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ONE-DIMENSIONAL 𝐿𝑝-HARDY-TYPE INEQUALITIES FOR

SPECIAL WEIGHT FUNCTIONS AND THEIR APPLICATIONS

R.G. NASIBULLIN

Abstract. We establish one-dimensional 𝐿𝑝-Hardy inequalities with additional terms and
use them for justifying their multidimensional analogues in convex domains with finite
volumes. We obtain variational inequalities with power-law weights being generalizations
of the corresponding inequalities presented earlier in papers by M. Hoffmann-Ostenhof,
T. Hoffmann-Ostenhof, A. Laptev and J. Tidblom. We formulate and prove inequalities
valid for arbitrary domains, and then we simplify them substantially for the class of convex
domains. The constants in the additional terms in these spatial inequalities depend on
the volume or on the diameter of the domain. As a corollary of the obtained results we
get estimates for the first eigenvalue of the 𝑝-Laplacian subject to the Dirichlet boundary
conditions.
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1. Introduction

The present paper is devoted to the generalizations of a Hardy type inequality proved by
V.I. Levin in paper [1]. Namely, this is the following sharp inequality

1∫︁
0

𝑦2(𝑡)

𝑡2(2− 𝑡)2
𝑑𝑡 <

1∫︁
0

𝑦′2(𝑡) 𝑑𝑡, (1.1)

valid for each not identically zero absolutely continuous function 𝑦 such that 𝑦(0) = 0 and
𝑦′ ∈ 𝐿2[0, 1]. We are going to establish 𝐿𝑝-analogues of (1.1).
An interest to inequality (1.1) is due to the fact that it is a strengthening of the classical

Hardy inequality
1∫︁

0

𝑦2(𝑡)

𝑡2
𝑑𝑡 < 4

1∫︁
0

𝑦′2(𝑡)𝑑𝑡 (1.2)

on the unit segment for the same class of functions. The constant 1 in inequality (1.1) and
constant 4 in (1.2) are sharp but there exists no extremal function, on which these inequalities
become identities.
It should be noted that close to (1.1) inequalities are also employed to establish sufficient

conditions for the univalence of meromorphic in a circle functions in terms of an estimate
for the absolute value of the Schwartz derivative. At a first glance, it is rather complicated
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to understand how the Hardy inequalities for absolutely continuous functions are applied in
justifying the sufficient conditions for the univalence of analytic functions. It turns out that
there exists a relation, see [2]–[5], of the univalence of the function with a non-oscillating of a
solution to special differential equations, which is close to Hardy type inequalities.
We can easily transform the weight function 𝑡−2(2− 𝑡)−2 and rewrite (1.1) as

1∫︁
0

𝑦2(𝑡)

𝑡2
𝑑𝑡+ 2

1∫︁
0

𝑦2(𝑡)

𝑡(2− 𝑡)
𝑑𝑡+

1∫︁
0

𝑦2(𝑡)

(2− 𝑡)2
< 4

1∫︁
0

𝑦′2(𝑡)𝑑𝑡, (1.1′)

which clearly shows how inequality (1.2) is strengthened: by means of additional terms. In
recent decades, plenty of works were published devoted to inequalities with additional terms,
see, for instance [6]–[24], but in the literature, and even in paper [1], this results by V.I. Levin is
almost not mentioned as a strengthening of the Hardy inequality by means of additional terms.
An analogue of inequality (1.1′) on the segment [0, 2𝑏] for absolutely continuous functions

such that 𝑦(0) = 𝑦(2𝑏) = 0 is rather interesting by its form and meaning. Namely, this is the
inequality

2𝑏∫︁
0

𝑦2(𝑡)

𝜌2(𝑡)
𝑑𝑡+ 2

2𝑏∫︁
0

𝑦2(𝑡)

𝜌(𝑡)𝜇(𝑡)
𝑑𝑡+

2𝑏∫︁
0

𝑦2(𝑡)

𝜇2(𝑡)
< 4

2𝑏∫︁
0

𝑦′2(𝑡)𝑑𝑡, (1.1′′)

where 𝜌(𝑡) = min{𝑡, 2𝑏− 𝑡} and 𝜇(𝑡) = 2𝑏− 𝜌(𝑡). A weaker version of (1.1′′)

2𝑏∫︁
0

𝑦2(𝑡)

𝜌2(𝑡)
𝑑𝑡+

2𝑏∫︁
0

𝑦2(𝑡)

𝜌(𝑡)𝜇(𝑡)
𝑑𝑡 ⩽ 4

2𝑏∫︁
0

𝑦′2(𝑡)𝑑𝑡 (1.3)

was implicitly employed by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev in paper
[13] for proving the following multidimensional inequality

1

4

∫︁
Ω

|𝑔(𝑥)|2

𝛿(𝑥)2
𝑑𝑥+

1

4

𝐾(𝑛)

|Ω|2/𝑛

∫︁
Ω

|𝑔(𝑥)|2𝑑𝑥 ⩽
∫︁
Ω

|∇𝑔(𝑥)|2𝑑𝑥, (1.4)

valid for all 𝑔 from a known family of continuously differentiable functions 𝐶1
0(Ω) with compact

supports in an open convex domain Ω ⊂ R𝑛 with a finite volume |Ω|, where |S𝑛−1| is the area
𝑛− 1-dimensional unit sphere and

𝐾(𝑛) = 𝑛

[︂
|S𝑛−1|
𝑛

]︂2/𝑛
.

Multidimensional inequality (1.4) has a series of differences from the one-dimensional case:
the integration is made over an 𝑛-dimensional domain Ω of the Euclidean space R𝑛, the powers
𝑡 are replaced by the powers of the function 𝛿(𝑥), which the distance from the point 𝑥 ∈ Ω to
the boundary 𝜕Ω of the domain Ω, that is,

𝛿(𝑥) = dist(𝑥, 𝜕Ω),

while the derivative of the function is replaced by its gradient

∇𝑔(𝑥) =

(︂
𝜕𝑔(𝑥)

𝜕𝑥1

, . . . ,
𝜕𝑔(𝑥)

𝜕𝑥𝑛

)︂
.

It is clear that if we succeed to strengthen inequality (1.1′′), then employing an approach from
paper [13] (see also [23], [24]), we can obtain inequalities of type (1.4) with sharper constants.
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In paper [11] H. Brezis and M. Marcus showed that if Ω ⊂ R𝑛 is a bounded domain with a
finite diameter 𝐷(Ω), then for each function 𝑔 ∈ 𝐶1

0(Ω) the inequality holds:

1

4

∫︁
Ω

|𝑔(𝑥)|2

𝛿(𝑥)2
𝑑𝑥+

1

4𝐷2(Ω)

∫︁
Ω

|𝑔(𝑥)|2𝑑𝑥 ⩽
∫︁
Ω

|∇𝑔(𝑥)|2𝑑𝑥 (1.5)

We also mention a result by F.G. Avkhadiev and K.-J. Wirths from paper [6]. They proved
that for all continuously differentiable functions 𝑔 with compact supports in a convex domain
Ω with a finite inner radius 𝛿0(Ω) a sharp inequality

𝑠2 − 𝜈2𝑞2

4

∫︁
Ω

|𝑔(𝑥)|2

𝛿(𝑥)𝑠+1
𝑑𝑥+

𝑞2𝜆2

4𝛿𝑞0(Ω)

∫︁
Ω

𝑔2(𝑥)

𝛿(𝑥)𝑠+1−𝑞
𝑑𝑥 ⩽

∫︁
Ω

|∇𝑔(𝑥)|2

𝛿(𝑥)𝑠−1
𝑑𝑥 (1.6)

holds, where 𝑠 > 0, 𝑞 > 0, 𝜈 ∈
[︁
0, 𝑠

𝑞

]︁
and a constant 𝜆 is a solution to the following Lamb type

equation for the Bessel function 𝐽𝜈 of order 𝜈:

𝑠𝐽𝜈(𝜆) + 𝑞𝜆𝐽 ′
𝜈(𝜆) = 0.

The constants (𝑠2 − 𝜈2𝑞2)/4 and 𝑞2𝜆2/4 in this inequality are sharp. We just mention that as
𝜈 > 0 there exists an extremal function, on which the identity is attained, while for 𝜈 = 0
F.G. Avkhadiev and K.-J. Wirts constructed a minimizing sequence, by which they showed the
sharpness and unattainability of the constant.
Following papers [6]–[8], we call the quantity 𝜆 a Lamb constant, see also [16]–[18]. Let us

clarify the name “Lamb constant” and “Lamb equation”. The matter is that a particular case
of this equation was first considered by H. Lamb in paper [26]. Later it was developed and
called in this way by F.G. Avkhadiev and K.-J. Wirts in paper [6]. This is the reason why we
call general equations of such form parametric Lamb equations, while its roots are called Lamb
constants.
A problem on adding an additional term in the Hardy inequality is related with classical

estimates for the first eigenvalue 𝜆1(Ω) for the Dirichlet Laplacian and the following Poincaré
inequality:

𝜆1(Ω)

∫︁
Ω

|𝑔(𝑥)|2𝑑𝑥 ⩽
∫︁
Ω

|∇𝑔(𝑥)|2𝑑𝑥 ∀𝑔 ∈ 𝐶1
0(Ω).

Poincaré estimate 𝜆1(Ω) > 𝜋2/𝐷2(Ω) and a famous isoperimetric Rayleigh-Faber-Crane in-
equality are well known:

𝜆1(Ω) >
𝜔2/𝑛

|Ω|2/𝑛
𝑗2𝑛/2−1,

where 𝑗𝜈 is the first zero of the Bessel function 𝐽𝜈 of order 𝜈, see [28].
As a corollary of this result by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev,

the first eigenvalue 𝜆1(Ω) of the Laplacian in the case of convex domains with a fixed volume
can be estimated as follows:

𝜆1(Ω) ⩾
1

4

𝐾(𝑛)

|Ω|2/𝑛
.

In the present paper we improve the constant in the previous estimate more than in three times.
Namely, we obtain that

𝜆1(Ω) ⩾
5𝜆2

1𝐾(𝑛)

8|Ω|2/𝑛
,

where 𝜆1 ≈ 1.25578.



100 R.G. NASIBULLIN

Avkhadiev-Wirths inequality (1.6) in the case of 𝑛-dimensional convex domain is a second
way of proving well-known estimates for the first eigenvalue 𝜆1(Ω) of the Laplacian, see [27]:

𝜆1(Ω) ⩾
𝜋2

4𝛿20(Ω)
⩾

𝜋2

𝐷2(Ω)
.

In paper [22] J. Tidblom established 𝐿𝑝-analoigues of the results by M. Hoffmann-Ostenhof,
T. Hoffmann-Ostenhof, A. Laptev. For each function 𝑔 in an appropriate Sobolev space as
𝑝 > 1 the following inequality was proved in a convex domain Ω(︂

𝑝− 1

𝑝

)︂𝑝 ∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑝(𝑥)
𝑑𝑥+

𝑎(𝑝, 𝑛)

|Ω|𝑝/𝑛

∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥 ⩽
∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥, (1.7)

where

𝑎(𝑝, 𝑛) =
(𝑝− 1)𝑝+1

𝑝𝑝

(︂
|S𝑛−1|
𝑛

)︂𝑝/𝑛 √
𝜋Γ
(︀
𝑛+𝑝
2

)︀
Γ
(︀
𝑝+1
2

)︀
Γ
(︀
𝑛
2

)︀ .
The symbol Γ denotes the Euler Gamma function. In particular, as 𝑝 = 2, J. Tidblom has the
constant from inequality (1.4):

𝑎(2, 𝑛) =
1

4

𝐾(𝑛)

|Ω|2/𝑛
.

It was shown in work [12] by S. Filippas, V.G. Maz’ya, A. Tertikas that in convex domain
Ω ⊂ R𝑛 as 1 < 𝑝 < 𝑛 and 𝑝 ⩽ 𝑞 < 𝑛𝑝

𝑛−𝑝
, a sharp constant 𝐶(Ω) in 𝐿𝑝-inequality(︂

𝑝− 1

𝑝

)︂𝑝 ∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑝(𝑥)
𝑑𝑥+ 𝐶(Ω)

⎛⎝∫︁
Ω

|𝑔(𝑥)|𝑞𝑑𝑥

⎞⎠𝑝/𝑞

⩽
∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥

can be estimated from two sides by the inner radius as follows:

𝑐1(𝑝, 𝑞, 𝑛)(𝛿0(Ω))
𝑛−𝑝−𝑛𝑝

𝑞 ⩾ 𝐶(Ω) ⩾ 𝑐2(𝑝, 𝑞, 𝑛)(𝛿0(Ω))
𝑛−𝑝−𝑛𝑝

𝑞 ,

where 𝑐1(𝑝, 𝑞, 𝑛) and 𝑐2(𝑝, 𝑞, 𝑛) are some constants, the existence of which was justified.
Similar to the 𝐿2-case, the problem on adding an additional term in 𝐿𝑝-inequality is related

with estimates for the first eigenvalue 𝜆𝑝(Ω) for the Dirichlet 𝑝-Laplacian and with the following
Poincaré inequality:

𝜆𝑝(Ω)

∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥 ⩽
∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥 ∀𝑔 ∈ 𝐶1
0(Ω).

As a corollary of the result by J. Tidblom we obtain

𝜆𝑝(Ω) ⩾
(𝑝− 1)𝑝+1

𝑝𝑝

(︂
|S𝑛−1|
𝑛

)︂𝑝/𝑛 √
𝜋Γ
(︀
𝑛+𝑝
2

)︀
Γ
(︀
𝑝+1
2

)︀
Γ
(︀
𝑛
2

)︀ 1

|Ω|𝑝/𝑛
.

It is interesting to the compare the results of this paper with inequalities from [20], [23]
and [24]. For instance, in paper [24] there were obtained a generalization and strengthening of
inequality (1.7), but as a corollary the authors obtain the same constant 𝑎(𝑝, 𝑛) in the additional
term. In paper [20] the constant 𝑎(𝑝, 𝑛) is strengthened as 𝑝 ⩾ 2. As a corollary of our main
results in the case 𝑝 ∈ [2, 𝑝0] with 𝑝0 ≈ 2.314, we obtain sharper estimates for 𝜆𝑝(Ω). Namely,
we show that

𝜆𝑝(Ω) ⩾
7𝑝𝜆2

1

8(𝑝− 1)2
(𝑝− 1)𝑝

𝑝𝑝

(︂
|S𝑛−1|
𝑛

)︂𝑝/𝑛 √
𝜋Γ
(︀
𝑛+𝑝
2

)︀
Γ
(︀
𝑝+1
2

)︀
Γ
(︀
𝑛
2

)︀ 1

|Ω|𝑝/𝑛
,

where 𝜆1 is a first positive root of Lamb type equation

(𝑝− 1)𝐽0 (𝜆1)− 2𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).
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Thus, in the present paper we establish 𝐿𝑝-versions of (1.1) and apply them for justifying
spatial inequalities of form (1.4), (1.5) and (1.7) with better constants in the additional terms.
As a corollary of the multidimensional inequalities we obtain estimates for the first eigenvalue
𝜆𝑝(Ω) of the Dirichlet 𝑝-Laplacian.

2. Lamb equation and Lamb constant

In this section we provide needed preliminary facts. They mostly concern the properties of
two special functions.

2.1. First function. Suppose that 𝑞 ∈ (0,∞), 𝑠 ∈ (0,∞) and 𝜈 ⩾ 0. We consider a function
𝐹𝜈,𝑠,𝑞 introduced as follows:

𝐹𝜈,𝑠,𝑞(𝑡) = 𝑡
𝑠
2

√︀
(2− 𝑡)𝐽𝜈

(︃
𝜆

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

)︃
, 𝑡 ∈ [0, 1],

where the constant 𝜆 is a first positive solution of Lamb type equation

(𝑠− 1)𝐽𝜈 (𝜆) + 2𝑞𝜆𝐽 ′
𝜈 (𝜆) = 0, 𝜆 ∈ (0, 𝑗𝜈), (2.1)

for the Bessel function 𝐽𝜈 of order 𝜈. We recall that the Bessel function can be defined by a
converging series

𝐽𝜈(𝑡) =
∞∑︁
𝑘=0

(−1)𝑘𝑡2𝑘+𝜈

22𝑘+𝜈𝑘!Γ(𝑘 + 1 + 𝜈)
.

Hereinafter byh 𝑗𝜈 we denote the first positive root of the Bessel function 𝐽𝜈 . A detailed infor-
mation on the properties of the Bessel functions and its zeroes can be found in the monograph
by G.N. Watson [25].
We mention just some properties of this function, which we shall use in what follows. For

instance, it is known that
a) 𝑢(𝑡) = 𝐽𝜈(𝑡) is a canonical solution of the Bessel differential equation:

𝑡2𝑢′′(𝑡) + 𝑡𝑢′(𝑡) +
(︀
𝑡2 − 𝜈2

)︀
𝑢(𝑡) = 0;

b) for sufficiently small 𝑡, the following asymptotic formula holds:

𝐽𝜈(𝑡) →
1

Γ(𝜈 + 1)

(︂
𝑡

2

)︂𝜈

.

We proceed to some properties of the function 𝐹𝜈,𝑠,𝑞. In view of the definition of the Bessel
function, we have 𝐹𝜈,𝑠,𝑞(𝑡) > 0 for sufficiently small 𝑡 and

𝜆

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

∈ (0, 𝑗𝜈)

for 𝑡 ∈ (0, 1]. This is why 𝐹𝜈,𝑠,𝑞(𝑡) is strictly positive also for 𝑡 ∈ (0, 1].
Straightforward calculations give the following expression for the derivative of this function:

𝑡1−
𝑠
2𝐹 ′

𝜈,𝑠,𝑞(𝑡) =
𝑠(2− 𝑡)− 𝑡

2
√
2− 𝑡

𝐽𝜈

(︃
𝜆

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

)︃
+ 𝑞𝜆

𝑡
𝑞
2

(2− 𝑡)
1
2
+ 𝑞

2

𝐽 ′
𝜈

(︃
𝜆

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

)︃
.

For the convenience we rewrite this identity in a more compact form:

𝑣(𝑡)𝐹 ′
𝜈,𝑠,𝑞(𝑡) = 𝑤(𝑡)𝐽𝜈 (𝑧(𝑡)) + 2𝑧(𝑡)𝐽 ′

𝜈 (𝑧(𝑡)) ,

where

𝑣(𝑡) =
2𝑡1−

𝑠
2

√
2− 𝑡

𝑞
, 𝑤(𝑡) = −𝑠+ 1

𝑞
𝑡+

2𝑠

𝑞
and 𝑧(𝑡) = 𝜆

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

.
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For each fixed 𝑡 ∈ (0, 1] we consider a Lamb type equation

𝑤(𝑡)𝐽𝜈 (𝑧(𝑡)) + 2𝑧(𝑡)𝐽 ′
𝜈 (𝑧(𝑡)) = 0.

In paper [6] F.G. Avkhadiev and K.-J. Wirths showed that the solution 𝑧(𝑡) of this equation
increases monotonically as 𝑤(𝑡) increases and 𝑧(𝑡) < 𝑗𝜈 . Since the function 𝑤(𝑡) is decreasing,
we obtain that the solution 𝑧(1) = 𝜆 of the equation

𝑤(1)𝐽𝜈 (𝑧(1)) + 2𝑧(1)𝐽 ′
𝜈 (𝑧(1)) = 0

is minimal and lies in the interval (0, 𝑗𝜈). This fact will be employed essentially in what follows.
For instance, this implies that 𝐹 ′

𝜈,𝑠,𝑞(𝑡) > 0 as 𝑡 ∈ (0, 1) and 𝐹 ′
𝜈,𝑠,𝑞(1) = 0.

Indeed, we have 𝐹 ′
𝜈,𝑠,𝑞(𝑡) > 0 for sufficiently small 𝑡. If we suppose the opposite, that

𝐹 ′
𝜈,𝑠,𝑞(𝑡) ⩽ 0 for some 𝑡, then there exists a point 𝑡0 ∈ (0, 1), for which 𝐹 ′

𝜈,𝑠,𝑞(𝑡0) = 0, i.e., there
exists a solution 𝑧(𝑡0) < 𝑧(1) = 𝜆 of the equation

𝑤(𝑡0)𝐽𝜈 (𝑧(𝑡0)) + 2𝑧(𝑡0)𝐽
′
𝜈 (𝑧(𝑡0)) = 0.

This contradicts the minimality of 𝜆.
Employing a formula relating the Bessel function with its derivative, see, for instance, [25],

𝐽 ′
𝜈(𝑧) = 𝐽𝜈−1(𝑧)−

𝜈

𝑧
𝐽𝜈(𝑧),

we obtain:

𝐹 ′
𝜈,𝑠,𝑞(𝑡)

𝐹𝜈,𝑠,𝑞(𝑡)
=
𝑠(2− 𝑡)− 𝑡

2𝑡(2− 𝑡)
+ 𝑞𝜆

𝑡
𝑞
2
−1

(2− 𝑡)1+
𝑞
2

𝐽 ′
𝜈

(︁
𝜆
(︀

𝑡
2−𝑡

)︀ 𝑞
2

)︁
𝐽𝜈

(︁
𝜆
(︀

𝑡
2−𝑡

)︀ 𝑞
2

)︁
=
𝑠(2− 𝑡)− 𝑡

2𝑡(2− 𝑡)
− 𝑞𝜈

2− 𝑡

𝑡
+ 𝑞𝜆

𝑡
𝑞
2
−1

(2− 𝑡)1+
𝑞
2

𝐽𝜈−1

(︁
𝜆
(︀

𝑡
2−𝑡

)︀ 𝑞
2

)︁
𝐽𝜈

(︁
𝜆
(︀

𝑡
2−𝑡

)︀ 𝑞
2

)︁ .

Therefore, Lamb equation (2.1) can be rewritten as follows:

(𝑠− 2𝜈𝑞 − 1)𝐽𝜈(𝜆) + 2𝑞𝜆𝐽𝜈−1(𝜆) = 0, 𝜆 ∈ (0, 𝑗𝜈).

Applying property a) of the Bessel function, we also have an identity for the second derivative
of the function 𝐹𝜈,𝑠,𝑞:

𝐹 ′′
𝜈,𝑠,𝑞(𝑡)

𝐹𝜈,𝑠,𝑞(𝑡)
+ (1− 𝑠)

𝐹 ′
𝜈,𝑠,𝑞(𝑡)

𝑡𝐹𝜈,𝑠,𝑞(𝑡)
= −𝑠2 − 𝜈2𝑞2

𝑡2
− (1− 𝜈2𝑞2)

4− 𝑡

𝑡(2− 𝑡)2
− 4𝜆2𝑞2

(2− 𝑡)2+𝑞
. (2.2)

Finally, employing the expansion of the Bessel into a series, we obtain:

lim
𝑡→0

𝑡𝐹 ′
𝜈,𝑠,𝑞(𝑡)

𝐹𝜈,𝑠,𝑞(𝑡)
=

𝑠+ 𝜈𝑞

2
, (2.3)

see also [6]–[8] for more details.

2.2. Second function. Now assume that 𝑞 ∈ (0,∞) and 𝑠 ∈ (0,∞). We shall also need a
function Φ𝑠,𝑞 defined as follows:

Φ𝑠,𝑞(𝑡) = 𝑡
𝑠
2𝐽0

(︃
𝜆1

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

)︃
, 𝑡 ∈ [0, 1],

where a constant 𝜆1 is a first positive solution of the equation

𝑠𝐽0(𝜆1)− 2𝑞𝜆𝐽1(𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).
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Straightforward calculation give:

2(2− 𝑡)𝑡1−
𝑠
2Φ′

𝑠,𝑞(𝑡) = 𝑠(2− 𝑡)𝐽0

(︃
𝜆1

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

)︃
− 2𝑞𝜆1

𝑡
𝑞
2

(2− 𝑡)
𝑞
2

𝐽1

(︃
𝜆1

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

)︃
.

Here we have employed that 𝐽 ′
0(𝑧) = −𝐽1(𝑧). We rewrite the latter identity as follows:

𝑣(𝑡)Φ′
𝑠,𝑞(𝑡) = 𝑤(𝑡)𝐽0 (𝑧(𝑡))− 2𝑧(𝑡)𝐽1 (𝑧(𝑡)) ,

where

𝑣(𝑡) =
2

𝑞
(2− 𝑡)𝑡1−

𝑠
2 , 𝑤(𝑡) = −𝑠

𝑞
𝑡+

2𝑠

𝑞
, 𝑧(𝑡) = 𝜆1

(︂
𝑡

2− 𝑡

)︂ 𝑞
2

.

For each fixed 𝑡 ∈ (0, 1] we consider the equation

𝑤(𝑡)𝐽0 (𝑧(𝑡))− 2𝑧(𝑡)𝐽1 (𝑧(𝑡)) = 0.

By analogy with the function 𝐹𝜈,𝑠,𝑞, since the function 𝑤(𝑡) is decreasing, we obtain that the
solution 𝜆1 = 𝑧(1) of the equation

𝑤(1)𝐽0 (𝑧(1))− 2𝑧(1)𝐽1 (𝑧(1)) = 0

is minimal.
It is clear that Φ𝑠,𝑞(0) = 0, Φ𝑠,𝑞(𝑡) > 0 and Φ′

𝑠,𝑞(𝑡) > 0 for sufficiently small 𝑡. Employing the
definition of the Lamb constant 𝜆1, we have

Φ′
𝑠,𝑞(1) = 0, Φ𝑠,𝑞(𝑡) > 0 as 𝑡 ∈ (0, 1], Φ′

𝑠,𝑞(𝑡) > 0 as 𝑡 ∈ (0, 1).

It should be also noted that applying property a) of the Bessel function, we can obtain the
following identity

Φ′′
𝑠,𝑞(𝑡)

Φ𝑠,𝑞(𝑡)
+ (1− 𝑠)

Φ′
𝑠,𝑞(𝑡)

𝑡Φ𝑠,𝑞(𝑡)
= − 𝑠2

4𝑡2
− 𝜆2

1𝑞
2

𝑡2−𝑞(2− 𝑡)2+𝑞
− 𝜆1𝑞

𝑡−1+𝑞/2

(2− 𝑡)2+𝑞/2

𝐽1

(︁
𝜆1

(︀
𝑡

2−𝑡

)︀ 𝑞
2

)︁
𝐽0

(︁
𝜆1

(︀
𝑡

2−𝑡

)︀ 𝑞
2

)︁ ,
in which, as we shall show, an increasing as 𝑧 ∈ [0, 2] function 𝐽1(𝑧)/(𝑧𝐽0(𝑧)) is involved.
The following statement holds true.

Lemma 2.1. A continuous function ℎ(𝑡) = 𝐽1(𝑡)
𝑡𝐽0(𝑡)

is increasing as 𝑡 ∈ [0, 2] and

inf
𝑡∈[0,2]

ℎ(𝑡) =
1

2
.

Proof. Let us show that ℎ′(𝑡) ⩾ 0 as 𝑡 ∈ [0, 2]. Employing the following known identities for
the Bessel function and its derivative, see, for instance, [25],

𝐽 ′
0(𝑡) = −𝐽1(𝑡), 𝑡𝐽 ′

1(𝑡)− 𝐽1(𝑡) = −𝑡𝐽2(𝑡),

𝐽2
1 (𝑡)− 𝐽0(𝑡)𝐽2(𝑡) =

4

𝑡2

∞∑︁
𝑗=0

(2 + 2𝑗)𝐽2
2+2𝑗(𝑡),

we get

ℎ′(𝑡) =
𝑡𝐽 ′

1(𝑡)𝐽0(𝑡)− 𝐽1(𝑡)𝐽0(𝑡)− 𝑡𝐽 ′
0(𝑡)𝐽1(𝑡)

𝑡2𝐽2
0 (𝑡)

=
𝐽0(𝑡) (𝑡𝐽

′
1(𝑡)− 𝐽1(𝑡)) + 𝑡𝐽2

1 (𝑡)

𝑡2𝐽2
0 (𝑡)

=
𝐽2
1 (𝑡)− 𝐽0(𝑡)𝐽2(𝑡)

𝑡𝐽2
0 (𝑡)

=
4

𝑡3

∞∑︁
𝑗=0

(2 + 2𝑗)𝐽2
2+2𝑗(𝑡) ⩾ 0.

Therefore, the function ℎ(𝑡) is increasing and taking into consideration property b), we find:

inf
𝑡∈[0,2]

ℎ(𝑡) = lim
𝑡→0

ℎ(𝑡) =
1

2
.
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In view of this lemma we obtain:

Φ′′
𝑠,𝑞(𝑡)

Φ𝑠,𝑞(𝑡)
+ (1− 𝑠)

Φ′
𝑠,𝑞(𝑡)

𝑡Φ𝑠,𝑞(𝑡)
⩽ − 𝑠2

4𝑡2
− 𝜆2

1𝑞
2

𝑡2−𝑞(2− 𝑡)2+𝑞
− 𝜆2

1𝑞

2

𝑡𝑞−1

(2− 𝑡)2+𝑞
.

Employing also the expansion of the Bessel function into a series, we have

lim
𝑡→0

𝑡Φ′
𝑠,𝑞(𝑡)

Φ𝑠,𝑞(𝑡)
=

𝑠

2
.

3. One-dimensional inequalities

In this section we obtain one-dimensional inequalities on the unit segment [0, 1] and on a
segment of form [0, 2𝑏]. We shall essentially employ the properties of the functions defined in
the previous section.
The following statement holds.

Lemma 3.1. Let 𝑝 ⩾ 2, 𝑠 > 0, 𝑞 ∈ (0,+∞), 𝜈 ∈ [0, 𝑠/𝑞] and an absolutely continuous on

the segment [0, 1] function 𝑦 be such that 𝑦(0) = 0,

|𝑦′(𝑡)|𝑡(𝑝+1−𝑠)/𝑝 ∈ 𝐿𝑝[0, 1].

Then the inequality holds:

𝑝𝑝

(𝑠2 − 𝜈2𝑞2)𝑝/2

1∫︁
0

|𝑦′(𝑡)|𝑝

𝑡𝑠−𝑝+1
𝑑𝑡 ⩾

1∫︁
0

|𝑦(𝑡)|𝑝

𝑡𝑠+1

(︂
1 +

1− 𝜈2𝑞2

𝑠2 − 𝜈2𝑞2
𝑝

2

(4− 𝑡)𝑡

(2− 𝑡)2
+

2𝑝𝜆2𝑞2

𝑠2 − 𝜈2𝑞2
𝑡𝑞

(2− 𝑡)2+𝑞

)︂
𝑑𝑡,

where 𝜆 is the first positive root of the equation

−1− 2𝜈𝑞 + 𝑠+ 2𝑞𝑧
𝐽𝜈−1(𝑧)

𝐽𝜈(𝑧)
= 0.

Proof. Without loss of generality we can assume that 𝑦 is a positive non-decreasing function.
Indeed, if 𝑔 is an arbitrary absolutely continuous function such that 𝑔(0) = 0 and

𝑦(𝑡) =

∫︁ 𝑡

0

|𝑔′(𝜏)|𝑑𝜏

and the identity holds:
𝑏∫︁

𝑎

𝑦𝑝(𝑡)𝑤(𝑡)𝑑𝑡 ⩽ 𝐶1

𝑏∫︁
𝑎

𝑦′𝑝(𝑡)𝑣(𝑡)𝑑𝑡

with some constant 𝐶1 and weight functions 𝑤 and 𝑣, then due to the identity

|𝑔(𝑡)| ⩽
∫︁ 𝑡

0

|𝑔′(𝜏)|𝑑𝑡 = 𝑦(𝑡), 𝑦′(𝑡) = |𝑔′(𝑡)|,

we have an inequality for an arbitrary case:

𝑏∫︁
𝑎

|𝑔(𝑡)|𝑝𝑤(𝑡)𝑑𝑡 ⩽
𝑏∫︁

𝑎

𝑦𝑝(𝑡)𝑤(𝑡)𝑑𝑡 ⩽ 𝐶1

𝑏∫︁
𝑎

𝑦′𝑝(𝑡)𝑣(𝑡)𝑑𝑡 = 𝐶1

𝑏∫︁
𝑎

|𝑔′(𝑡)|𝑝𝑣(𝑡)𝑑𝑡.
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It is easy to show that

0 ⩽ 𝑃 :=

1∫︁
0

𝑦𝑝−2(𝑡)

𝑡𝑠−1

(︂
𝑦′(𝑥)− 2

𝑝

𝐹 ′
𝜈,𝑠,𝑞(𝑡)

𝐹𝜈,𝑠,𝑞(𝑡)
𝑦(𝑡)

)︂2

𝑑𝑡

=

1∫︁
0

𝑦𝑝−2(𝑡)𝑦′2(𝑦)

𝑦𝑠−1
𝑑𝑡− 4

𝑝2

1∫︁
0

𝐹 ′
𝜈,𝑠,𝑞(𝑡)

𝐹𝜈,𝑠,𝑞(𝑡)𝑡𝑠−1
𝑑𝑦𝑝(𝑡) +

4

𝑝2

1∫︁
0

𝑦𝑝(𝑡)

𝑡𝑠−1

𝐹 ′2
𝜈,𝑠,𝑞(𝑡)

𝐹 2
𝜈,𝑠,𝑞(𝑡)

𝑑𝑡.

Integrating by parts, we obtain:

𝑃 =

1∫︁
0

𝑦𝑝−2(𝑡)𝑦′2(𝑡)

𝑡𝑠−1
𝑑𝑡− 𝑦𝑝(1)

𝐹 ′
𝜈,𝑠,𝑞(1)

𝐹𝜈,𝑠,𝑞(1)
+ lim

𝑡→0

𝑦𝑝(𝑡)

𝑡𝑠−1

𝐹 ′
𝜈,𝑠,𝑞(𝑡)

𝐹𝜈,𝑠,𝑞(𝑡)

+
4

𝑝2

1∫︁
0

𝑦𝑝(𝑡)

𝑡𝑠−1

(︂
𝐹 ′′
𝜈,𝑠,𝑞(𝑡)

𝐹𝜈,𝑠,𝑞(𝑡)
+ (1− 𝑠)

𝐹 ′
𝜈,𝑠,𝑞(𝑡)

𝑡𝐹𝜈,𝑠,𝑞(𝑡)

)︂
𝑑𝑡.

Employing the definition of the constant 𝜆, we find:

𝑦𝑝(1)
𝐹 ′
𝜈,𝑠,𝑞(1)

𝐹𝜈,𝑠,𝑞(1)
=

𝑦𝑝(1)

2

(︂
−1− 2𝜈𝑞 + 𝑠+ 2𝑞𝜆

𝐽𝑛−1(𝜆)

𝐽𝑛(𝜆)

)︂
= 0.

For each absolutely continuous function 𝑦 : [0, 1] → R such that 𝑦(0) = 0 and

|𝑦′(𝑡)|𝑡(𝑝−𝑠−1)/𝑝 ∈ 𝐿𝑝[0, 1]

by applying the Hölder inequality we obtain:

|𝑦(𝑡)|𝑝 ⩽

⎛⎝ 𝑡∫︁
0

|𝑦′(𝜏)|𝑑𝜏

⎞⎠𝑝

⩽

⎛⎝ 𝑡∫︁
0

𝜏
𝑠−𝑝+1
𝑝−1 𝑑𝜏

⎞⎠𝑝−1 𝑡∫︁
0

|𝑦′(𝜏)|𝑝

𝜏 𝑠−𝑝+1
𝑑𝜏 =

(︂
𝑝− 1

𝑠

)︂𝑝−1

𝑡𝑠
𝑡∫︁

0

|𝑦′(𝜏)|𝑝

𝜏 𝑠−𝑝+1
𝑑𝜏.

Therefore, taking into consideration (2.3), we get:

lim
𝑡→0

𝑦𝑝(𝑡)

𝑡𝑠−1

𝐹 ′
𝜈,𝑠,𝑞(𝑡)

𝐹𝜈,𝑠,𝑞(𝑡)
= 0.

Employing identity (2.2), we obtain:

𝑝2
1∫︁

0

𝑦𝑝−2(𝑡)𝑦′2(𝑡)

𝑡𝑠−1
𝑑𝑡 ⩾

1∫︁
0

𝑦𝑝(𝑡)

𝑡𝑠−1

(︂
𝑠2 − 𝜈2𝑞2

𝑡2
+ (1− 𝜈2𝑞2)

4− 𝑡

𝑡(2− 𝑡)2
+

4𝜆2𝑞2

𝑡2−𝑞(2− 𝑡)2+𝑞

)︂
𝑑𝑡.

Thus,

𝑝2

𝑠2 − 𝜈2𝑞2

1∫︁
0

𝑦𝑝−2(𝑡)𝑦′2(𝑡)

𝑡𝑠−2
𝑑𝑡 ⩾

1∫︁
0

𝑦𝑝(𝑡)

𝑡𝑠−1

(︂
1

𝑡2
+

1− 𝜈2𝑞2

𝑠2 − 𝜈2𝑞2
4− 𝑡

𝑡(2− 𝑡)2
+

4𝜆2𝑞2𝑡𝑞−2

(𝑠2 − 𝜈2𝑞2)(2− 𝑡)2+𝑞

)︂
𝑑𝑡.

Applying a theorem on arithmetic mean written in the following form [29]

𝑎𝑝1𝑏𝑝2 ⩽

(︂
𝑝1𝑎+ 𝑝2𝑏

𝑝1 + 𝑝2

)︂𝑝1+𝑝2

,

for the quantity

𝑎 =
𝑦𝑝(𝑡)

𝑡𝑠
, 𝑏 =

𝑝𝑝

(𝑠2 − 𝜈2𝑞2)𝑝/2
𝑦′𝑝(𝑡)

𝑡𝑠+1−𝑝
, 𝑝1 = 1− 2

𝑝
and 𝑝2 =

2

𝑝
,
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we have

𝑝𝑝

(𝑠2 − 𝜈2𝑞2)𝑝/2

1∫︁
0

𝑦′𝑝(𝑡)

𝑡𝑠−𝑝+1
𝑑𝑡 ⩾

1∫︁
0

𝑦𝑝(𝑡)

𝑡𝑠−1

(︂
1

𝑡2
+

1− 𝜈2𝑞2

𝑠2 − 𝜈2𝑞2
𝑝

2

4− 𝑡

𝑡(2− 𝑡)2
+

2𝑝𝜆2𝑞2𝑡𝑞−2

(𝑠2 − 𝜈2𝑞2)(2− 𝑡)2+𝑞

)︂
𝑑𝑡.

This completes the proof.

As 𝑠 = 𝑝− 1 and 𝑞 = 1, by Lemma 3.1 we obtain the following statement.

Corollary 3.1. Let 𝑝 ⩾ 2, 𝜈 ∈ [0, 𝑝− 1] and an absolutely continuous on the segment [0, 1]
function 𝑦 be such that 𝑦(0) = 0, |𝑦′(𝑡)| ∈ 𝐿𝑝[0, 1]. Then the inequality holds:

𝑐𝑝

1∫︁
0

|𝑦′(𝑡)|𝑝𝑑𝑡 ⩾
1∫︁

0

|𝑦(𝑡)|𝑝

𝑡𝑝−2

(︂
1

𝑡2
+

𝑝(1− 𝜈2)

2((𝑝− 1)2 − 𝜈2)

4− 𝑡

𝑡(2− 𝑡)2
+

2𝑝𝜆2

((𝑝− 1)2 − 𝜈2𝑞2)𝑡(2− 𝑡)3

)︂
𝑑𝑡,

where 𝑐𝑝 = 𝑝𝑝((𝑝− 1)2 − 𝜈2)−
𝑝
2 and 𝜆 is a first positive root of the equation

−1− 2𝜈 + 𝑠+ 2𝑧
𝐽𝜈−1(𝑧)

𝐽𝜈(𝑧)
= 0.

We proceed to inequalities on a segment [0, 2𝑏] in terms of the functions

𝜌(𝑡) = min{𝑡, 2𝑏− 𝑡} and 𝜇(𝑡) = 2𝑏− 𝜌(𝑡).

The following theorem holds.

Theorem 3.1. Assume that 0 < 𝑏 < ∞, 𝑝 ∈ [2,∞) and 𝜈 ∈ [0, 𝑝 − 1]. If 𝑦 : [0, 2𝑏] → R is

an absolutely continuous function such that 𝑦(0) = 𝑦(2𝑏) = 0 and |𝑦′(𝑡)| ∈ 𝐿𝑝[0, 2𝑏], then the

following inequality holds:

𝑐𝑝

2𝑏∫︁
0

|𝑦′(𝑡)|𝑝𝑑𝑡 ⩾
2𝑏∫︁
0

|𝑦(𝑡)|𝑝

𝜌𝑝−2(𝑡)

(︂
1

𝜌2(𝑡)
+

𝑐1
𝜌(𝑡)𝜇(𝑡)

+
𝑐2

𝜇2(𝑡)
+

𝑝𝜆2

2((𝑝− 1)2 − 𝜈2)

𝜌(𝑡)

𝜇3(𝑡)

)︂
𝑑𝑡,

where

𝑐𝑝 =
𝑝𝑝

((𝑝− 1)2 − 𝜈2)
𝑝
2

, 𝑐1 =
𝑝(2 + 𝜆2)− 2𝜈2

2(𝑝− 1)2 − 𝜈2
, 𝑐2 =

𝑝(1 + 2𝜆2)− 2𝜈2

2((𝑝− 1)2 − 𝜈2)

and 𝜆 is the first positive root of the equation

−1− 2𝜈 + 𝑠+ 2𝑧
𝐽𝜈−1(𝑧)

𝐽𝜈(𝑧)
= 0.

Proof. The inequality in Corollary 3.1 can be transformed as follows:

𝑐𝑝

1∫︁
0

|𝑦′(𝑡)|𝑝𝑑𝑡 ⩾
1∫︁

0

|𝑦(𝑡)|𝑝

𝑡𝑝−2

(︂
1

𝑡2
+

𝑐1
𝑡(2− 𝑡)

+
𝑐2

(2− 𝑡)2
+

𝑝𝜆2

2((𝑝− 1)2 − 𝜈2)

𝑡

(2− 𝑡)3

)︂
𝑑𝑡.

By means of the change of variable 𝑡 = 𝜏/𝑏 in the latter inequality we obtain

𝑐𝑝

𝑏∫︁
0

|𝑦′(𝜏)|𝑝𝑑𝜏 ⩾

𝑏∫︁
0

|𝑦(𝜏)|𝑝

𝜏 𝑝−2

(︂
1

𝜏 2
+

𝑐1
𝜏(2𝑏− 𝜏)

+
𝑐2

(2𝑏− 𝑡)2
+

𝑝𝜆2

2((𝑝− 1)2 − 𝜈2)

𝑡

(2𝑏− 𝜏)3

)︂
𝑑𝜏.

Combining the latter inequality with the following corresponding inequality on the interval
[𝑏, 2𝑏]

𝑐𝑝

2𝑏∫︁
𝑏

|𝑦′(𝜏)|𝑝𝑑𝜏 ⩾

2𝑏∫︁
𝑏

|𝑦(𝜏)|𝑝

(2𝑏− 𝜏)𝑝−2

(︂
1

(2𝑏− 𝜏)2
+

𝑐1
𝜏(2𝑏− 𝜏)

+
𝑐2
𝜏 2

+
𝑝𝜆2

2((𝑝− 1)2 − 𝜈2𝑞2)

2𝑏− 𝜏

𝜏 3

)︂
𝑑𝜏,
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for a function 𝑦 ∈ 𝐶1(𝑏, 2𝑏) such that 𝑦(2𝑏) = 0, we arrive at the statement of the theorem.

In what follows we shall apply the properties of the above introduced second function for
justifying the following auxiliary statement.

Lemma 3.2. Let 𝑝 ⩾ 2, 𝑠 > 0, 𝑞 ∈ (0,+∞) and an absolutely continuous on the segment

[0, 1] function 𝑦 be such that 𝑦(0) = 0,

|𝑦′(𝑡)|𝑡(𝑝+1−𝑠)/𝑝 ∈ 𝐿𝑝[0, 1].

Then the inequality

1∫︁
0

|𝑦′(𝑡)|𝑝

𝑡𝑠−𝑝+1
𝑑𝑡 ⩾

𝑠𝑝

𝑝𝑝

1∫︁
0

|𝑦(𝑡)|𝑝

𝑡𝑠+1

(︂
1 +

2𝜆2
1𝑞

2𝑝

𝑠2
𝑡𝑞

(2− 𝑡)2+𝑞
+

𝑝𝜆2
1𝑞

𝑠2
𝑡𝑞+1

(2− 𝑡)2+𝑞

)︂
𝑑𝑡

holds, where 𝜆1 is the first positive root of the equation

𝑠𝐽0 (𝜆1)− 2𝑞𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).

The proof is similar to that of Lemma 3.1.
For 𝑞 = 1 we have:

Corollary 3.2. Let 𝑠 > 0, 𝑝 ⩾ 2 and an absolutely continuous on the segment [0, 1] function
𝑦 be such that 𝑦(0) = 0,

|𝑦′(𝑡)| ∈ 𝐿𝑝[0, 1].

Then the inequality

1∫︁
0

|𝑦′(𝑡)|𝑝

𝑡𝑠+1−𝑝
𝑑𝑡 ⩾

𝑠𝑝

𝑝𝑝

1∫︁
0

|𝑦(𝑡)|𝑝

𝑡𝑠−1

(︂
1

𝑡2
+

2𝜆2
1𝑝

𝑠2
1

𝑡(2− 𝑡)3
+

𝑝𝜆2
1

𝑠2
1

(2− 𝑡)3

)︂
𝑑𝑡

holds, where 𝜆 is the first positive root of the equation

𝑠𝐽0 (𝜆1)− 2𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).

Theorem 3.2. Assume that 0 < 𝑏 < ∞, 𝑝 ∈ [2,∞) and 𝜈 ∈ [0, 𝑝 − 1]. If 𝑦 : [0, 2𝑏] → R is

an absolutely continuous function such that 𝑦(0) = 𝑦(2𝑏) = 0 and |𝑦′(𝑡)| ∈ 𝐿𝑝[0, 2𝑏], then the

following inequality holds:

(︁𝑝
𝑠

)︁𝑝 2𝑏∫︁
0

|𝑦′(𝑡)|𝑝

𝜌𝑠+1−𝑝(𝑡)
𝑑𝑡 ⩾

2𝑏∫︁
0

|𝑦(𝑡)|𝑝

𝜌𝑠−1(𝑡)

(︂
1

𝜌2(𝑡)
+

𝑝𝜆2
1

2𝑠2

[︂
1

𝜌(𝑡)𝜇(𝑡)
+

3

𝜇2(𝑡)
+

2𝜌(𝑡)

𝜇3(𝑡)

]︂)︂
𝑑𝑡,

where 𝜆1 is a first positive root of the equation

𝑠𝐽0 (𝜆1)− 2𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).

Proof. The inequality in Corollary 3.2 can be transformed as follows:(︁𝑝
𝑠

)︁𝑝 1∫︁
0

|𝑦′(𝑡)|𝑝𝑑𝑡 ⩾
1∫︁

0

|𝑦(𝑡)|𝑝

𝑡𝑠−1

(︂
1

𝑡2
+

𝑝𝜆2
1

2𝑠2

[︂
1

𝑡(2− 𝑡)
+

3

(2− 𝑡)2
+

2𝑡

(2− 𝑡)3

]︂)︂
𝑑𝑡.

In the latter inequality we make the change of the variable 𝑡 = 𝜏/𝑏 and we get:

(︁𝑝
𝑠

)︁𝑝 𝑏∫︁
0

|𝑦′(𝜏)|𝑝

𝑡𝑠+1−𝑝
𝑑𝜏 ⩾

𝑏∫︁
0

|𝑦(𝜏)|𝑝

𝜏 𝑠−1

(︂
1

𝜏 2
+

𝑝𝜆2
1

2𝑠2

[︂
1

𝜏(2𝑏− 𝜏)
+

3

(2𝑏− 𝜏)2
+

2𝜏

(2𝑏− 𝜏)3

]︂)︂
𝑑𝜏.
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Combining this inequality with the following corresponding inequality on the interval [𝑏, 2𝑏]

𝑝𝑝

𝑠𝑝

2𝑏∫︁
𝑏

|𝑦′(𝜏)|𝑝

(2𝑏− 𝜏)𝑠+1−𝑝
𝑑𝜏 ⩾

2𝑏∫︁
𝑏

|𝑦(𝜏)|𝑝

(2𝑏− 𝜏)𝑠−1

(︂
1

(2𝑏− 𝜏)2
+

𝑝𝜆2
1

2𝑠2

[︂
1

𝜏(2𝑏− 𝜏)
+

3

𝜏 2
+

2(2𝑏− 𝜏)

𝜏 3

]︂)︂
𝑑𝜏,

for a function 𝑦 ∈ 𝐶1(𝑏, 2𝑏) such that 𝑦(2𝑏) = 0, we arrive at the statement of the theorem.

4. Multidimensional inequalities

In this section we obtain multidimensional analogues of Hardy type inequalities in arbitrary
domains in terms of the mean distance. The mean distance are sometimes called Davies dis-
tance. The obtained inequalities become simpler in convex domains.
We first introduce main notations used in the present section. Let Ω be an open connected

proper subset in the Euclidean space R𝑛, 𝑛 ⩾ 2, 𝑑S𝑛−1(𝜈) be an area differential of the unit

sphere and 𝑑𝜔(𝜈) = 𝑑S𝑛−1(𝜈)
|S𝑛−1| be a normed measure on the unit sphere. For each point 𝑥 ∈ Ω,

𝜈 ∈ S𝑛−1 by
𝜏𝜈(𝑥) := min{𝑠 > 0 : 𝑥+ 𝑠𝜈 ̸∈ Ω}

we denote the distance from a point 𝑥 to the boundary of the domain Ω along the vector 𝜈,

𝛿(𝑥) = inf
𝜈∈S𝑛−1

𝜏𝜈(𝑥)

is the distance from a point 𝑥 to the boundary of the domain Ω,

𝜌𝜈(𝑥) := min{𝜏𝜈(𝑥), 𝜏−𝜈(𝑥)}, 𝜇𝜈(𝑥) := max{𝜏𝜈(𝑥), 𝜏−𝜈(𝑥)},
𝐷𝜈(𝑥) := 𝜏𝜈(𝑥) + 𝜏−𝜈(𝑥), 𝐷(Ω) = sup

𝑥∈Ω,𝜈∈S𝑛−1

𝐷𝜈(𝑥),

and the mean distance is the quantity, see, for instance, [23]
√
𝜋Γ
(︀
𝑛+𝑝
2

)︀
Γ
(︀
𝑝+1
2

)︀
Γ
(︀
𝑛
2

)︀ ∫︁
S𝑛−1

𝜌−𝑝
𝜈 (𝑥)𝑑𝜔(𝜈).

By |Ω| we denote the volume of the domain Ω and Ω𝑥 stands for the elements in the set Ω,
which are visible from the point 𝑥.
In what follows, for proving the theorems, we apply an approach from paper [13], see also [22]–

[24].
Assume that 𝑔 ∈ 𝐶1

0(Ω) is a real-valued function. By 𝜕𝜈 we denote a partial derivative
along the direction 𝜈. The arguing by E.B. Davies, see [30], together with the one-dimensional
inequality in Theorem 3.2 give(︁𝑝

𝑠

)︁𝑝 ∫︁
Ω

|𝜕𝜈𝑔(𝑥)|𝑝

𝜌𝑠+1−𝑝
𝜈 (𝑥)

𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥 ⩾
𝑝𝜆2

1

2𝑠2

∫︁
Ω

|𝑔(𝑥)|𝑝

𝜌𝑠−1
𝜈 (𝑥)

(︂
1

𝜌𝜈(𝑥)𝜇𝜈(𝑥)
+

3

𝜇2
𝜈(𝑥)

+
2𝜌𝜈(𝑥)

𝜇3
𝜈(𝑥)

)︂
𝑑𝑥.

We integrate this inequality with respect to the normed measure 𝑑𝜔(𝜈) and use the definition
of the derivative along the direction

|𝜕𝜈𝑔| = |𝜈 · ∇𝑔| = |∇𝑔|| cos(𝜈,∇𝑔)|
and we obtain(︁𝑝

𝑠

)︁𝑝 ∫︁
Ω

|∇𝑔(𝑥)|𝑝
∫︁

S𝑛−1

| cos(𝜈,∇𝑔)|𝑝|
𝜌𝑠+1−𝑝
𝜈 (𝑥)

𝑑𝜔(𝜈)𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
𝑝𝜆2

1

2𝑠2

∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

1

𝜌𝑠−1
𝜈 (𝑥)

(︂
1

𝜌𝜈(𝑥)𝜇𝜈(𝑥)
+

3

𝜇2
𝜈(𝑥)

+
2𝜌𝜈(𝑥)

𝜇3
𝜈(𝑥)

)︂
𝑑𝜔(𝜈)𝑑𝑥.

(4.1)
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In [22] J. Tidblom showed that as 𝑝 > 1, the relations hold:

𝐵(𝑛, 𝑝) :=

∫︁
S𝑛−1

| cos(𝜈,∇𝑔)|𝑝𝑑𝜔(𝜈) =
Γ
(︀
𝑝+1
2

)︀
Γ
(︀
𝑛
2

)︀
√
𝜋Γ
(︀
𝑛+𝑝
2

)︀ ,

∫︁
S𝑛−1

(︂
2

𝐷𝜈(𝑥)

)︂𝑝

𝑑𝜔(𝜈) ⩾

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂−𝑝/𝑛

,

and A.A. Balinsky, W.D. Evans, R.T. Lewis established in [23] the following estimates∫︁
S𝑛−1

1

𝜌𝜈(𝑥)𝜇𝜈(𝑥)
𝑑𝜔(𝜈) ⩾

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂−2/𝑛

,

∫︁
S𝑛−1

1

𝜇𝜈(𝑥)2
𝑑𝜔(𝜈) ⩾

1

2

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂−2/𝑛

.

Below for 𝑝 ⩾ 𝑠+ 1 we consider four cases.
Case 1: 𝑠 ∈ (0, 1]. Employing the definitions of the functions 𝜌𝜈 , 𝜇𝜈 and applying previous

four formulae, we obtain∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠𝜈(𝑥)𝜇𝜈(𝑥)
⩾
∫︁

S𝑛−1

𝜌1−𝑠
𝜈 (𝑥)

𝜌𝜈(𝑥)𝜇𝜈(𝑥)
𝑑𝜔(𝜈) ⩾ 𝛿1−𝑠(𝑥)

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂−2/𝑛

,

∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠−1
𝜈 (𝑥)𝜇𝜈(𝑥)2

⩾
∫︁

S𝑛−1

𝜌1−𝑠
𝜈 (𝑥)

𝜇2
𝜈(𝑥)

𝑑𝜔(𝜈) ⩾
𝛿1−𝑠(𝑥)

2

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂−2/𝑛

,

∫︁
S𝑛−1

𝜌2−𝑠
𝜈 (𝑥)

𝜇𝜈(𝑥)3
𝑑𝜔(𝜈) ⩾

𝛿2−𝑠(𝑥)

8

∫︁
S𝑛−1

(︂
2

𝐷𝜈(Ω)

)︂3

𝑑𝜔(𝜈) ⩾
𝛿2−𝑠(𝑥)

8

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂− 3
𝑛

.

Therefore,(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
5𝑝𝜆2

1

4𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 2
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝛿1−𝑠(𝑥)

|Ω𝑥|2/𝑛
𝑑𝑥+

𝑝𝜆2
1

8𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝 𝛿
2−𝑠(𝑥)

|Ω𝑥|3/𝑛
𝑑𝑥.

Case 2: 𝑠 ∈ (1, 2]. Similar to Case 1 we have:∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠𝜈(𝑥)𝜇𝜈(𝑥)
⩾
∫︁

S𝑛−1

4𝜌1−𝑠
𝜈 (𝑥)

(𝜌𝜈(𝑥) + 𝜇𝜈(𝑥))2
𝑑𝜔(𝜈) ⩾

∫︁
S𝑛−1

(︂
2

𝐷𝜈(Ω)

)︂𝑠+1

𝑑𝜔(𝜈),

∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠−1
𝜈 (𝑥)𝜇𝜈(𝑥)2

⩾
1

4

∫︁
S𝑛−1

(︂
2

𝐷𝜈(Ω)

)︂𝑠+1

𝑑𝜔(𝜈),

∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠−2
𝜈 (𝑥)𝜇𝜈(𝑥)3

⩾
𝛿2−𝑠(𝑥)

8

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂− 3
𝑛

.

We hence obtain(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
7𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥+
𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝 𝛿
2−𝑠(𝑥)

|Ω𝑥|3/𝑛
𝑑𝑥.
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Case 3: 𝑠 ∈ (2, 3). Since the estimates hold∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠𝜈(𝑥)𝜇𝜈(𝑥)
⩾
∫︁

S𝑛−1

4𝜌1−𝑠
𝜈 (𝑥)

(𝜌𝜈(𝑥) + 𝜇𝜈(𝑥))2
𝑑𝜔(𝜈) ⩾

∫︁
S𝑛−1

(︂
2

𝐷𝜈(Ω)

)︂𝑠+1

𝑑𝜔(𝜈),

∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠−1
𝜈 (𝑥)𝜇𝜈(𝑥)2

⩾
1

4

∫︁
S𝑛−1

(︂
2

𝐷𝜈(Ω)

)︂𝑠+1

𝑑𝜔(𝜈),

∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠−2
𝜈 (𝑥)𝜇𝜈(𝑥)3

⩾
1

8

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂− 𝑠+1
𝑛

,

in this case we have the inequality

(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
𝑝𝜆2

1

𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥.

Case 4: 𝑠 ∈ [3,+∞). Similar to the previous cases we obtain∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠𝜈(𝑥)𝜇𝜈(𝑥)
⩾
∫︁

S𝑛−1

4𝜌1−𝑠
𝜈 (𝑥)

(𝜌𝜈(𝑥) + 𝜇𝜈(𝑥))2
𝑑𝜔(𝜈) ⩾

∫︁
S𝑛−1

(︂
2

𝐷𝜈(Ω)

)︂𝑠+1

𝑑𝜔(𝜈),

∫︁
S𝑛−1

𝑑𝜔(𝜈

𝜌𝑠−1
𝜈 (𝑥)𝜇𝜈(𝑥)2

) ⩾
∫︁

S𝑛−1

16𝜌3−𝑠
𝜈 (𝑥)

(𝜌𝜈(𝑥) + 𝜇𝜈(𝑥))4
𝑑𝜔(𝜈) ⩾

∫︁
S𝑛−1

(︂
2

𝐷𝜈(Ω)

)︂𝑠+1

𝑑𝜔(𝜈),

∫︁
S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠−2
𝜈 (𝑥)𝜇𝜈(𝑥)3

⩾
∫︁

S𝑛−1

4𝜌3−𝑠
𝜈 (𝑥)

(𝜌𝜈(𝑥) + 𝜇𝜈(𝑥))2𝜇2
𝜈(𝑥

𝑑𝜔(𝜈) ⩾
1

4

[︂
𝑛

|S𝑛−1|
|Ω𝑥|

]︂− 𝑠+1
𝑛

.

Therefore,

(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
9𝑝𝜆2

1

4𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥.

Thus, we have established a theorem.

Theorem 4.1. Let Ω be an arbitrary domain in the Euclidean space R𝑛, 𝑔 ∈ 𝐶1
0(Ω), 𝑝 ⩾ 2

and 𝑝 ⩾ 𝑠+ 1. If 𝑠 ∈ (0, 1], then the inequality

(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
5𝑝𝜆2

1

4𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 2
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝛿1−𝑠(𝑥)

|Ω𝑥|2/𝑛
𝑑𝑥+

𝑝𝜆2
1

8𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝 𝛿
2−𝑠(𝑥)

|Ω𝑥|3/𝑛
𝑑𝑥
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holds. If 𝑠 ∈ (1, 2], then the inequality(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
7𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥+
𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝 𝛿
2−𝑠(𝑥)

|Ω𝑥|3/𝑛
𝑑𝑥

holds. If 𝑠 ∈ (2, 3), then the inequality(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
𝑝𝜆2

1

𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥

holds. If 𝑠 ∈ [3,+∞), then the inequality(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−
∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
9𝑝𝜆2

1

4𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥

holds. Here 𝜆1 is the first positive root of a Lamb type equation

𝑠𝐽0 (𝜆1)− 2𝑞𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).

If we let 𝑝 ⩽ 𝑠+ 1, similar to the proof of Theorem 4.1 we get the following statement.

Theorem 4.2. Let Ω be an arbitrary domain in the Euclidean space R𝑛, 𝑔 ∈ 𝐶1
0(Ω), 𝑝 ⩾ 2

and 𝑝 ⩽ 𝑠+ 1. If 𝑠 ∈ (1, 2], then the inequality(︁𝑝
𝑠

)︁𝑝
𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝

𝛿𝑠+1−𝑝(𝑥)
𝑑𝑥−

∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥

⩾
7𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥+
𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝 𝛿
2−𝑠(𝑥)

|Ω𝑥|3/𝑛
𝑑𝑥

holds. If 𝑠 ∈ (2, 3), then the inequality(︁𝑝
𝑠

)︁𝑝
𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝

𝛿𝑠+1−𝑝(𝑥)
𝑑𝑥−

∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥
𝑝𝜆2

1

𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥

holds. If 𝑠 ∈ [3,+∞), then the inequality(︁𝑝
𝑠

)︁𝑝
𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝

𝛿𝑠+1−𝑝(𝑥)
𝑑𝑥−

∫︁
Ω

|𝑔(𝑥)|𝑝
∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

𝑑𝑥 ⩾
9𝑝𝜆2

1

4𝑠2

(︂
|S𝑛−1|
𝑛

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

|Ω𝑥|
𝑠+1
𝑛

𝑑𝑥

holds. Here 𝜆1 is the first positive root of a Lamb type equation

𝑠𝐽0 (𝜆1)− 2𝑞𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).
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Previous theorems can be considered in narrower classes of domains. We can suppose that
the domain Ω is regular in the Davies sense or to impose the external cone condition or the
convexity condition. In these cases the formulae simplify essentially, see for more details [20],
[23]. For instance, if Ω is a convex domain, then |Ω𝑥| = |Ω| and, as it was shown in [22], the
inequality holds: ∫︁

S𝑛−1

𝑑𝜔(𝜈)

𝜌𝑠+1
𝜈 (𝑥)

⩾
𝐵(𝑛, 𝑠+ 1)

𝛿𝑠+1(𝑥)
.

As corollaries of Theorems 4.1 and 4.2 we respectively obtain the following statements.

Theorem 4.3. Let Ω be a bounded convex domain in the Euclidean space R𝑛, 𝑔 ∈ 𝐶1
0(Ω),

𝑝 ⩾ 2 and 𝑝 ⩾ 𝑠+ 1. If 𝑠 ∈ (0, 1], then the inequality(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑠+ 1)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠+1(𝑥)
𝑑𝑥

⩾
5𝑝𝜆2

1

4𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 2
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠−1(𝑥)
𝑑𝑥+

𝑝𝜆2
1

8𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠−2(𝑥)
𝑑𝑥

holds. If 𝑠 ∈ (1, 2], then the inequality(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑠+ 1)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠+1(𝑥)
𝑑𝑥

⩾
7𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥+
𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠−2(𝑥)
𝑑𝑥

holds. If 𝑠 ∈ (2, 3), then the inequality(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑠+ 1)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠+1(𝑥)
𝑑𝑥

⩾
𝑝𝜆2

1

𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥

holds. If 𝑠 ∈ [3,+∞), then the inequality(︁𝑝
𝑠

)︁𝑝
𝐷𝑠+1−𝑝(Ω)𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑠+ 1)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠+1(𝑥)
𝑑𝑥

⩾
9𝑝𝜆2

1

4𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥

holds. Here 𝜆1 is the first positive root of a Lamb type equation

𝑠𝐽0 (𝜆1)− 2𝑞𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).
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Theorem 4.4. Let Ω be a bounded convex domain in the Euclidean space R𝑛, 𝑔 ∈ 𝐶1
0(Ω),

𝑝 ⩾ 2 and 𝑝 ⩽ 𝑠+ 1. If 𝑠 ∈ (1, 2], then the inequality(︁𝑝
𝑠

)︁𝑝
𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝

𝛿𝑠+1−𝑝(𝑥)
𝑑𝑥−𝐵(𝑛, 𝑠+ 1)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠+1(𝑥)
𝑑𝑥

⩾
7𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥+
𝑝𝜆2

1

8𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠−2(𝑥)
𝑑𝑥

holds. If 𝑠 ∈ (2, 3), then the inequality(︁𝑝
𝑠

)︁𝑝
𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝

𝛿𝑠+1−𝑝(𝑥)
𝑑𝑥−𝐵(𝑛, 𝑠+ 1)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠+1(𝑥)
𝑑𝑥 ⩾

𝑝𝜆2
1

𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥

holds. If 𝑠 ∈ [3,+∞), then the inequality(︁𝑝
𝑠

)︁𝑝
𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝

𝛿𝑠+1−𝑝(𝑥)
𝑑𝑥−𝐵(𝑛, 𝑠+ 1)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑠+1(𝑥)
𝑑𝑥 ⩾

9𝑝𝜆2
1

4𝑠2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑠+1
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥

holds. Here 𝜆1 is the first positive root of a Lamb type equation

𝑠𝐽0 (𝜆1)− 2𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).

To compare with known results, we consider the case 𝑠 = 𝑝 − 1. The following statement
holds.

Corollary 4.1. Let Ω be a bounded convex domain in the Euclidean space R𝑛, 𝑔 ∈ 𝐶1
0(Ω),

𝑝 ⩾ 2. If 𝑝 ∈ (2, 3], then the inequality(︂
𝑝

𝑝− 1

)︂𝑝

𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑝)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑝(𝑥)
𝑑𝑥

⩾
7𝑝𝜆2

1

8(𝑝− 1)2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑝
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥+
𝑝𝜆2

1

8(𝑝− 1)2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 3
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑝−3(𝑥)
𝑑𝑥

holds. If 𝑝 ∈ (3, 4), then the inequality(︂
𝑝

𝑝− 1

)︂𝑝

𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑝)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑝(𝑥)
𝑑𝑥 ⩾

𝑝𝜆2
1

(𝑝− 1)2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑝
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥

holds. If 𝑝 ∈ [4,+∞), then the inequality(︂
𝑝

𝑝− 1

)︂𝑝

𝐵(𝑛, 𝑝)

∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑝)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑝(𝑥)
𝑑𝑥 ⩾

9𝑝𝜆2
1

4(𝑝− 1)2

(︂
|S𝑛−1|
𝑛|Ω|

)︂ 𝑝
𝑛
∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥

holds.

Using the definiftion of 𝜆𝑝(Ω) and Corollary 4.1, we obtain one more corollary.

Corollary 4.2. In convex domains Ω with a fixed volume as 𝑝 ∈ (2, 3], the estimate holds:

𝜆𝑝(Ω) ⩾
7𝑝𝜆2

1

8(𝑝− 1)2
(𝑝− 1)𝑝

𝑝𝑝

(︂
|S𝑛−1|
𝑛

)︂𝑝/𝑛 √
𝜋Γ
(︀
𝑛+𝑝
2

)︀
Γ
(︀
𝑝+1
2

)︀
Γ
(︀
𝑛
2

)︀ 1

|Ω|𝑝/𝑛
,

where 𝜆1 is the first positive root of a Lamb type equation

(𝑝− 1)𝐽0 (𝜆1)− 2𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).
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Remark 4.1. Numerical calculations show that

7𝑝𝜆2
1

8(𝑝− 1)2
⩾ 𝑝− 1

as 𝑝 ∈ [2, 𝑝0], where 𝑝0 ≈ 2.314.

In in Theorem 4.3 we let 𝑠 = 1 and 𝑝 = 2, we get a result strengthening inequality (1.4)
by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev. The following statement holds
true.

Corollary 4.3. Let Ω be a bounded convex domain in the Euclidean space R𝑛, 𝑔 ∈ 𝐶1
0(Ω).

Then the inequality holds:∫︁
Ω

|∇𝑔(𝑥)|2𝑑𝑥 ⩾
1

4

∫︁
Ω

𝑔2(𝑥)

𝛿2(𝑥)
𝑑𝑥+

5𝜆2
1𝐾(𝑛)

8|Ω|2/𝑛

∫︁
Ω

𝑔2(𝑥)𝑑𝑥+
𝜆2
1(1)𝐾(𝑛)𝑛

16|S𝑛−1||Ω|3/𝑛

∫︁
Ω

𝑔2(𝑥)𝛿(𝑥)𝑑𝑥,

where 𝜆1 ≈ 1.25578.

Corollary 4.4. In convex domains Ω with a fixed volume

𝜆1(Ω) ⩾
5𝜆2

1𝐾(𝑛)

8|Ω|2/𝑛
,

where 𝜆1 ≈ 1.25578.

There is also an inequality with additional terms depending only on the diameter of the
domain. The following theorem is true.

Theorem 4.5. Let Ω be a bounded convex domain in the Euclidean space R𝑛 and 𝑝 ⩾ 2.
Then for each function 𝑔 ∈ 𝐶1

0(Ω) the inequality holds:

𝐵(𝑛, 𝑝)
(︁𝑝
𝑠

)︁𝑝 ∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑝)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑝(𝑥)
𝑑𝑥

⩾
7𝑝𝜆2

1

2(𝑝− 1)2𝐷𝑝(Ω)

∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥+
𝑝𝜆2

1

(𝑝− 1)2𝐷𝑝(Ω)

∫︁
Ω

|𝑔(𝑥)|𝑝𝛿(𝑥)𝑑𝑥.

Here 𝜆1 is the first positive root of a Lamb type equation

(𝑝− 1)𝐽0 (𝜆1)− 2𝜆1𝐽1 (𝜆1) = 0, 𝜆1 ∈ (0, 𝑗0).

Proof. Employing inequality (4.1) and the definition of the diameter of the domain 𝐷(Ω),
as 𝑠 = 𝑝− 1 by obvious inequalities∫︁

S𝑛−1

1

𝜌𝜈(𝑥)𝜇𝜈(𝑥)
𝑑𝜔(𝜈) ⩾

∫︁
S𝑛−1

4

(𝜌𝜈(𝑥) + 𝜇𝜈(𝑥))2
𝑑𝜔(𝜈) ⩾

4

𝐷2(Ω)
,

∫︁
S𝑛−1

1

𝜇𝜈(𝑥)2
𝑑𝜔(𝜈) ⩾

1

𝐷2(Ω)
,

we obtain

𝐵(𝑛, 𝑝)
(︁𝑝
𝑠

)︁𝑝 ∫︁
Ω

|∇𝑔(𝑥)|𝑝𝑑𝑥−𝐵(𝑛, 𝑝)

∫︁
Ω

|𝑔(𝑥)|𝑝

𝛿𝑝(𝑥)
𝑑𝑥

⩾
7𝑝𝜆2

1

2(𝑝− 1)2𝐷𝑝(Ω)

∫︁
Ω

|𝑔(𝑥)|𝑝𝑑𝑥+
𝑝𝜆2

1

(𝑝− 1)2𝐷𝑝(Ω)

∫︁
Ω

|𝑔(𝑥)|𝑝𝛿(𝑥)𝑑𝑥.

This implies the statement of the theorem.
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Corollary 4.5. In convex domains Ω with a fixed diameter

𝜆𝑝(Ω) ⩾
7𝑝𝜆2

1

2(𝑝− 1)2𝐷𝑝(Ω)𝐵(𝑛, 𝑝)
,

where 𝜆1 ≈ 1.25578.

Inequalities similar to the results of this section can be also obtained by using Theorem 3.1.
The arguing and jusfitication are almost the same but the constants in inequalities will be
different. These results sometimes have certain advantages. For instance, in convex domains Ω
with a fixed volume one can obtain the estimate

𝜆1(Ω) ⩾
𝑗′21
2

𝐾(𝑛)

|Ω|2/𝑛
,

where 𝑗′1 ≈ 1.84118 is the first positive root of the derivative 𝐽1
′ of the Bessel function 𝐽1.
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