝐴) := sup
𝑓∈𝑇

max
|𝑧|⩽𝑅𝑛

|𝐴(𝑓)(𝑧)|, 𝑇 ∈ ℬ(𝐻(𝐵𝑟)), 𝑛 ∈ N,

is a fundamental system of continuous seminorms in ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏. We introduce the set
𝑇0 := {𝑝𝑢 |𝑢 ∈ 𝐵1/𝑟}. Since

sup
|𝑧|⩽𝑟𝑛

|𝑝𝑢(𝑧)| = sup
|𝑧|⩽𝑟𝑛

1

|1− ⟨𝑢, 𝑧⟩|
⩽

1

1− 𝑟𝑛/𝑟

for all 𝑢 ∈ 𝐵1/𝑟, 𝑛 ∈ N, the set 𝑇0 is bounded in 𝐻(𝐵𝑟).
Let (𝛿𝑛)𝑛∈N be a strictly increasing sequence of positive numbers such that 𝛿𝑛 → 𝑅/𝑟. The

sequence of norms max
𝑧∈𝑈𝛿𝑛

|𝑓(𝑧)|, 𝑛 ∈ N, defines the topology of the Fréchet space 𝐻(𝑈𝑅/𝑟). We

fix a strictly decreasing sequence of numbers (𝑠𝑛)𝑛∈N such that 𝑠𝑛 → 𝑟/𝑅 and we let

‖𝑓‖𝑛 := max
𝑧∈𝐷𝑠𝑛

|𝑓(𝑧)|, 𝑓 ∈ 𝐻𝑐(𝐷𝑠𝑛), 𝑛 ∈ N.

We also define
‖𝜙‖*𝑛 := sup

‖𝑓‖𝑛⩽1

|𝜙(𝑓)|, 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)
′, 𝑛 ∈ N.

A sequence (‖ · ‖*𝑛)𝑛∈N is a fundamental sequence of continuous seminorms in the Fréchet space

𝐻(𝐷𝑟/𝑅)
′
𝑏. For 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)

′ we let 𝐴𝜙(𝑓)(𝑧) := 𝜙𝑡(𝑓(𝑡𝑧)), 𝑧 ∈ 𝐵𝑅, 𝑓 ∈ 𝐻(𝐵𝑟).

Theorem 2.2. (i) The mapping 𝜒(𝜙) := 𝐴𝜙 is a linear topological isomorphism of 𝐻(𝐷𝑟/𝑅)
′
𝑏

onto ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏.
(ii) The space ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏 is linearly topologically isomorphic to 𝐻(𝑈𝑅/𝑟).

Proof. (i): By Theorem 2.1, the linear mapping 𝜒 is bijective. We fix a set 𝑇 ∈ ℬ(𝐻(𝐵𝑟)) and
𝑛 ∈ N. There exist 𝑘 ∈ N and 𝑚 ∈ N, for which 𝑅𝑛𝑠𝑘 ⩽ 𝑟𝑚, and therefore, 𝐵𝑅𝑛 · 𝐷𝑠𝑘 =
𝐵𝑅𝑛𝑠𝑘 ⊂ 𝐵𝑟𝑚 . Then for each 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)

′

𝑞𝑇,𝑛(𝐴𝜙) = sup
𝑓∈𝑇

max
|𝑧|⩽𝑅𝑛

|𝜙𝑡(𝑓(𝑡𝑧))| ⩽ ‖𝜙‖*𝑘 sup
𝑓∈𝑇

sup
|𝑧|⩽𝑅𝑛

max
𝑡∈𝐷𝑠𝑘

|𝑓(𝑡𝑧)| ⩽
(︂
sup
𝑓∈𝑇

max
|𝑢|⩽𝑟𝑚

|𝑓(𝑢)|
)︂
‖𝜙‖*𝑘.

This implies that 𝜒 : 𝐻(𝐷𝑟/𝑅)
′
𝑏 → ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏 is continuous.

Let us show that the mapping 𝜒−1 : ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏 → 𝐻(𝐷𝑟/𝑅)
′
𝑏 is continuous. We fix

𝑘 ∈ N. Since by Lemma 2.1 the Fantappiè transform Φ is a topological isomorphism 𝐻(𝐷𝑟/𝑅)
′
𝑏

onto 𝐻(𝑈𝑅/𝑟), then there exist 𝑚 ∈ N and a constant 𝐶 > 0, for which

‖𝜙‖*𝑘 ⩽ 𝐶 max
𝑣∈𝑈𝛿𝑚

|̃︀𝜙(𝑣)|, 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)
′.
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We choose 𝑛 ∈ N such that 𝛿𝑚 ⩽ 𝑅𝑛/𝑟. Since

𝑞𝑇0,𝑛(𝐴𝜙) = sup
|𝑢|⩽1/𝑟

max
|𝑧|⩽𝑅𝑛

⃒⃒⃒⃒
𝜙𝑡

(︂
1

1− ⟨𝑢, 𝑡𝑧⟩

)︂⃒⃒⃒⃒
= sup

|𝑢|⩽1/𝑟

max
|𝑧|⩽𝑅𝑛

⃒⃒⃒⃒
𝜙𝑡

(︂
1

1− ⟨𝑡, 𝑧𝑢⟩

)︂⃒⃒⃒⃒
= sup

|𝑢|⩽1/𝑟

max
|𝑧|⩽𝑅𝑛

|̃︀𝜙(𝑧𝑢)|
for each 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)

′ and 𝐵1/𝑟 ·𝐵𝑅𝑛 = 𝑈𝑅𝑛/𝑟 ⊃ 𝑈 𝛿𝑚 , then for each 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)
′

𝑞𝑇0,𝑛(𝐴𝜙) ⩾ max
𝑣∈𝑈𝛿𝑚

|̃︀𝜙(𝑣)|.
Hence, for each 𝜙 ∈ 𝐻(𝐷𝑟/𝑅)

′ the inequality holds

‖𝜙‖*𝑘 ⩽ 𝐶𝑞𝑇0,𝑛(𝐴𝜙).

Thus, the mapping 𝜒−1 : ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏 → 𝐻(𝐷𝑟/𝑅)
′
𝑏 is continuous.

(ii): A topological isomorphism of ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏 onto 𝐻(𝑈𝑅/𝑟) is the map Φ𝜒−1.

Since in the proof of the continuity of 𝜒−1 in the previous theorem it is sufficient to choose
one bounded in 𝐻(𝐵𝑟) set 𝑇0, we arrive at the corollary.

Corollary 2.2. The space ℒℎ(𝐻(𝐵𝑟), 𝐻(𝐵𝑅))𝑏 is a Fréchet space with a fundamental se-
quence of continuous prenorms 𝑞𝑇0,𝑛, 𝑛 ∈ N.
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