
ISSN 2074-1871 Уфимский математический журнал. Том 14. № 3 (2022). С. 121-130.

MAXIMAL CONVERGENCE OF FABER SERIES

IN WEIGHTED REARRANGEMENT

INVARIANT SMIRNOV CLASSES

A. TESTICI

Abstract. Let 𝐾 be a bounded set on the complex plane C with a connected comple-
ment 𝐾− := C∖𝐾. Let D := {𝑤 ∈ C : |𝑤| < 1} and D− := C∖D. By 𝜙 we denote the
conformal mapping of 𝐾−onto {𝑤 ∈ C : |𝑤| > 1} normalized by the conditions 𝜙 (∞) = ∞
and lim𝑧→∞ 𝜙 (𝑧) /𝑧 > 0. Let Γ𝑅 := {𝑧 ∈ 𝐾− : |𝜙 (𝑧)| = 𝑅 > 1} and 𝐺𝑅 := Int Γ𝑅. Let
also Φ𝑘 (𝑧), 𝑘 = 0, 1, 2, . . . be the Faber polynomials for 𝐾 constructed via conformal map-
ping 𝜙. As it is well known, if 𝑓 is an analytic function in 𝐺𝑅, then the representation

𝑓 (𝑧) =
∞∑︀
𝑘=0

𝑎𝑘 (𝑓) Φ𝑘 (𝑧), 𝑧 ∈ 𝐺𝑅 holds. The partial sums of Faber series play an impor-

tant role in constructing approximations in complex plane and investigating properties of
Faber series is one of the essential issue. In this work the maximal convergence of the
partial sums of the partial sums of the Faber series of 𝑓 in weighted rearrangement in-
variant Smirnov class 𝐸𝑋 (𝐺𝑅, 𝜔) of analytic functions in 𝐺𝑅 is studied. Here the weight
𝜔 satisfies the Muckenhoupt condition on Γ𝑅. The estimates are given in the uniform
norm on 𝐾. The right sides of obtained inequalities involve the powers of the parameter
𝑅 and 𝐸𝑛 (𝑓,𝐺)𝑋.𝜔 called the best approximation number of 𝑓 in 𝐸𝑋 (𝐺𝑅, 𝜔), defined as

𝐸𝑛 (𝑓,𝐺)𝑋.𝜔 := inf
{︁
‖𝑓 − 𝑃𝑛‖𝑋(Γ,𝜔) : 𝑃𝑛 ∈ Π𝑛

}︁
. Here Π𝑛 is the class of algebraic polyno-

mials of degree not exceeding 𝑛. These results given in this paper is a kind of generalisation
of similar results obtained in the classical Smirnov classes.
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1. Introduction

Banach function spaces include many important particular cases including Lebesgue and
Orlicz spaces (see, [1, 2]). Earlier some theorems of approximation theory in the rearrangement
of invariant Banach function spaces and Smirnov classes were proved in [3, 5, 6, 7, 8, 9]. The
partial sums of Faber series are used in constructing approximation aggregates on complex
plane generally. Faber series are used for solving many problems in mechanical science, such as
the problems on the stress analysis on the piezoelectric plane in [10, 11]. As described below we
investigate the maximal convergence property of the Faber series in the rearrangement invariant
Smirnov classes. Some classical results of the series of Faber polynomials and their applications
were considered comprehensively in [12] and [13]. Moreover, the distribution of zeros of Faber
polynomials were investigated in [14]. The Faber series is defined as follows.

Let 𝐾 be a bounded continuum with the connected complement 𝐾− := C∖𝐾. Let
D := {𝑤 ∈ C : |𝑤| < 1}, T := 𝜕D and D− := C�D. Let also 𝜙 be conformal mappings of 𝐾−
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122 A. TESTICI

onto D− normalized by the conditions

𝜙 (∞) = ∞, lim
𝑧→∞

𝜙 (𝑧) /𝑧 > 0.

and let 𝜓 be the inverse mappings of 𝜙. We set

Γ𝑅 :=
{︀
𝑧 ∈ 𝐾− : |𝜙 (𝑧)| = 𝑅

}︀
and 𝐺𝑅 := Int Γ𝑅 ,𝑅 > 1.

As it is known from [12], if a function is analytic on continuum 𝐾, then it has the Faber
series expansion

𝑓 (𝑧) =
∞∑︁
𝑘=0

𝑎𝑘 (𝑓) Φ𝑘 (𝑧) , 𝑧 ∈ 𝐾, (1.1)

which converges absolutely and uniformly on 𝐾. Here Φ𝑘 (𝑧), 𝑘 = 0, 1, 2, . . . , are Faber poly-
nomials for 𝐾, which can be defined by the series representations

𝜓′ (𝑡)

𝜓 (𝑡) − 𝑧
=

∞∑︁
𝑘=0

Φ𝑘 (𝑧)

𝑡𝑘+1
, 𝑧 ∈ 𝐾, |𝑡| > 1,

where the Faber coefficients 𝑎𝑘 (𝑓) , 𝑘 = 0, 1, 2, . . . , are defined as

𝑎𝑘 (𝑓) :=
1

2𝜋𝑖

∫︁
T

𝑓 (𝜓 (𝑡))

𝑡𝑘+1
𝑑𝑡.

In view of (1.1) we use the notation

𝑅𝑛 (𝑓, 𝑧) := 𝑓 (𝑧) −
𝑛∑︁

𝑘=0

𝑎𝑘 (𝑓) Φ𝑘 (𝑧) =
∞∑︁

𝑘=𝑛+1

𝑎𝑘 (𝑓) Φ𝑘 (𝑧) , 𝑧 ∈ 𝐾. (1.2)

The maximal convergence theorem estimates the rate of the convergence of 𝑅𝑛 (𝑓, 𝑧) to
zero in uniform norm on 𝐾 in terms of parameter 𝑅 and the best approximation number of
analytic function 𝑓 belonging to a given space. The results on maximal convergence properties
of orthogonal polynomials can be found in [13]. The maximal convergence properties of the
Faber series in the Smirnov-Orlicz classes were investigated in [16]. Later these results were
extended to Smirnov classes with variable exponent by Israfilov et al. in [17, 18]. In this
work we investigate the maximal convergence properties of the Faber series in the weighted
rearrangement invariant Smirnov classes of analytic functions.
This work is organized as four sections. Necessary definitions and notations are given in

second section. In the third section, some auxiliary results proved previously are formulated
according to our notation used in this work. Finally, we state and prove the main results in
the last section.

2. Preliminaries

Let ℳ be the set of all measurable complex-valued functions on rectifiable Jordan curve Γ
with respect to Lebesgue length measure |𝑑𝜏 | and let ℳ+ be the subset of functions from ℳ
whose values lie in [0,∞]. The characteristic function of a Lebesgue measurable set 𝐸 ⊂ Γ is
denoted by 𝜒𝐸.
A mapping 𝜌 : ℳ+ → [0,∞] is called a function norm if it satisfies the following properties

for all measurable functions 𝑓, 𝑔, 𝑓𝑛 (𝑛 = 1, 2, . . .), for all constants 𝑎 > 0 and for all measurable
sets 𝐸 ⊂ Γ :

1. 𝜌 (𝑓) = 0 ⇔ 𝑓 = 0 𝑎.𝑒., 𝜌 (𝑎𝑓) = 𝑎𝜌 (𝑓), 𝜌 (𝑓 + 𝑔) 6 𝜌 (𝑓) + 𝜌 (𝑔) ,
2. If 0 6 𝑔 6 𝑓 𝑎.𝑒., then 𝜌 (𝑔) 6 𝜌 (𝑓) ,
3. If 0 6 𝑓𝑛 ↗ 𝑓 𝑎.𝑒., then 𝜌 (𝑓𝑛) ↗ 𝜌 (𝑓) ,
4. If 𝐸 has a finite Lebesgue measure, then 𝜌 (𝜒𝐸) <∞,
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5. If 𝐸 has a finite Lebesgue measure, then∫︁
𝐸

𝑓 (𝜏) |𝑑𝜏 | 6 𝐶𝐸𝜌 (𝑓)

where 𝐶𝐸 is a positive constant depending on 𝐸 and 𝜌 does not depend on 𝑓 .

Let 𝜌 be a function norm. The set

𝑋 (Γ) = {𝑓 ∈ ℳ : 𝜌 (|𝑓 |) <∞}
is called a Banach function space generated by 𝜌 and 𝑋 (Γ) becomes a Banach space equip with
the norm ‖𝑓‖𝑋(Γ) := 𝜌 (|𝑓 |) .
If 𝜌 is a function norm, then associate norm of 𝜌 is defined as

𝜌′ := sup

⎧⎨⎩
∫︁
Γ

𝑓 (𝜏) 𝑔 (𝜏) |𝑑𝜏 | : 𝑓 ∈ ℳ+, 𝜌 (𝑓) 6 1

⎫⎬⎭
for 𝑔 ∈ ℳ+ and 𝜌′ is also itself a function norm. The Banach function space determined by 𝜌′

is called the associate space of 𝑋 (Γ) and the associate space of 𝑋 (Γ) is denoted by 𝑋 ′ (Γ) in
[1].
If 𝑓 ∈ 𝑋 (Γ) and 𝑔 ∈ 𝑋 ′ (Γ) , then as it is known from Theorem 2.4 in [1], the Hölder

inequality ∫︁
Γ

|𝑓 (𝜏) 𝑔 (𝜏)| |𝑑𝜏 | 6 ‖𝑓‖𝑋(Γ) ‖𝑔‖𝑋′(Γ)

holds, where

‖𝑓‖𝑋(Γ) := sup

⎧⎨⎩
∫︁
Γ

|𝑓 (𝜏) 𝑔 (𝜏)| |𝑑𝜏 | : 𝑔 ∈ 𝑋 ′ (Γ) , ‖𝑔‖𝑋′(Γ) 6 1

⎫⎬⎭ ,

‖𝑔‖𝑋′(Γ) := sup

⎧⎨⎩
∫︁
Γ

|𝑓 (𝜏) 𝑔 (𝜏)| |𝑑𝜏 | : 𝑓 ∈ 𝑋 (Γ) , ‖𝑓‖𝑋(Γ) 6 1

⎫⎬⎭ .

Letℳ0 andℳ+
0 be classes of 𝑎.𝑒. finite functions inℳ andℳ+ , respectively. The distribution

function of 𝑓 defined as
𝜇𝑓 (𝜆) := mes {𝑧 ∈ Γ : |𝑓 (𝑧)| > 𝜆}

for 𝜆 > 0. The pair of functions 𝑓, 𝑔 ∈ ℳ0 is called equimeasurable if 𝜇𝑓 (𝜆) = 𝜇𝑔 (𝜆) for all
𝜆 > 0.

Definition 2.1. [1] If 𝜌 (𝑓) = 𝜌 (𝑔) for every pair of equimeasurable functions 𝑓, 𝑔 ∈ ℳ+
0

then the function norm 𝜌 is called a rearrangement invariant function norm and the Banach

function space generated by 𝜌 is called a rearrangement invariant spaces.

The function 𝑓 * (𝑎) := inf {𝜆 : 𝜇𝑓 (𝜆) 6 𝑎} , 𝑎 > 0, is called the decreasing rearrangement of
the function 𝑓 ∈ ℳ0.
Let |Γ| be the Lebesgue measure of Γ. We use the notation ([0, |Γ|] ,𝑚) to indicate Lebesgue

measure spaces over the interval [0, |Γ|]. By Luxemburg representation theorem [1] we ob-
tain that there is a (not necessarily unique) rearrangement invariant function norm 𝜌 over
([0, |Γ|] ,𝑚) such that 𝜌 (𝑓) = 𝜌 (𝑓 *) for 𝑓 ∈ ℳ+

0 . The rearrangement invariant space over
([0, |Γ|] ,𝑚) generated by 𝜌 is called Luxemburg representation of 𝑋 (Γ) and it is denoted by
𝑋. We define the operator 𝐻𝑥 on ([0, |Γ|] ,𝑚) for each 𝑥 > 0 as

(𝐻𝑥𝑓) (𝑡) :=

{︂
𝑓(𝑥𝑡), 𝑥𝑡 ∈ [0, |Γ|]

0, 𝑥𝑡 /∈ [0, |Γ|]
, 𝑡 ∈ [0, |Γ|] , 𝑓 ∈ ℳ0.
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By [1] the operator 𝐻1/𝑥 is bounded on 𝑋 with the operator norm

ℎ𝑥 (𝑥) :=
⃦⃦
𝐻1/𝑥

⃦⃦
ℬ(𝑋)

where 𝐵
(︀
𝑋
)︀
is the Banach algebra of bounded linear operators on 𝑋.

The limits defined as

𝛼𝑋 := lim
𝑥→0

log ℎ𝑥 (𝑥)

log 𝑥
, 𝛽𝑋 := lim

𝑥→∞

log ℎ𝑥 (𝑥)

log 𝑥

are called lower and upper Boyd indices of 𝑋 (Γ), respectively [1]. The Boyd indices satisfy
0 6 𝛼𝑋 6 𝛽𝑋 6 1. The Boyd indices are said to be nontrivial if they satisfy 0 < 𝛼𝑋 6 𝛽𝑋 < 1.
A function 𝜔 : Γ → [0,∞] is called a weight if 𝜔 is measurable and the preimage 𝜔−1 ({0,∞})

has the zero measure. The weighted rearrangement invariant space is defined as

𝑋 (Γ, 𝜔) = {𝑓 ∈ ℳ : 𝑓𝜔 ∈ 𝑋 (Γ)}

which is equipped with the norm ‖𝑓‖𝑋(Γ,𝜔) := ‖𝑓𝜔‖𝑋(Γ) where 𝑋 (Γ) is rearrangement invariant
spaces.

Definition 2.2. [20] Let 1 < 𝑝 <∞ and 1/𝑝+ 1/𝑞 = 1. Let 𝜔 be weight function on Γ such

that 𝜔 ∈ 𝐿𝑝
𝑙𝑜𝑐 (Γ)and 𝜔 ∈ 𝐿𝑞

𝑙𝑜𝑐 (Γ). We say that 𝜔 satisfies the Muckenhoupt condition on Γ if

sup
𝑡∈Γ

sup
𝜀>0

⎛⎜⎝1

𝜀

∫︁
Γ(𝑡,𝜀)

𝜔 (𝜏)𝑝 |𝑑𝜏 |

⎞⎟⎠
1/𝑝 ⎛⎜⎝1

𝜀

∫︁
Γ(𝑡,𝜀)

𝜔 (𝜏)−𝑞 |𝑑𝜏 |

⎞⎟⎠
1/𝑞

<∞

where Γ (𝑡, 𝜀) := {𝜏 ∈ Γ : |𝜏 − 𝑡| < 𝜀} and 𝜀 > 0.

Let us we denote by 𝐴𝑝 (Γ) the set of all weight functions satisfying Muckenhoupt condition
on Γ.

Let 𝐺 ⊂ C be a Jordan domain bounded by rectifiable curve Γ. We denote by 𝐿1(Γ),
1 6 𝑝 <∞, the set off all measurable complex-valued functions 𝑓 defined on Γ such that |𝑓 | is
Lebesgue integrable with respect to arc length on Γ. If there exists a sequence (𝐺𝜈)∞𝜈=1 ⊂ 𝐺 of
domains 𝐺𝜈 , the boundary of which is a rectifiable Jordan curve (Γ𝜈)∞𝜈=1 such that the domain
𝐺𝜈 contains each compact subset 𝐺* of 𝐺 for 𝜈 > 𝜈0 for some 𝜈0 ∈ N and

lim sup
𝜈→∞

∫︁
Γ𝜈

|𝑓 (𝑧)| |𝑑𝑧| <∞,

then we say that 𝑓 belongs to the Smirnov class 𝐸1(𝐺). Each function 𝑓 ∈ 𝐸1 (𝐺) has the
nontangential boundary value almost everywhere (𝑎.𝑒.) on Γ and the boundary function belongs
to 𝐿1(Γ) [15].

Definition 2.3. Let 𝜔 be weight function on Γ. The class of analytic functions

𝐸𝑋 (𝐺,𝜔) :=
{︀
𝑓 ∈ 𝐸1 (𝐺) : 𝑓 ∈ 𝑋 (Γ, 𝜔)

}︀
is called a rearrangement invariant Smirnov class.

The best approximation number of 𝑓 in 𝐸𝑋 (𝐺,𝜔) is defined as

𝐸𝑛 (𝑓,𝐺)𝑋.𝜔 := inf
{︁
‖𝑓 − 𝑃𝑛‖𝑋(Γ,𝜔) : 𝑃𝑛 ∈ Π𝑛

}︁
where Π𝑛 is the class of algebraic polynomials of degree not exceeding 𝑛.
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3. Auxiliary results

The direct theorems of approximation theory in the weighted rearrangement invariant
Smirnov class were proved in [4]. For the sake of clarity, in this section we formulate these
results and some notations in our terms.
We recall that Γ𝑅 := {𝑧 ∈ 𝐾− : |𝜙 (𝑧)| = 𝑅} and 𝐺𝑅 := Int Γ𝑅, 𝑅 > 1, where 𝐾 is a bounded

continuum with connected complement 𝐾− = C ∖ 𝐾. If 𝜔 ∈ 𝑋(Γ𝑅) and 𝜔−1 ∈ 𝑋 ′(Γ𝑅) for
𝑅 > 1, then by Hölder inequality we have

𝐿∞ (Γ𝑅) ⊂ 𝑋(Γ𝑅, 𝜔) ⊂ 𝐿1 (Γ𝑅) .

Since Γ𝑅 with 𝑅 > 1 is a analytic curve, by [19] there are positive constants such that

0 <𝑐1 6
⃒⃒⃒
𝜓

′
(𝜁)

⃒⃒⃒
6 𝑐2 <∞, |𝜁| = 𝑅,

0 <𝑐3 6
⃒⃒⃒
𝜙

′
(𝑧)

⃒⃒⃒
6 𝑐4 <∞, 𝑧 ∈ Γ𝑅. (3.1)

Let us we define the functions 𝑓0 (𝑤) := 𝑓 ∘ 𝜓 (𝑅𝑤) and 𝜔0 (𝑤) := 𝜔 ∘ 𝜓 (𝑅𝑤) for 𝑤 ∈ T.
If 𝑓 ∈ 𝑋(Γ𝑅, 𝜔) for 𝑅 > 1, then by (3.1) we have 𝑓0 ∈ 𝑋(T, 𝜔0). The Cauchy type integral

for a given 𝑓0 ∈ 𝐿1 (T) is defined as

𝑓+
0 (𝑤) :=

1

2𝜋𝑖

∫︁
T

𝑓0 (𝜏)

𝜏 − 𝑤
𝑑𝜏, 𝑤 ∈ D,

which is analytic in D.

Lemma 3.1. [4, Lm. 1] If Boyd indices 𝛼𝑋 and 𝛽𝑋 are nontrivial and

𝜔0 ∈ 𝐴1/𝛼𝑋
(T) ∩ 𝐴1/𝛽𝑋

(T) ,

then 𝑓+ ∈ 𝐸𝑋 (D, 𝜔0) for each 𝑓 ∈ 𝑋(T, 𝜔0).

Given 𝑓 ∈ 𝑋(T, 𝜔0), we define the mean value operator as

𝜎ℎ (𝑓) (𝑤) :=
1

2ℎ

ℎ∫︁
−ℎ

𝑓
(︀
𝑤𝑒𝑖𝑡

)︀
𝑑𝑡, 0 < ℎ < 𝜋 and𝑤 ∈ T.

If the Boyd indices 𝛼𝑋 and 𝛽𝑋 are nontrivial and 𝜔0 ∈ 𝐴1/𝛼𝑋
(T) ∩ 𝐴1/𝛽𝑋

(T), then for each
𝑓 ∈ 𝑋 (T, 𝜔0) the inequality

‖𝜎ℎ (𝑓)‖𝑋(T,𝜔0)
6 𝑐 ‖𝑓‖𝑋(T,𝜔0)

follows from Lemma 2.2 proved in [3].
If 𝑅 > 1, then by (3.1) we have the conditions 𝜔 ∈ 𝐴1/𝛼𝑋

(Γ𝑅) ∩ 𝐴1/𝛽𝑋
(Γ𝑅) and

𝜔0 ∈ 𝐴1/𝛼𝑋
(T)∩𝐴1/𝛽𝑋

(T) are equivalent. Lemma 3.1 implies that the nontangential boundary
value of 𝑓+

0 belongs to 𝑋 (T, 𝜔0). Consequently, we can give the following definition.
Let 𝑋 be a Banach space and 𝑋* be its dual space. We define the dual of 𝑋* by setting

𝑋** := (𝑋*)*. Let 𝐽 (𝑋) be the image of 𝑋 in the canonical mapping 𝐽 : 𝑋 → 𝑋**. A Banach
space 𝑋 is said to be reflexive if 𝐽 (𝑋) = 𝑋** (see, [2, p. 21]). If the rearrangement invariant
space 𝑋 is reflexive, then 𝑋 is called reflexive rearrangement invariant space.

Definition 3.1. Let Boyd indices 𝛼𝑋 and 𝛽𝑋 are nontrivial and 𝜔 ∈ 𝐴1/𝛼𝑋
(Γ𝑅)∩𝐴1/𝛽𝑋

(Γ𝑅)
with 𝑅 > 1. Let 𝑋 (T) be a reflexive rearrangement invariant space. The function

Ω𝜈
Γ𝑅,𝑋,𝜔 (𝑓, 𝛿) := sup

𝑖=1,2,...,𝑟
0<ℎ𝑖6𝛿

⃦⃦⃦⃦
⃦

𝜈∏︁
𝑖=1

(𝐼 − 𝜎ℎ𝑖
)
(︀
𝑓+
0

)︀⃦⃦⃦⃦⃦
𝑋(T,𝜔0)

, 𝜈 = 1, 2, . . . , and𝛿 > 0,

is called 𝜈 a modulus of smoothness of 𝑓 ∈ 𝐸𝑋 (𝐺𝑅, 𝜔).
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Since 𝑋 (T) is a reflexive rearrangement invariant space, the Boyd indices 𝛼𝑋 and 𝛽𝑋 of
which are nontrivial, where 𝜔0 ∈ 𝐴1/𝛼𝑋

(T)∩𝐴1/𝛽𝑋
(T), the set of continuous functions is dense

in 𝑋 (T, 𝜔0), see [3, Lm. 2]. Hence, it is guaranteed that

lim
𝛿→0

Ω𝜈
Γ𝑅,𝑋,𝜔 (𝑓, 𝛿) = 0.

Lemma 3.2. [4, Cor. 1] Let 𝑋 (T) be a reflexive rearrangement invariant space. Let Boyd in-

dices 𝛼𝑋 and 𝛽𝑋 be nontrivial and 𝜔 ∈ 𝐴1/𝛼𝑋
(Γ𝑅)∩𝐴1/𝛽𝑋

(Γ𝑅) with 𝑅 > 1. If 𝑓 ∈ 𝐸𝑋 (𝐺𝑅, 𝜔),
then there is a positive constant 𝑐 such that the inequality

‖𝑓 − 𝑃𝑛 (·, 𝑓)‖𝑋(Γ𝑅,𝜔) 6 𝑐Ω𝜈
Γ𝑅,𝑋,𝜔

(︂
𝑓,

1

𝑛+ 1

)︂
, 𝜈 = 1, 2, . . . ,

holds for each 𝑛 = 1, 2, . . . , where 𝑃𝑛 (·, 𝑓) is the 𝑛th partial sum of the Faber series of 𝑓 .

It is known that [12]

𝐸𝑘 (𝜓 (𝜁)) =
1

2𝜋𝑖

∫︁
|𝜏 |=𝑟

𝜏 𝑘𝐹 (𝜏, 𝜁) 𝑑𝜏, |𝜁| > 𝑟 > 1 (3.2)

and Lebedev’s results

1

2𝜋𝑖

∫︁
|𝜏 |=𝑟

|𝐹 (𝜏, 𝜁)| |𝑑𝜏 | 6
√︂

𝑟2

𝑟4 − 1
ln

𝑟2

𝑟2 − 1
, |𝜁| > 𝑟 > 1, (3.3)

where

𝐹 (𝜏, 𝜁) :=
𝜓′ (𝜏)

𝜓 (𝜏) − 𝜓 (𝜁)
− 1

𝜏 − 𝜁
, |𝜏 | > 1, |𝜁| > 1.

4. Main results

Our main results are as follows.

Theorem 4.1. Let the Boyd indices 𝛼𝑋 and 𝛽𝑋 be nontrivial and

𝜔 ∈ 𝐴1/𝛼𝑋
(Γ𝑅) ∩ 𝐴1/𝛽𝑋

(Γ𝑅)

with 𝑅 > 1. If 𝑓 ∈ 𝐸𝑋 (𝐺𝑅, 𝜔), then

|𝑅𝑛 (𝑓, 𝑧)| 6 𝑐

𝑅𝑛+1 (𝑅− 1)
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

√
𝑛 ln𝑛, 𝑧 ∈ 𝐾,

holds for each 𝑛 = 1, 2, . . . , where 𝑐 is a positive constant independent of 𝑛.

Combining Theorem 4.1 and Lemma 3.2, we have the following corollary.

Corollary 4.1. Let 𝑋 (T) be a reflexive rearrangement invariant space. Let the Boyd indices

𝛼𝑋and 𝛽𝑋 be nontrivial and 𝜔 ∈ 𝐴1/𝛼𝑋
(Γ𝑅) ∩𝐴1/𝛽𝑋

(Γ𝑅) with 𝑅 > 1. If 𝑓 ∈ 𝐸𝑋 (𝐺𝑅, 𝜔), then

|𝑅𝑛 (𝑓, 𝑧)| 6 𝑐

𝑅𝑛+1 (𝑅− 1)
Ω𝜈

Γ𝑅,𝑋,𝜔

(︂
𝑓,

1

𝑛+ 1

)︂√
𝑛 ln𝑛, 𝑧 ∈ 𝐾,

holds for any 𝑛 = 1, 2, . . . , and 𝜈 = 1, 2, . . . , where 𝑐 is a positive constant independent of 𝑛.

Proof of Theorem 4.1. Let 𝑧 ∈ Γ𝑟 and 1 < 𝑟 < 𝑅. Let the Boyd indices 𝛼𝑋 and 𝛽𝑋 be
nontrivial and 𝜔 ∈ 𝐴1/𝛼𝑋

(Γ𝑅) ∩ 𝐴1/𝛽𝑋
(Γ𝑅). Let 𝑃𝑛 be the best approximating polynomial of

degree at most 𝑛 to 𝑓 ∈ 𝐸𝑋 (𝐺𝑅, 𝜔). Since 𝑓 is analytic function on 𝐺𝑅, then we have the
Faber coefficients

𝑎𝑘 (𝑓) =
1

2𝜋𝑖

∫︁
|𝑡|=𝑅

𝑓 (𝜓 (𝑡))

𝑡𝑘+1
𝑑𝑡, 𝑘 = 1, 2, . . .
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Taking into account 𝑃𝑛 ∈ Π𝑛 and applying the Cauchy integral formula for derivatives, we have

1

2𝜋𝑖

∫︁
T

𝑃𝑛 (𝜓 (𝑡))

[︃
∞∑︁

𝑘=𝑛+1

Φ𝑘 (𝑧)

𝑡𝑘+1

]︃
𝑑𝑡 = 0. (4.1)

Using (1.2) and (4.1) respectively we obtain (see, [12])

𝑅𝑛 (𝑓, 𝑧) =
1

2𝜋𝑖

∫︁
T

𝑓 (𝜓 (𝑡))

[︃
∞∑︁

𝑘=𝑛+1

Φ𝑘 (𝑧)

𝑡𝑘+1

]︃
𝑑𝑡

and

𝑅𝑛 (𝑓, 𝑧) =
1

2𝜋𝑖

∫︁
T

[𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))]

[︃
∞∑︁

𝑘=𝑛+1

Φ𝑘 (𝑧)

𝑡𝑘+1

]︃
𝑑𝑡. (4.2)

The Φ𝑘 (𝑧) , 𝑘 = 1, 2, . . . , are the polynomial part of Laurent series expansion of [𝜙 (𝑧)]𝑘 such
that

Φ𝑘 (𝑧) = [𝜙 (𝑧)]𝑘 + 𝐸𝑘 (𝑧) , 𝑧 ∈ 𝐾−,

where 𝐸𝑘 is an analytic function on 𝐾−. Therefore we get
∞∑︁

𝑘=𝑛+1

Φ𝑘 (𝑧)

𝑡𝑘+1
=

∞∑︁
𝑘=𝑛+1

[𝜙 (𝑧)]𝑘

𝑡𝑘+1
+

∞∑︁
𝑘=𝑛+1

𝐸𝑘 (𝑧)

𝑡𝑘+1
,

and by (4.2) we obtain

|𝑅𝑛 (𝑓, 𝑧)| 6 1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

𝜁𝑘

𝑡𝑘+1

⃒⃒⃒⃒
⃒ |𝑑𝑡|

+
1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

𝐸𝑘 (𝜓 (𝜁))
1

𝑡𝑘+1

⃒⃒⃒⃒
⃒ |𝑑𝑡| .

Denoting

𝐼1 :=
1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

𝜁𝑘

𝑡𝑘+1

⃒⃒⃒⃒
⃒ |𝑑𝑡|

and

𝐼2 :=
1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

𝐸𝑘 (𝜓 (𝜁))
1

𝑡𝑘+1

⃒⃒⃒⃒
⃒ |𝑑𝑡| ,

we get

|𝑅𝑛 (𝑓, 𝑧)| 6 𝐼1 + 𝐼2. (4.3)

Since 𝑧 ∈ Γ𝑟 and 𝜍 ∈ Γ𝑅 for 1 < 𝑟 < 𝑅 then |𝜙 (𝑧)| = 𝑟 and |𝜙 (𝜍)| = 𝑅. Thus
|𝑅− 𝑟| 6 |𝜙 (𝜍) − 𝜙 (𝑧)| implies that

1

|𝜙 (𝜍) − 𝜙 (𝑧)|
6

1

𝑅− 𝑟
. (4.4)

We know that 1/𝜔 ∈ 𝑋 ′ (Γ) by Theorem 2.1 in [21]. Hence, by (3.1), Hölder inequality and
(4.4) we have

𝐼1 =
1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

𝜁𝑘

𝑡𝑘+1

⃒⃒⃒⃒
⃒ |𝑑𝑡|
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=
1

2𝜋

∫︁
Γ𝑅

|𝑓 (𝜍) − 𝑃𝑛 (𝜍)|

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

[𝜙 (𝑧)]𝑘

[𝜙 (𝜍)]𝑘+1

⃒⃒⃒⃒
⃒ |𝜙′ (𝜍)| |𝑑𝜍|

6
𝑐

2𝜋

∫︁
Γ𝑅

|𝑓 (𝜍) − 𝑃𝑛 (𝜍)|𝜔 (𝜍)
1

𝜔 (𝜍)

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

[𝜙 (𝑧)]𝑘

[𝜙 (𝜍)]𝑘+1

⃒⃒⃒⃒
⃒ |𝑑𝜍|

6
𝑐

2𝜋
‖(𝑓 − 𝑃𝑛)𝜔‖𝑋(Γ)

⃦⃦⃦⃦
⃦ 1

𝜔 (𝜍)

∞∑︁
𝑘=𝑛+1

[𝜙 (𝑧)]𝑘

[𝜙 (𝜍)]𝑘+1

⃦⃦⃦⃦
⃦
𝑋′(Γ)

=
𝑐

2𝜋
‖𝑓 − 𝑃𝑛‖𝑋(Γ,𝜔)

⃦⃦⃦⃦
⃦ 1

𝜔 (𝜍)

[𝜙 (𝑧)]𝑛+1

[𝜙 (𝜍)]𝑛+1 (𝜙 (𝜍) − 𝜙 (𝑧))

⃦⃦⃦⃦
⃦
𝑋′(Γ)

=
𝑐

2𝜋
‖𝑓 − 𝑃𝑛‖𝑋(Γ,𝜔)

⃦⃦⃦⃦
⃦
⃒⃒⃒⃒

1

𝜔 (𝜍)

⃒⃒⃒⃒
|𝜙 (𝑧)|𝑛+1

|𝜙 (𝜍)|𝑛+1 |𝜙 (𝜍) − 𝜙 (𝑧)|

⃦⃦⃦⃦
⃦
𝑋′(Γ)

6
𝑐

2𝜋
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

⃦⃦⃦⃦⃒⃒⃒⃒
1

𝜔 (𝜍)

⃒⃒⃒⃒
𝑟𝑛+1

𝑅𝑛+1 (𝑅− 𝑟)

⃦⃦⃦⃦
𝑋′(Γ)

=
𝑐

2𝜋
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

𝑟𝑛+1

𝑅𝑛+1 (𝑅− 𝑟)
‖1/𝜔 (𝜍)‖𝑋′(Γ)

6
𝑐

2𝜋
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

𝑟𝑛+1

𝑅𝑛+1 (𝑅− 𝑟)
.

Therefore,

𝐼1 6
𝑐

2𝜋
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

𝑟𝑛+1

𝑅𝑛+1 (𝑅− 𝑟)
. (4.5)

On the other hand by (3.2) and applying Fubini’s theorem we have

𝐼2 =
1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

𝐸𝑘 (𝜓 (𝜁))
1

𝑡𝑘+1

⃒⃒⃒⃒
⃒ |𝑑𝑡|

=
1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⃒⃒⃒⃒
⃒⃒⃒ ∞∑︁
𝑘=𝑛+1

1

2𝜋

∫︁
|𝜏 |=𝑟

𝜏 𝑘

𝑡𝑘+1
𝐹 (𝜏, 𝜁) |𝑑𝜏 |

⃒⃒⃒⃒
⃒⃒⃒ |𝑑𝑡|

=
1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⎧⎪⎨⎪⎩ 1

2𝜋

∫︁
|𝜏 |=𝑟

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝑛+1

𝜏 𝑘

𝑡𝑘+1

⃒⃒⃒⃒
⃒ |𝐹 (𝜏, 𝜁)| |𝑑𝜏 |

⎫⎪⎬⎪⎭ |𝑑𝑡|

6
1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|

⎧⎪⎨⎪⎩ 1

2𝜋

∫︁
|𝜏 |=𝑟

⃒⃒⃒⃒
𝜏𝑛+1

𝑡𝑛+1 (𝑡− 𝜏)

⃒⃒⃒⃒
|𝐹 (𝜏, 𝜁)| |𝑑𝜏 |

⎫⎪⎬⎪⎭ |𝑑𝑡|

6
1

2𝜋

∫︁
|𝜏 |=𝑟

|𝜏 |𝑛+1 |𝐹 (𝜏, 𝜁)|

⎧⎪⎨⎪⎩ 1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))|
|𝑡|𝑛+1 |𝑡− 𝜏 |

|𝑑𝑡|

⎫⎪⎬⎪⎭ |𝑑𝜏 |
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=
𝑟𝑛+1

2𝜋𝑅𝑛+1

∫︁
|𝜏 |=𝑟

|𝐹 (𝜏, 𝜁)|

⎧⎪⎨⎪⎩ 1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜓 (𝑡)) − 𝑃𝑛 (𝜓 (𝑡))| 1

|𝑡− 𝜏 |
|𝑑𝑡|

⎫⎪⎬⎪⎭ |𝑑𝜏 | .

Changing the variables and by (3.1), Hölder inequality, (3.3), (4.4), we get

𝐼2 6
𝑟𝑛+1

2𝜋𝑅𝑛+1

∫︁
|𝜏 |=𝑟

|𝐹 (𝜏, 𝜁)|

⎧⎪⎨⎪⎩ 1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜍) − 𝑃𝑛 (𝜍)| |𝜙′ (𝜍)|
|𝜙 (𝜍) − 𝜙 (𝑧)|

|𝑑𝜍|

⎫⎪⎬⎪⎭ |𝑑𝜏 |

6𝑐
𝑟𝑛+1

4𝜋2𝑅𝑛+1

∫︁
|𝜏 |=𝑟

|𝐹 (𝜏, 𝜁)|

⎧⎪⎨⎪⎩ 1

2𝜋

∫︁
|𝑡|=𝑅

|𝑓 (𝜍) − 𝑃𝑛 (𝜍)|𝜔 (𝜍)
1

𝜔 (𝜍)

|𝜙′ (𝜍)|
|𝜙 (𝜍) − 𝜙 (𝑧)|

|𝑑𝜍|
}︂
|𝑑𝜏 |

6
𝑐𝑟𝑛+1

4𝜋2𝑅𝑛+1

∫︁
|𝜏 |=𝑟

|𝐹 (𝜏, 𝜁)| ‖(𝑓 − 𝑃𝑛)𝜔‖𝑋(Γ)

⃦⃦⃦⃦
1

𝜔 (𝜍)

|𝜙′ (𝜍)|
|𝜙 (𝜍) − 𝜙 (𝑧)|

⃦⃦⃦⃦
𝑋′(Γ)

|𝑑𝜏 |

6
𝑐𝑟𝑛+1

4𝜋2𝑅𝑛+1
‖𝑓 − 𝑃𝑛‖𝑋(Γ,𝜔)

⃦⃦⃦⃦
1

𝜔 (𝜍)

1

𝑅− 𝑟

⃦⃦⃦⃦
𝑋′(Γ)

∫︁
|𝜏 |=𝑟

|𝐹 (𝜏, 𝜁)| |𝑑𝜏 |

=
𝑐𝑟𝑛+1

4𝜋2𝑅𝑛+1 (𝑅− 𝑟)
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

⃦⃦⃦⃦
1

𝜔 (𝜍)

⃦⃦⃦⃦
𝑋′(Γ)

∫︁
|𝜏 |=𝑟

|𝐹 (𝜏, 𝜁)| |𝑑𝜏 |

6
𝑐𝑟𝑛+1

4𝜋2𝑅𝑛+1 (𝑅− 𝑟)
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

∫︁
|𝜏 |=𝑟

|𝐹 (𝜏, 𝜁)| |𝑑𝜏 |

6
𝑐𝑟𝑛+1

2𝜋𝑅𝑛+1 (𝑅− 𝑟)
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

√︂
𝑟2

𝑟4 − 1
ln

𝑟2

𝑟2 − 1
.

Thus we get

𝐼2 6
𝑐𝑟𝑛+1

2𝜋𝑅𝑛+1 (𝑅− 𝑟)
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

√︂
𝑟2

𝑟4 − 1
ln

𝑟2

𝑟2 − 1
. (4.6)

and combining (4.3), (4.5) and (4.6) we have

|𝑅𝑛 (𝑓, 𝑧)| 6 𝑐

2𝜋
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

𝑟𝑛+1

𝑅𝑛+1 (𝑅− 𝑟)

+
𝑐𝑟𝑛+1

2𝜋𝑅𝑛+1 (𝑅− 𝑟)
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

√︂
𝑟2

𝑟4 − 1
ln

𝑟2

𝑟2 − 1
.

Finally, setting 𝑧 ∈ 𝐾 and 𝑟 := 1 + 1
𝑛
, we obtain the desired inequality

|𝑅𝑛 (𝑓, 𝑧)| 6 𝑐

𝑅𝑛+1 (𝑅− 1)
𝐸𝑛 (𝑓,𝐺𝑅)𝑋.𝜔

√
𝑛 ln𝑛.
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