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ON DIVISIBLE QUANTUM DYNAMICAL MAPPINGS

R.N. GUMEROV, R.L. KHAZHIN

Abstract. In this paper we study quantum dynamical mappings called also quantum
processes. The set of values of such mapping is a one-parameter family of completely positive
trace-preserving linear operators defined on a finite-dimensional Hilbert space. In quantum
information theory such operators are referred to as quantum channels. An important
concept for quantum dynamical mappings is their divisibility. There are different types of
this concept. The present paper deals with so-called completely positive divisible quantum
processes. For two such processes, which are bijective and satisfy a commutativity condition,
we construct a compound quantum process. It is shown that this compound quantum
process is also completely positive divisible. Endowing a set of quantum channels with
the norm topology, we consider continuous quantum processes and continuous completely
positive evolutions. The latter are defined as two-parameter families of quantum channels
satisfying additional properties. We prove that a continuous bijective completely positive
divisible quantum process generates a continuous completely positive evolution. In order to
illustrate the considered concepts and the results on them, we provide examples of quantum
dynamical mappings with values in the set of qubit channels. In particular, a completely
positive divisible compound quantum process is constructed for two bijective commuting
quantum processes. Geometric and physical interpretations of this compound quantum
process are given.

Keywords: Banach algebra, bijective process, completely positive divisible process, com-
pound process, continuous completely positive evolution, positive divisible process, operator
norm, quantum channel, quantum dynamical mapping, quantum process, topological group,
trace norm.

Mathematics Subject Classification: 47L10, 47B49, 81P45, 94A40, 15A60, 46N50

1. Introduction

The paper is devoted to one-parametric and two-parametric families consisting of completely
positive trace-preserving operators. In quantum information theory such operators are called
quantum channels. One-parametric families of quantum channels are called quantum dynamical
mappings or processes. Quantum processes describe how the states of quantum system vary in
time.
One of important characteristics of quantum processes is their divisibility. Various types of

divisibility of quantum structures and closely related issues were studied in a series of papers,
which served as a motivation for the present work. Infinitely divisible measuring and Markov
mappings in quantum probability theory were studied in works [1] and [2]. In work [3], divis-
ible and infinitesimally divisible quantum channels were considered as well as closely related
continuous completely positive evolutions, the values of which were two-parametric families of
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quantum channels. Some of papers were devoted to positive and completely positively divisi-
bilities, which are briefly called respectively a 𝑃 -divisibility and a 𝐶𝑃 -divisibility. The relation
between these types of divisibility of dynamical mapping and their tensor powers was presented
in paper [4]. Bijective 𝐶𝑃 -divisible quantum processes were studied in works [5], [6]. The
relations between so-called 𝐿-divisibility, 𝑃 -divisibility and 𝐶𝑃 -divisibility were considered in
[7]. The study of divisibility of quantum mapping is physically motivated and is of a sure
mathematical interest, see [8]–[11] and the references therein.
In the present paper we consider bijective 𝐶𝑃 -divisible quantum processes. For two such

processes satisfying an additional commutativity condition, we construct a compound quantum
process. We prove that it is 𝐶𝑃 (𝑃 )-divisible. On the set of quantum channels we introduce
a topology defined by means of trace (nuclear) form defined on the space of linear operator
on a finite-dimensional Hilbert space. This allows us to consider continuous processes and
evolutions. We prove that each bijective 𝐶𝑃 -divisible quantum process generates a continuous
completely positive evolution. We provide examples of quantum dynamical mappings taking
values in the set of one-qubit channels, which demonstrate the studied processes and their
properties. Namely, we consider two bijective quantum processes, for which the compound
process is 𝐶𝑃 -divisible. We provide a geometric and a physical interpretation of this compound
quantum process. We also construct a quantum process consisting of unitary channels which
is discontinuous at a fixed time.
The paper is organised as follows. It consists of the introduction and four sections. In the sec-

ond section we collect definitions and facts needed for further presentation. In the third section
we consider bijective 𝐶𝑃 -divisible quantum processes satisfying the commutativity condition
and compound processes for them. The fourth section is devoted to continuous quantum pro-
cesses and completely positive evolutions. In the fifth section we construct quantum processes
which illustrate the considered notions and their properties.

2. Preliminaries

Throughout the paper ℋ stands for a finite-dimensional complex Hilbert space. The complex
vector space of all linear operators on ℋ is denoted by L(ℋ).
A linear completely positive trace-preserving mapping Φ : L(ℋ) −→ L(ℋ) is called a quan-

tum channel. We recall that Φ is completely positive if for each 𝑛 ∈ N the linear mapping Φ𝑛

well-defined by the formula

Φ𝑛 : L(ℋ⊗ C𝑛) −→ L(ℋ⊗ C𝑛) : 𝑋 ⊗ 𝑌 ↦−→ Φ(𝑋)⊗ 𝑌,

is positive, that is, for each 𝐴 ∈ L(ℋ ⊗ C𝑛) the identity Φ𝑛(𝐴
*𝐴) = 𝐵*𝐵 for some 𝐵 ∈

L(ℋ ⊗ C𝑛). Here, as usually, C𝑛 denotes the 𝑛-dimensional complex space with the standard
scalar product, * is the Hilbert adjoint. The symbol ⊗ is used for denoting both the Hilbert
tensor product of spaces and the tensor product of operators. A convex set of all quantum
channels from L(ℋ) in L(ℋ) is denoted by 𝒪𝑐(ℋ). This is a semigroup, in which as the
multiplication, the composition of the operators serves; it is denoted by the symbol ∘. The unit
in the semigroup 𝒪𝑐(ℋ) is the identical channel ℐ : L(ℋ) −→ L(ℋ). Further information on
quantum channels can be found in book [12].
We shall also use capital Greek letters for denoting operator-valued functions of form

Φ : [0;𝑇 ] −→ 𝒪𝑐(ℋ) : 𝑡 ↦−→ Φ(𝑡), where Φ(0) = ℐ,

and associated one-parameteric families of quantum channels

Φ = {Φ(𝑡) ∈ 𝒪𝑐(ℋ) | 0 ⩽ 𝑡 ⩽ 𝑇, Φ(0) = ℐ} ,

which are called quantum dynamical mappings or quantum processes. Each of these Φ will be
shortly called a process. Hereinafter in the text, 𝑇 is an arbitrary fixed positive number.
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A quantum process Φ is called divisible if for all 0 ⩽ 𝑡1 ⩽ 𝑡2 ⩽ 𝑇 there exists a linear operator
Φ(𝑡2, 𝑡1) : L(ℋ) −→ L(ℋ) such that the identity holds

Φ(𝑡2) = Φ(𝑡2, 𝑡1) ∘ Φ(𝑡1). (2.1)

At the same time, if each operator Φ(𝑡2, 𝑡1) is a quantum channel, then the process Φ is called
completely positive divisible or 𝐶𝑃 -divisible. If each operator Φ(𝑡2, 𝑡1) preserves the positivity
and the trace, then the process Φ is called positive divisible or 𝑃 -divisible.
At the next step we define quantum processes, which are apriori divisible. We first recall that

the operator inverse to a completely positive operator is not necessarily completely positive.
A quantum process Φ is called bijective if for each 𝑡 ∈ [0;𝑇 ] there exists a linear operator

Φ(𝑡)−1 : L(ℋ) −→ L(ℋ) being inverse for the operator Φ(𝑡), that is, the identity

Φ(𝑡) ∘ Φ(𝑡)−1 = Φ(𝑡)−1 ∘ Φ(𝑡) = ℐ (2.2)

holds.
It is obvious that each bijective quantum process is divisible. Indeed, for such process in

identity (2.1), as the linear operator Φ(𝑡2, 𝑡1), the composition of the operators Φ(𝑡2) ∘Φ(𝑡1)−1

serves, where 0 ⩽ 𝑡1 ⩽ 𝑡2 ⩽ 𝑇 .
On the complex vector space L(ℋ) we consider a trace (nuclear) norm defined by the formula

‖𝐴‖𝑡𝑟 := tr
√
𝐴*𝐴, 𝐴 ∈ L(ℋ), (2.3)

where the symbol tr denotes the trace of the arithmetic square root of the positive operator
𝐴*𝐴 ∈ L(ℋ). In its turn, this norm induces the operator norm ‖ · ‖ on the complex vector
space B(L(ℋ)) of all linear operators acting from the normed space (L(ℋ), ‖ · ‖𝑡𝑟) into itself.
This norm can be defined by the formula

‖Λ‖ := max { ‖Λ(𝐴)‖𝑡𝑟 | 𝐴 ∈ L(ℋ), ‖𝐴‖𝑡𝑟 ⩽ 1} , (2.4)

where Λ ∈ B(L(ℋ)). For each positive trace-preserving operator Φ ∈ B(L(ℋ)) the identity
‖Φ‖ = 1 holds [13, Cor. 3.40].
As each operator norm, the induced trace norm is (sub)multiplicative, that is, for all Λ1,Λ2 ∈

B(L(ℋ)) the identity holds:

‖Λ2 ∘ Λ1‖ ⩽ ‖Λ1‖ · ‖Λ2‖. (2.5)

The normed space (B(L(ℋ)), ‖ · ‖) with the composition as the multiplication and with the
identity mapping ℐ as the unit becomes a unital Banach algebra [14, Ch. 5].
In the literature on quantum information theory, for instance, [13], the norm ‖·‖ is also called

an induced trace norm. As it is known, in contrast to a so-called completely bounded norm (see,
for instance, [15]) it defines the metrics, which is not supported by the physical justification for
introducing it on the set of quantum channels. However, for studying topological properties of
a considered mapping the norm ‖ · ‖ is sufficient. This is explained by the fact that all norms
on a given finite-dimensional vector space are equivalent and define the same topology.
We recall that the group of all invertible elements Inv(B(L(ℋ))) of the algebra

(B(L(ℋ)), ‖ · ‖) is a topological group [16, Thm. 1.2.43]. At the same time, the consis-
tence of algebraic and topological structures in Inv(B(L(ℋ))) allows us to speak about the
continuity of the mapping

Π : Inv(B(L(ℋ)))× Inv(B(L(ℋ))) → Inv(B(L(ℋ))) : (Λ1,Λ2) ↦→ Λ1 ∘ Λ−1
2 (2.6)

from the Cartesian square of the group with the topology of the product into the group [17,
Sect. 17].
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3. Compound quantum processes

We consider a pair of arbitrary quantum dynamical mappings

Φ,Ω : [0;𝑇 ] −→ 𝒪𝑐(ℋ).

Since the set of quantum channels 𝒪𝑐(ℋ) is closed with respect to the composition of the
operators, then the following definition is well-defined. A quantum dynamical mapping

Σ(Ω,Φ) : [0;𝑇 ] −→ 𝒪𝑐(ℋ) : 𝑡 ↦−→ Ω(𝑡) ∘ Φ(𝑡),
is called a compound quantum processes for Φ and Ω.
As usually, for the processes Φ and Ω by [Φ(𝑠),Ω(𝑡)] we denote the commutator of the

channels Φ(𝑠) and Ω(𝑡), where 𝑠, 𝑡 ∈ [0;𝑇 ]. In what follows we consider the processes satisfying
the condition

[Ω(𝑡1),Φ(𝑡2)] = 0 for all 𝑡1, 𝑡2 ∈ [0;𝑇 ] such that 𝑡1 ⩽ 𝑡2. (3.1)

We shall say that the processes Φ and Ω commute if the commutator in (3.1) vanishes for all
𝑡1, 𝑡2 ∈ [0;𝑇 ].
We observe that for the commuting processes Φ and Ω the compound quantum processes

Σ(Ω,Φ) and Σ(Φ,Ω) coincide. It is clear that the compound process for the bijective quantum
processes is bijective.

Proposition 3.1. Let Φ and Ω be bijective (positively) completely positive divisible processes
satisfying condition (3.1). Then the compound quantum process Σ(Ω,Φ) is also bijective (posi-
tively) completely positive divisible.

Proof. We shall prove the proposition for the case of completely positive divisible processes Φ
and Ω. The case of positive divisible processes can be proved in the same way.
For the brevity of writing we introduce the notation Σ := Σ(Ω,Φ). It is obvious that the

compound quantum process Σ is bijective. We need to show that Σ(𝑡2) ∘Σ(𝑡1)−1 is a quantum
channel for all 0 ⩽ 𝑡1 ⩽ 𝑡2 ⩽ 𝑇 .
In order to do this, we fix arbitrary 𝑡1 ⩽ 𝑡2 and using the definition of compound channel

and the properties of inverse operators, we write the identity

Σ(𝑡2) ∘ Σ(𝑡1)−1 = (Ω(𝑡2) ∘ Φ(𝑡2)) ∘ (Φ(𝑡1)−1 ∘ Ω(𝑡1)−1). (3.2)

Since the channels Φ and Ω satisfy the condition (3.1), the identity

Ω(𝑡1) ∘ Φ(𝑡1) = Φ(𝑡1) ∘ Ω(𝑡1)
holds, which implies the relation

Φ(𝑡1)
−1 ∘ Ω(𝑡1)−1 = Ω(𝑡1)

−1 ∘ Φ(𝑡1)−1. (3.3)

Substitution of (3.3) into (3.2) and the associativity of the semigroup operation in 𝒪𝑐(ℋ) give
the identity

Σ(𝑡2) ∘ Σ(𝑡1)−1 = Ω(𝑡2) ∘ (Φ(𝑡2) ∘ Ω(𝑡1)−1) ∘ Φ(𝑡1)−1. (3.4)

Since the channels Φ and Ω satisfy condition (3.1), the identity

Ω(𝑡1) ∘ Φ(𝑡2) = Φ(𝑡2) ∘ Ω(𝑡1) (3.5)

is true. Multiplying both sides of identity (3.5) from the left and the right by Ω(𝑡1)
−1, we

obtain:
Φ(𝑡2) ∘ Ω(𝑡1)−1 = Ω(𝑡1)

−1 ∘ Φ(𝑡2). (3.6)

Finally, substituting (3.6) into (3.4), we obtain the representation:

Σ(𝑡2) ∘ Σ(𝑡1)−1 = (Ω(𝑡2) ∘ Ω(𝑡1)−1) ∘ (Φ(𝑡2) ∘ Φ(𝑡1)−1). (3.7)

Since the quantum channels Φ and Ω are completely positive divisible, the operators Φ(𝑡2) ∘
Φ(𝑡1)

−1 and Ω(𝑡2) ∘ Ω(𝑡1)−1 are quantum channels. In this way, identity (3.7) shows that the
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linear operator Σ(𝑡2)∘Σ(𝑡1)−1 is represented as the composition of two quantum channels. This
is why it is also a quantum channel and this completes the proof.

4. Continuous bijective processes and completely positive evolutions

We equip the segment [0;𝑇 ] and the square [0;𝑇 ] × [0;𝑇 ] by natural topologies, while the
set 𝒪𝑐(ℋ) is equipped by the topology of the subspace in the Banach space (B(L(ℋ)), ‖ · ‖).
The space 𝒪𝑐(ℋ) is compact [13, Prop. 2.28]. In this section we consider continuous quantum
dynamical mappings of form

Φ : [0;𝑇 ] −→ 𝒪𝑐(ℋ)

and the continuous evolutions generated by them.
We recall [3, Sect. V] that a continuous completely positive evolution is a continuous mapping

Ψ : [0, 𝑇 ]× [0, 𝑇 ] −→ 𝒪𝑐(ℋ) : (𝑡2, 𝑡1) ↦−→ Ψ(𝑡2, 𝑡1)

satisfying the following two conditions:

Ψ(𝑡3, 𝑡2) ∘Ψ(𝑡2, 𝑡1) = Ψ(𝑡3, 𝑡1) for all 0 ⩽ 𝑡1 ⩽ 𝑡2 ⩽ 𝑡3 ⩽ 𝑇 ; (4.1)

lim
𝛿→0

‖Ψ(𝑡+ 𝛿, 𝑡)− ℐ‖ = 0 for all 𝑡 ∈ [0, 𝑇 ). (4.2)

By the continuity of the multiplication in the Banach algebra of operators B(L(ℋ)), the
compound process for two continuous processes is continuous. For the completeness of the pre-
sentation, we provide a detailed justification of this fact in the proof of the following statement.

Proposition 4.1. Let Φ and Ω be continuous bijective (positively) completely positive di-
visible quantum processes, which satisfy condition (3.1). Then the compound quantum process
Σ(Ω,Φ) is also continuous bijective (positively) completely positive divisible.

Proof. In view of Proposition 3.1 it remains to confirm that the compound process is continuous.
In order to do this, we consider the mappings

[0;𝑇 ]
ΩΔΦ // 𝒪𝑐(ℋ)×𝒪𝑐(ℋ)

𝑚 // 𝒪𝑐(ℋ).

Here Ω∆Φ is the diagonal of the mappings Ω and Φ with the values in the Cartesian square of
the space of quantum channels 𝒪𝑐(ℋ) with the topology of the product, that is,

Ω∆Φ(𝑡) = (Ω(𝑡),Φ(𝑡))

for each 𝑡 ∈ [0;𝑇 ]. The symbol 𝑚 denotes the composition of operators in 𝒪𝑐(ℋ).
Both these mappings are continuous. Indeed, the diagonal Ω∆Φ is continuous since by the

assumptions both mappings

𝑝1 ∘ (Ω∆Φ) = Ω and 𝑝2 ∘ (Ω∆Φ) = Φ

are continuous; here 𝑝𝑖 : 𝒪𝑐(ℋ)×𝒪𝑐(ℋ) −→ 𝒪𝑐(ℋ) is the projection on 𝑖th coordinate, 𝑖 = 1, 2,
[18, Thm. 12.10]. The mapping 𝑚 is continuous by the multiplicative inequality (2.5).
This is why the compound quantum process

Σ(Ω,Φ) = 𝑚 ∘ (Ω∆Φ)

is continuous as a composition of continuous mappings.

Now we are going to prove the criterion of continuity for bijective quantum processes. In
its formulation and below in the text there are limits depending on the parameter 𝑡 ∈ [0;𝑇 ].
We note that for the boundary values of the parameter, that is, as 𝑡 = 0 or 𝑡 = 𝑇 , we mean
respectively the right or the left limit.
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Proposition 4.2. The bijective quantum process

Φ : [0;𝑇 ] −→ 𝒪𝑐(ℋ)

is continuous if and only if for each 𝑡 ∈ [0;𝑇 ] the identity holds:

lim
𝛿→0

Φ(𝑡) ∘ Φ(𝑡+ 𝛿)−1 = ℐ. (4.3)

Proof. Below, in both implications to be proved, 𝑡 is an arbitrary fixed number in the segment
[0;𝑇 ] and as 𝛿 we choose real numbers such that the condition 𝑡+ 𝛿 ∈ [0;𝑇 ] holds.

Necessity. We introduce the following mappings: a continuous constant mapping

Φ1 : [−𝑡, 𝑇 − 𝑡] −→ Inv(B(L(ℋ))) : 𝛿 ↦−→ Φ(𝑡);

and a mapping
Φ2 : [−𝑡, 𝑇 − 𝑡] −→ Inv(B(L(ℋ))) : 𝛿 ↦−→ Φ(𝑡+ 𝛿),

which is continuous as a composition of continuous mappings. The diagonal of these mappings

Φ1△Φ2 : [−𝑡, 𝑇 − 𝑡] −→ Inv(B(L(ℋ)))× Inv(B(L(ℋ))) : 𝛿 ↦−→ (Φ(𝑡),Φ(𝑡+ 𝛿))

is continuous by the continuity of the mappings

𝑝1 ∘ (Φ1△Φ2) = Φ1 and 𝑝2 ∘ (Φ1△Φ2) = Φ2,

where 𝑝𝑖 : Inv(B(L(ℋ)))×Inv(B(L(ℋ))) −→ Inv(B(L(ℋ))) is the projection on 𝑖th coordinate,
𝑖 = 1, 2 [18, Thm. 12.10].
The composition Π ∘ (Φ1△Φ2) of the continuous mapping Π, see (2.6), with the diagonal

mapping Φ1△Φ2 is continuous. This fact and identity (2.2) imply relation (4.3).
Sufficiency. Let us prove the continuity of the mapping Φ at a point 𝑡, namely, the validity

of the identity
Φ(𝑡) = lim

𝛿→0
Φ(𝑡+ 𝛿).

It is implied, in view of condition (4.3), for instance, from the continuity of the composition
made of the continuous diagonal mapping

[Π ∘ (Φ1△Φ2)]△Φ2) : [−𝑡, 𝑇 − 𝑡] −→ Inv(B(L(ℋ)))× Inv(B(L(ℋ))) :

𝛿 ↦−→ (Φ(𝑡) ∘ Φ(𝑡+ 𝛿)−1,Φ(𝑡+ 𝛿))

and of the continuous multiplication in the topological group Inv(B(L(ℋ))).

Remark 4.1. It is also clear that the continuity of the mapping Φ is equivalent to the validity
of the condition

lim
𝛿→0

Φ(𝑡+ 𝛿) ∘ Φ(𝑡)−1 = ℐ (4.4)

for each 𝑡 ∈ [0;𝑇 ].

Now we are going to construct a continuous completely positive evolution by a continuous
bijective completely positive process. In order to do this, we shall need an auxiliary statement.
In order to formulate this statement, we consider two triangles, one being above and the other
below the diagonal of the square [0;𝑇 ]× [0;𝑇 ]:

𝐴 = {(𝑡1; 𝑡2) ∈ [0;𝑇 ]× [0;𝑇 ] | 𝑡1 ⩽ 𝑡2},
𝐵 = {(𝑡1; 𝑡2) ∈ [0;𝑇 ]× [0;𝑇 ] | 𝑡1 ⩾ 𝑡2}.

It is obvious that 𝐴 and 𝐵 are closed subsets in the space [0;𝑇 ] × [0;𝑇 ] with the topology of
the product. They intersect at the diagonal of the square:

𝐴 ∩𝐵 = {(𝑡; 𝑡) | 𝑡 ∈ [0;𝑇 ]}.
In the formulation of the auxiliary statement, 𝐴 and 𝐵 are considered as the spaces with

the topologies induced from the space [0;𝑇 ]× [0;𝑇 ]. This statement is a particular case of the
gluing lemma from topology, see, for instnace, [18, Thm. 8.7].
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Lemma 4.1. Let Γ : 𝐴 −→ 𝒪𝑐(ℋ) and Υ : 𝐵 −→ 𝒪𝑐(ℋ) be continuous mappings. If
Γ(𝑡, 𝑡) = Υ(𝑡, 𝑡) for each 𝑡 ∈ [0;𝑇 ], then the formula

Ψ(𝑡1, 𝑡2) :=

{︃
Γ(𝑡1, 𝑡2) as (𝑡1, 𝑡2) ∈ 𝐴 ;

Υ(𝑡1, 𝑡2) as (𝑡1, 𝑡2) ∈ 𝐵

defines a continuous mapping Ψ : [0;𝑇 ]× [0;𝑇 ] −→ 𝒪𝑐(ℋ).

In the next theorem we describe how one can construct a continuous completely positive
evolution by a continuous bijective completely positive process.

Theorem 4.1. Assume that we are given a continuous bijective completely positive divisible
quantum process Φ : [0;𝑇 ] −→ 𝒪𝑐(ℋ). Then the formula

Ψ(𝑡1, 𝑡2) =

{︃
Φ(𝑡2) ∘ Φ(𝑡1)−1, if 𝑡1 ⩽ 𝑡2 ;

Φ(𝑡1) ∘ Φ(𝑡2)−1, if 𝑡1 ⩾ 𝑡2
(4.5)

defines a continuous completely positive evolution

Ψ : [0;𝑇 ]× [0;𝑇 ] −→ 𝒪𝑐(ℋ).

Proof. Since the bijective quantum process Φ is completely positive divisible, then Φ(𝑡) ∘
Φ(𝑠)−1 ∈ 𝒪𝑐(ℋ) as 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇 .
Let 𝐴 and 𝐵 be topological spaces defined above in the formulation of Lemma 4.1. We

consider two mappings:

Γ : 𝐴 −→ 𝒪𝑐(ℋ) : (𝑡1, 𝑡2) ↦−→ Φ(𝑡2) ∘ Φ(𝑡1)−1;

Υ : 𝐵 −→ 𝒪𝑐(ℋ) : (𝑡1, 𝑡2) ↦−→ Φ(𝑡1) ∘ Φ(𝑡2)−1.

Our aim is to show that they satisfy the assumptions of Lemma 4.1.
First, for each 𝑡 ∈ [0;𝑇 ] the identity Γ(𝑡, 𝑡) = Υ(𝑡, 𝑡) = ℐ holds. This implies that formula

(4.5) well-defines a mapping on the square [0;𝑇 ]× [0;𝑇 ] with the values in the space of quantum
channels 𝒪𝑐(ℋ).
Second, the mappings Γ and Υ are continuous. To prove this fact, we consider the following

continuous mappings. Let

𝑅 : 𝐴 −→ [0, 𝑇 ]× [0, 𝑇 ] : (𝑡1, 𝑡2) ↦−→ (𝑡2, 𝑡1);̃︀Φ : [0, 𝑇 ] −→ Inv(B(L(ℋ))) : 𝑡 ↦−→ Φ(𝑡).

Then we consider the Cartesian square of the mapping ̃︀Φ:̃︀Φ× ̃︀Φ : [0, 𝑇 ]× [0, 𝑇 ] −→ Inv(B(L(ℋ)))× Inv(B(L(ℋ))) : (𝑡1, 𝑡2) ↦−→ (Φ(𝑡1),Φ(𝑡2)).

The continuity of the introduced mappings is implied by the definition of the continuity and
simple rules of constructing continuous functions, see, for instance, [18, Thm. 8.6, 12.10]. Now
we consider the composition of continuous mappings:̃︀Γ = Π ∘ (̃︀Φ× ̃︀Φ) ∘𝑅 : 𝐴 −→ Inv(B(L(ℋ))),

where Π is mapping (2.6). Since the mapping ̃︀Γ is continuous, Γ(𝑡1, 𝑡2) = ̃︀Γ(𝑡1, 𝑡2) for each pair
(𝑡1, 𝑡2) ∈ 𝐴, then employing [18, Thm.8.6, Item 4)], we get the continuity of Γ. In the same
way, without using the operator 𝑅, we prove the continuity of the mapping Υ.
Thus, the mappings Γ and Υ satisfy the assumptions of Lemma 4.1. Therefore, the mapping

Ψ is continuous.
Property (4.1) for the mapping Ψ can be checked straightforwardly by using formulae (4.5)

and (2.2).
The continuity of the mapping Ψ and an arbitrary norm, as well as the identity Ψ(𝑡, 𝑡) = ℐ,

valid for each 𝑡 ∈ [0, 𝑇 ], imply condition (4.2) for Ψ.
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Thus, the mapping Ψ is a continuous completely positive evolution. The proof is complete.

Remark 4.2. The validity of condition (4.2) for the mapping Ψ in Theorem 4.1 follows from
properties (4.3) and (4.4).

5. Quantum dynamical mappings with values

in set of one-qubit quantum channels

Throughout this section, by a complex Hilbert spaceℋ we mean the two-dimensional complex
space C2 with the standard scalar product and the canonical orthogonormal basis. By M2(C)
we denote the space of complex-valued 2×2 matrices. We shall often identify an operator from
L(ℋ) with its matrix in M2(C) using the same notations. In its turn, in the space L(ℋ) the
Pauli basis is fixed {𝐼, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧} consisting of the identity operator and the Pauli operators:

𝜎𝑥 =

(︂
0 1
1 0

)︂
, 𝜎𝑦 =

(︂
0 −𝑖
𝑖 0

)︂
, 𝜎𝑧 =

(︂
1 0
0 −1

)︂
.

We also identify the operators in B(L(ℋ)) with the corresponding 4× 4 matrices in the Pauli
basis.

5.1. Commuting bijective completely positive divisible quantum processes. We fix
a real parameter 𝑘 and consider a linear mapping Φ𝑘 : L(ℋ) −→ L(ℋ) defined by its action on
the basis vectors:

Φ𝑘(𝐼) = 𝐼, Φ𝑘(𝜎𝑥) = 𝑘 · 𝜎𝑥, Φ𝑘(𝜎𝑦) = 𝑘 · 𝜎𝑦, Φ𝑘(𝜎𝑧) = 𝜎𝑧, (5.1)

that is, in the Pauli basis the matrix of the operator Φ𝑘 reads as⎛⎜⎜⎝
1 0 0 0
0 𝑘 0 0
0 0 𝑘 0
0 0 0 1

⎞⎟⎟⎠ .

The structure of quantum channels of form Φ : M2(C) −→ M2(C) was studied in details
in [19]. In particular, there were obtained necessary and sufficient conditions ensuring that a
linear mapping in B(L(ℋ)) is completely positive [19, see (12), (13)]. These results, see also
[20, App. B], implies the following condition:

The mapping Φ𝑘 is a quantum channel if and only if the identity holds:

|𝑘| ⩽ 1. (5.2)

Let S(ℋ) := {𝜌 ∈ L(ℋ) | 𝜌 ⩾ 0; 𝑡𝑟𝜌 = 1} be the set of all density operators. We choose an
arbitrary 𝜌 ∈ S(ℋ) and expand it over the Pauli basis:

𝜌 =
1

2
(𝐼 + 𝑟𝑥𝜎𝑥 + 𝑟𝑦𝜎𝑦 + 𝑟𝑧𝜎𝑧), (5.3)

where 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 are real parameters such that the identity 𝑟2𝑥 + 𝑟2𝑦 + 𝑟2𝑧 ⩽ 1 holds. The vector
formed by these parameters is called a Bloch vector of a given 𝜌 ∈ S(ℋ) and we say that the
set of states is the unit ball centered at the origin in the space R3.
Acting by the quantum channel Φ𝑘 on 𝜌, we obtain the expression

Φ𝑘(𝜌) =
1

2
(𝐼 + 𝑘 · 𝑟𝑥𝜎𝑥 + 𝑘 · 𝑟𝑦𝜎𝑦 + 𝑟𝑧𝜎𝑧),

that is, the Bloch vector is transformed by the rule (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) → (𝑘 · 𝑟𝑥, 𝑘 · 𝑟𝑦, 𝑟𝑧). Thus, the
unit ball in R3 shrinks in 𝑘 times along the axis 𝑧.
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Let we are given a monotonically decaying function 𝑘 : [0, 𝑇 ] −→ (0, 1] such that the condition
𝑘(0) = 1 holds. By the function 𝑘 we define the process

Φ𝑑𝑒𝑐 := {Φ𝑘(𝑡) ∈ 𝑂𝑐(𝐻) | 0 ⩽ 𝑡 ⩽ 𝑇, Φ𝑘(0) = ℐ}
formed by the decoherence channels Φ𝑘(𝑡) defined by formulae (5.1).

Proposition 5.1. The quantum process Φ𝑑𝑒𝑐 is bijective completely positive divisible.

Proof. This process is bijective since the function 𝑘 is positive and hence, for each 𝑡 ∈ [0;𝑇 ]
there exists an inverse linear operator

Φ−1
𝑘(𝑡) =

⎛⎜⎜⎝
1 0 0 0
0 1

𝑘(𝑡)
0 0

0 0 1
𝑘(𝑡)

0

0 0 0 1

⎞⎟⎟⎠ .

Let us show that the process Φ𝑑𝑒𝑐 is completely positive divisible. In order to do this, we
consider a pair of numbers 𝑡1, 𝑡2 ∈ [0;𝑇 ] such that 𝑡1 ⩽ 𝑡2. By condition (5.2), the composition

Φ𝑘(𝑡2) ∘ Φ−1
𝑘(𝑡1)

= Φ 𝑘(𝑡2)
𝑘(𝑡1)

is a quantum channel if and only if the inequality 𝑘(𝑡2)
𝑘(𝑡1)

⩽ 1 holds. But it is true since the

function 𝑘(𝑡) decreases monotonically and 𝑡1 ⩽ 𝑡2. The proof is complete.

In order to construct the second process, we consider a family of unitary operators:

Ω =

{︂
𝑈(𝑡) = exp

(︂
𝑖𝑡𝜎𝑧

2

)︂
∈ L(ℋ) | 0 ⩽ 𝑡 ⩽ 𝑇

}︂
. (5.4)

By this family we define the process

ΦΩ :=
{︀
Φ𝑈(𝑡) ∈ 𝑂𝑐(𝐻) | 0 ⩽ 𝑡 ⩽ 𝑇, Φ𝑈(0) = ℐ

}︀
consisting of unitary channels acting by the rule

Φ𝑈(𝑡)(𝑋) = 𝑈(𝑡) ∘𝑋 ∘ (𝑈(𝑡))*, 𝑋 ∈ L(ℋ).

The following proposition is obvious.

Proposition 5.2. The quantum process ΦΩ is bijective completely positive divisible.

By direct calculations we find the formulae for the transformations of the vectors in the Pauli
basis under the action of a channel Φ𝑈(𝑡) from the family ΦΩ:

Φ𝑈(𝑡)(𝐼) = 𝐼, Φ𝑈(𝑡)(𝜎𝑥) = cos(𝑡) · 𝜎𝑥 − sin(𝑡) · 𝜎𝑦,

Φ𝑈(𝑡)(𝜎𝑦) = sin(𝑡) · 𝜎𝑥 + 𝑐𝑜𝑠(𝑡) · 𝜎𝑦, Φ𝑈(𝑡)(𝜎𝑧) = 𝜎𝑧.

In the matrix form they read as

Φ𝑈(𝑡) =

⎛⎜⎜⎝
1 0 0 0
0 𝑐𝑜𝑠(𝑡) 𝑠𝑖𝑛(𝑡) 0
0 −𝑠𝑖𝑛(𝑡) 𝑐𝑜𝑠(𝑡) 0
0 0 0 1

⎞⎟⎟⎠ .

Writing the density operator 𝜌 ∈ S(ℋ), see (5.3), as the column vector

𝜌 =
1

2

⎛⎜⎜⎝
1
𝑟𝑥
𝑟𝑦
𝑟𝑧

⎞⎟⎟⎠ (5.5)
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and applying to it the linear transformation Φ𝑈(𝑡), we obtain the vector

Φ𝑈(𝑡)(𝜌) =
1

2

⎛⎜⎜⎝
1

cos(𝑡) · 𝑟𝑥 + sin(𝑡) · 𝑟𝑦
− sin(𝑡) · 𝑟𝑥 + cos(𝑡) · 𝑟𝑦

𝑟𝑧

⎞⎟⎟⎠ .

This transformation corresponds to the rotation of the Bloch vector (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) by the angle
𝑡 around the axis 𝑧.
It is straightforward to confirm that for all 𝑡1, 𝑡2 ∈ [0;𝑇 ] the identity holds:

Φ𝑈(𝑡1) ∘ Φ𝑘(𝑡2) = Φ𝑘(𝑡2) ∘ Φ𝑈(𝑡1),

that is, the following proposition is true.

Proposition 5.3. The quantum processes Φ𝑑𝑒𝑐 and ΦΩ commute.

Remark 5.1. It should be noted that the channels Φ𝑘(𝑡) forming the process Φ𝑑𝑒𝑐 are co-
variant with respect to the maximal Abelian group of unitary operators {exp(𝑖𝑡𝜎𝑧) | 𝑡 ∈ R}.
This fact guarantees the commuting of the processes Φ𝑑𝑒𝑐 and ΦΩ. The definition of covariant
channels and related notions can be found in [21]–[23].

We consider a compound process

Σ(Φ𝑑𝑒𝑐,ΦΩ) := {Φ𝑘(𝑡) ∘ Φ𝑈(𝑡) ∈ 𝑂𝑐(𝐻) | 0 ⩽ 𝑡 ⩽ 𝑇, Φ(0) = 𝐼}.
Propositions 5.1, 5.2, 5.3 and 3.1 imply the following theorem.

Theorem 5.1. The quantum process Σ(Φ𝑑𝑒𝑐,ΦΩ) is bijective completely positive divisible.

We complete this subsection by geometric and physical interpretations of compound quantum
process Σ(Φ𝑑𝑒𝑐,ΦΩ). We note that each channel in this process is written in the matrix form
as follows:

Φ𝑘(𝑡) ∘ Φ𝑈(𝑡) =

⎛⎜⎜⎝
1 0 0 0
0 𝑘(𝑡) · 𝑐𝑜𝑠(𝑡) 𝑘(𝑡) · 𝑠𝑖𝑛(𝑡) 0
0 −𝑘(𝑡) · 𝑠𝑖𝑛(𝑡) 𝑘(𝑡) · 𝑐𝑜𝑠(𝑡) 0
0 0 0 1

⎞⎟⎟⎠ .

Under the action of the linear transformation Φ𝑘(𝑡) ∘ Φ𝑈(𝑡) on an arbitrary state represented
by the Bloch vector (5.5) we obtain the column vector

Φ𝑘(𝑡) ∘ Φ𝑈(𝑡)(𝜌) =
1

2

⎛⎜⎜⎝
1

𝑘(𝑡)(𝑐𝑜𝑠(𝑡) · 𝑟𝑥 − 𝑠𝑖𝑛(𝑡) · 𝑟𝑦)
𝑘(𝑡)(𝑠𝑖𝑛(𝑡) · 𝑟𝑥 + 𝑐𝑜𝑠(𝑡) · 𝑟𝑦)

𝑟𝑧

⎞⎟⎟⎠ .

Since the function 𝑘 : [0, 𝑇 ] → (0, 1] decreases monotonically, as the parameter 𝑡 grows, the
Bloch vector (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) goes along a spiral approaching the axis 𝑂𝑧.

5.2. Continuous bijective completely positive divisible quantum dynamical map-

ping. Here, demonstrating an application of Proposition 4.2, we prove the continuity of the
process ΦΩ in the previous subsection.
We shall make use of the matrix form of writing. We consider a one-parametric family of

unitary matrices (5.4):

𝑈(𝑡) =

(︂
𝑒

𝑖𝑡
2 0

0 𝑒−
𝑖𝑡
2

)︂
, 𝑡 ∈ [0;𝑇 ].

We have a bijective completely positive divisible quantum process ΦΩ consisting of unitary
quantum channels

Φ𝑈(𝑡) : M2(C) −→ M2(C) : 𝑋 ↦−→ 𝑈(𝑡)𝑋(𝑈(𝑡))*, 𝑡 ∈ [0;𝑇 ].
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Let us show the validity of the following statement.

Proposition 5.4. The quantum process ΦΩ is continuous.

Proof. By Proposition 4.2, it is sufficient to show the validity of condition (4.3) for an arbitrary
𝑡 ∈ [0;𝑇 ]. In order to do this, we fix 𝑡, 𝑡+ 𝛿 ∈ [0;𝑇 ]. It is easy to see that formulae given below
are true; they induce trace norm (2.4) and trace norm (2.3), while the maximum is taken over
all matrices (︂

𝑎 𝑏
𝑐 𝑑

)︂
∈ M2(C), for which

⃦⃦⃦⃦(︂
𝑎 𝑏
𝑐 𝑑

)︂⃦⃦⃦⃦
𝑡𝑟

⩽ 1.

Indeed, we have the estimate⃦⃦⃦
Φ𝑈(𝑡) ∘ Φ−1

𝑈(𝑡+𝛿) − ℐ
⃦⃦⃦
=max

{︂⃦⃦⃦⃦
(Φ𝑈(𝑡) ∘ Φ−1

𝑈(𝑡+𝛿) − ℐ)
(︂(︂

𝑎 𝑏
𝑐 𝑑

)︂)︂⃦⃦⃦⃦
𝑡𝑟

}︂
=max

⃦⃦⃦⃦(︂
0 𝑏(𝑒−𝑖𝛿 − 1)

𝑐(𝑒𝑖𝛿 − 1) 0

)︂⃦⃦⃦⃦
𝑡𝑟

=max 𝑡𝑟

(︂
|𝑐(𝑒𝑖𝛿 − 1)| 0

0 |𝑏(𝑒−𝑖𝛿 − 1)|

)︂
= |𝑒𝑖𝛿 − 1|max(|𝑐|+ |𝑏|) ⩽ |𝑒𝑖𝛿 − 1|max(|𝑐|+ |𝑏|+ |𝑎|+ |𝑑|).

Then on the space M2(C) we consider 𝑙1-norm defined by the formula⃦⃦⃦⃦(︂
𝑎 𝑏
𝑐 𝑑

)︂⃦⃦⃦⃦
1

= |𝑎|+ |𝑏|+ |𝑐|+ |𝑑|.

Since all norms on M2(C) are equivalent, there exists a real number 𝐶 > 0 such that

‖ · ‖1 ⩽ 𝐶 · ‖ · ‖𝑡𝑟.
In view of this inequality and the above obtained estimate, we have the inequality⃦⃦⃦

Φ𝑈(𝑡) ∘ Φ−1
𝑈(𝑡+𝛿) − ℐ

⃦⃦⃦
⩽ 𝐶 · |𝑒𝑖𝛿 − 1|.

Passing here to the limit as 𝛿 −→ 0, we obtained needed identity (4.3).

Remark 5.2. In the case of a continuous function 𝑘 it can be shown that, for instance, [18,
Thm. 12.10], the quantum process Φ𝑑𝑒𝑐 from Subsection 5.1 is continuous.

5.3. Discontinuous bijective completely positive divisible quantum dynamical

mapping. We fix arbitrary positive numbers 𝑡0, 𝛿1, 𝛿2 such that the conditions hold: 0 < 𝑡0 < 𝑇
and 𝛿1 − 𝛿2 ̸= 2𝜋𝑛, where 𝑛 ∈ Z.
We define a one-parametric family of unitary matrices by the formula

𝑈(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑒𝑖𝑡

(︃
1 0

0 1

)︃
if 0 ⩽ 𝑡 ⩽ 𝑡0;(︃

𝑒𝑖(𝑡+𝛿1) 0

0 𝑒𝑖(𝑡+𝛿2)

)︃
if 𝑡0 < 𝑡 ⩽ 𝑇 .

For each of the matrices 𝑈(𝑡) we consider a bijective completely positively trace-preserving
mapping

Φ𝑈(𝑡) : M2(C) −→ M2(C) : 𝑋 ↦−→ 𝑈(𝑡)𝑋(𝑈(𝑡))*.

We note that for each 𝑡 ∈ [𝑡; 𝑡0] the channel Φ𝑈(𝑡) is the identical mapping on M2(C).
As a result, we have a bijective completely positive divisible quantum process

Φ :=
{︀
Φ𝑈(𝑡) ∈ 𝑂𝑐(ℋ) | 0 ⩽ 𝑡 ⩽ 𝑇

}︀
consisting of unitary channels.
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Proposition 5.5. The quantum process Φ : [0;𝑇 ] −→ 𝑂𝑐(ℋ) is discontinuous at the point
𝑡0.

Proof. Let us establish the validity of the following relation:

lim
𝜏→0+

Φ𝑈(𝑡0+𝜏) ̸= Φ𝑈(𝑡0).

Let 𝜏 ∈ (0;𝑇 − 𝑡0]. To estimate from below the operator norm
⃦⃦
Φ𝑈(𝑡0+𝜏) − Φ𝑈(𝑡0)

⃦⃦
induced

by the trace norm ‖ · ‖𝑡𝑟 on the space of the matrices M2(C), we introduce a density matrix:

𝑆 :=
1

2

(︂
1 1
1 1

)︂
.

It is easy to see that the identity holds:

[Φ𝑈(𝑡0+𝜏) − Φ𝑈(𝑡0)](𝑆) =
1

2

(︂
0 𝑒𝑖(𝛿1−𝛿2) − 1)

𝑒𝑖(𝛿2−𝛿1) − 1) 0

)︂
.

Therefore, the absolute value of this matrix is written as⃒⃒
[Φ𝑈(𝑡0+𝜏) − Φ𝑈(𝑡0)](𝑆)

⃒⃒
=

1

2

(︂
|𝑒𝑖(𝛿1−𝛿2) − 1| 0

0 |𝑒𝑖(𝛿1−𝛿2) − 1|

)︂
.

Hereinafter, for a matrix 𝐴 ∈ M2(C) we employ a notation |𝐴| =
√
𝐴*𝐴.

This is why for each 𝜏 ∈ (0;𝑇 − 𝑡0] the following lower bound for the norm of the difference
of quantum channels holds:⃦⃦

Φ𝑈(𝑡0+𝜏) − Φ𝑈(𝑡0)

⃦⃦
=max

{︀⃦⃦
[Φ𝑈(𝑡0+𝜏) − Φ𝑈(𝑡0)](𝑋)

⃦⃦
𝑡𝑟
| 𝑋 ∈ M2(C), ‖𝑋‖𝑡𝑟 ⩽ 1

}︀
⩾
⃦⃦
[Φ𝑈(𝑡0+𝜏) − Φ𝑈(𝑡0)](𝑆)

⃦⃦
𝑡𝑟
= 𝑡𝑟

⃒⃒
[Φ𝑈(𝑡0+𝜏) − Φ𝑈(𝑡0)](𝑆)

⃒⃒
= |𝑒𝑖(𝛿1−𝛿2) − 1| ≠ 0.

Thus, we have shown that the bijective completely positive divisible quantum process Φ is
discontinuous at the point 𝑡0.

The authors express their deep gratitude to G.G. Amosov and A.E. Teretenkov for stimulating
discussions on quantum processes and issues close to the subject of the paper.
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