
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 14. No 2 (2022). P. 35-55.

doi:10.13108/2022-14-2-35

ETA-INVARIANT FOR PARAMETER-DEPENDENT

FAMILIES WITH PERIODIC COEFFICIENTS

K.N. ZHUIKOV, A.YU. SAVIN

Abstract. On a closed smooth manifold, we consider operator families being linear com-
binations of parameter-dependent pseudodifferential operators with periodic coefficients.
Such families arise in studying nonlocal elliptic problems on manifolds with isolated singu-
larities and/or with cylindrical ends. The aim of the work is to construct the 𝜂-invariant for
invertible families and to study its properties. We follow Melrose’s approach who treated
the 𝜂-invariant as a generalization of the winding number being equal to the integral the
trace of the logarithmic derivative of the family. At the same time, the Melrose 𝜂-invariant
is equal to the regularized integral of the regularized trace of the logarithmic derivative of
the family. In our situation, for the trace regularization, we employ the operator of differ-
ence differentiating instead of the usual differentation used by Melrose. The main technical
result is the fact that the operator of difference differentiation is an isomorphism between
the spaces of functions with conormal asymptotics at infinity and this allows us to deter-
mine the regularized trace. Since the obtained regularized trace can increase at infinity,
we also introduce a regularization for the integral. Our integral regularization involves an
averaging operation. Then we establish the main properties of the 𝜂-invariant. Namely, the
𝜂-invariant in the sense of this work satisfies the logarithmic property and is a generalization
of Melrose’s 𝜂-invariant, that is, it coincides with it for usual parameter-dependent pseu-
dodifferential operators. Finally, we provide a formula for the variation of the 𝜂-invariant
under a variation of the family.

Keywords: elliptic operator, parameter-dependent operator, 𝜂-invariant, difference differ-
entiation.

Mathematics subject classification: Primary 58J28; Secondary 58J40

1. Introduction

The notion of 𝜂-invariant was introduced in the famous work by Atiyah, Patodi and Singer [4]
for elliptic self-adjoint pseudo-differential operators (ΨDO) on a closed smooth manifold. This
is a regularization of the type of 𝜁-function of the signature of the quadratic form associated with
a considered self-adjoint operator and by its definition, this is a spectral invariant. Many works
were devoted to studying 𝜂-invariants, their generalizations and applications, see, for instance,
[5], [6], [13], [18] and the references therein. We also mention an important generalization of
Atiyah-Patodi-Singer 𝜂-invariant found by Melrose in [11]. Namely, in the cited work there was
proposed to consider families 𝐷(𝑝) of parameter-dependent ΨDOs with a parameter 𝑝 ∈ R (on
such families see [1], [3]) and the 𝜂-invariant of the family was defined as a special regularization
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of the of the winding number represented represented by the expression

1

2𝜋𝑖

∫︁
R

tr

(︂
𝐷−1(𝑝)

𝑑𝐷(𝑝)

𝑑𝑝

)︂
𝑑𝑝. (1.1)

Here one assumes that the family 𝐷(𝑝) is elliptic and invertible for all 𝑝 ∈ R. We observe
that the regularization in (1.1) is required both for the trace tr, since it is applied to the
operator 𝐷−1𝑑𝐷/𝑑𝑝, the trace of which is, generally speaking, not well-defined, and for the
integral, which, as a rule, diverges at infinity. In [11] Melrose defined both the regularized
trace, using the differentiation of the family with respect to the parameter, and the regularized
integral using the regularization of principal value type. He studied the properties of the 𝜂-
invariant, and, in particular, he showed that the 𝜂-invariant of Atiyah-Patodi-Singer coincides
with the 𝜂-invariant of some parameter-dependent, see also [9], [10]. Later the 𝜂-invariant of
the families was used in the index formulae on the manifolds with conical points, see [8], [14]
as a contribution to the index formula from a singular point; moreover, there were defined
𝜂-forms [12].
The aim of the present work is to define the 𝜂-invariant for the following class of parameter-

dependent families:

𝐷(𝑝) =
∑︁
𝑘∈Z

𝐷𝑘(𝑝)𝑒
2𝜋𝑖𝑘𝑝 : 𝐶∞(𝑋) −→ 𝐶∞(𝑋), (1.2)

where 𝑋 is a closed smooth manifold, 𝐷𝑘(𝑝) is a family of parameter-dependent ΨDOs on the
manifold 𝑋 with a parameter 𝑝 ∈ R. We assume that the operators 𝐷𝑘(𝑝) decay rapidly as
𝑘 → ∞ (this condition will be formulated rigorously in what follows) and this ensures the
convergence of the series in (1.2). The importance of studying family (1.2) is due to the fact
that such families are obtained from the operators of form

𝐵 =
∑︁
𝑘∈Z

𝐵𝑘

(︂
−𝑖 𝜕
𝜕𝑡

)︂
𝑇 𝑘 : 𝐶∞

𝑐 (𝑋 ×R) −→ 𝐶∞(𝑋 ×R)

on an infinite cylinder 𝑋 × R after the Fourier transform in the variable 𝑡, where 𝐵𝑘 is ΨDO
with constant coefficients in the variable 𝑡, while 𝑇𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡 − 2𝜋) is the shift operator,
see [16], [17].
Also families of form (1.2) arise in ellipticity conditions of ΨDOs with shifts on manifolds

with conical points, see [2]. We define the 𝜂-invariant of families (1.2) and establish its main
properties. The application to the index theory is planned to be considered in another work.
It should be noted that for families (1.2) we can not apply the Melrose regularization from [11].

The matter is that the Melrose regularization is based on the following fact: the order of
parameter-dependendent ΨDO decreases under the differentiation with respect to the parame-
ter; after that the regularized Melrose trace is obtained by an iterated integration of the trace
of the derivative of the family. However, as a rule, the differentiation of family (1.2) in the
parameter of the family does not decrease its order. This is why we need to provide another reg-
ularization. It turns out that the regularized trace can be defined if instead of the differentiation
we use the difference differentiation

𝐷(𝑝) ↦−→ 𝐷(𝑝+ 1)−𝐷(𝑝),

while instead of the integration, a difference integration is to be employed:

𝐷(𝑝) ↦−→ 𝐷(𝑝) +𝐷(𝑝− 1) +𝐷(𝑝− 2) + . . . .
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We define the regularized trace of the family (1.2) as the element in the space of smooth
functions 𝑓(𝑝) possessing the asymptotic expansion

𝑓(𝑝) ∼
∑︁
𝑗⩽𝑁

𝑐±𝑗 (𝑝)𝑝
𝑗 +

∑︁
0⩽𝑘⩽𝑁

𝑑±𝑘 (𝑝)𝑝
𝑘 ln |𝑝| as 𝑝→ ±∞ (1.3)

with smooth periodic coefficients 𝑐±𝑗 (𝑝), 𝑑
±
𝑘 (𝑝). Hereinafter by periodic functions we mean ones

with period 1. In what follows we define a regularized integral for the functions with the
asymptotics of form (1.3). Using such regularized trace and integral, we introduce the notion
of 𝜂-invariant of families (1.2) and establish its main properties. In particular, we show that in
the case of usual parameter-dependent ΨDOs, that is, as 𝐷𝑘(𝑝) = 0 for all 𝑘 ̸= 0 in (1.2)), the
𝜂-invariant in the sense of the present work coincides with Melrose 𝜂-invariant.
We briefly dwell on the contents of the work. First in Section 2 we recall the definition of

parameter-dependent ΨDO and of the Fréchet topology on the space of such operators. The
Fréchet topology is used in Section 3 while describing the conditions on the coefficients in
series (1.2), under which the series converges. Also in Section 3 we establish the conditions of
invertibility of the elements in algebra of families (1.2). It is shown in Section 4 that the operator
of difference differentiation maps the space of functions with asymptotic expansion (1.3) into
itself, is surjective and its kernel consists of periodic functions and this is the main technical
result of the work. This result allows us to define a regularized trace of families (1.2) in
Section 5. Then we define a regularized integral in Section 6 and finally, we define the 𝜂-
invariant in Section 7. Also in Section 7 we establish a logarithmic property of 𝜂-invariant and
obtain the formula for variation of 𝜂-invariant under the variation of the family.

2. Fréchet topology on space of ΨDOs with parameter

In this work we use classical parameter-dependent ΨDOs on a closed smooth manifold, see,
for instance, [3], [7]. More precisely, we use classical ΨDOs with parameter from [7, Sect. 7.2.2]
on a closed smooth manifold 𝑋. The space of such operators of order ⩽ 𝑚 is denoted by
Ψ𝑚

𝑝 (𝑋). Let us recall the notion of the Fréchet topology on the space Ψ𝑚
𝑝 (𝑋), see, for instance

[7], [10].
By 𝒮(R, 𝑉 ) we denote the Schwartz space of the functions on the straight line R with values

in the Fréchet space 𝑉 , that is, of the functions satisfying the estimates⃦⃦⃦⃦
⃦
(︂
𝑑

𝑑𝑝

)︂𝑘

𝑓(𝑝)

⃦⃦⃦⃦
⃦
𝑗

⩽ 𝐶𝑗𝑘𝑁(1 + 𝑝2)−𝑁 , (2.1)

where ‖ · ‖𝑗 ranges over all seminorms on the Fréchet space 𝑉 , and 𝑁 ⩾ 0, while the constant
depends only on 𝑗, 𝑘 and 𝑁 . In the same way one defines the space 𝒮(Z, 𝑉 ) of rapidly decaying
sequences of the elements in 𝑉 . In this case we employ estimate (2.1) only for 𝑘 = 0. The
elements in 𝒮(Z, 𝑉 ) will be called rapidly decaying sequences.
1. We first fix the structures of the Fréchet space on the following linear spaces:

∙ Ψ−∞
𝑝 (𝑋) ⊂ Ψ𝑚

𝑝 (𝑋) is the subspace of smoothing parameter-dependent operators. Asso-
ciating a smoothing operator 𝐷(𝑝) with its Schwartz kernel denoted by 𝐾𝐷(𝑥, 𝑦, 𝑝), we
obtain a bijective mapping

Ψ−∞
𝑝 (𝑋) −→ 𝒮

(︀
R, 𝐶∞(𝑋 ×𝑋)

)︀
,

𝐷(𝑝) ↦−→ 𝐾𝐷(𝑥, 𝑦, 𝑝).
(2.2)

∙ 𝑆𝑚
𝑐𝑙,𝑝(R

𝑛) ⊂ 𝐶∞(R𝑛 ×R𝑛+1) is the space of classical parameter-dependent symbols in R𝑛

of order ⩽ 𝑚. On this space we define the structure of the Fréchet space. Here we suppose
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the conditions on the smoothness in the parameter 𝑝 from [7, Sect. 7.2.2], namely, the
symbol 𝑎 = 𝑎(𝑥, 𝜉, 𝑝) ∈ 𝑆𝑚

𝑐𝑙,𝑝(R
𝑛) satisfies the estimates⃒⃒⃒⃒

⃒
(︂
𝜕

𝜕𝑥

)︂𝛼(︂
𝜕

𝜕𝜉

)︂𝛽 (︂
𝜕

𝜕𝑝

)︂𝛾
⃒⃒⃒⃒
⃒ ⩽ 𝐶𝛼𝛽𝛾(1 + |𝑝|+ |𝜉|)𝑚−|𝛽|−𝛾

for all multi-indicies 𝛼, 𝛽 and numbers 𝛾 ⩾ 0 and has the asymptotic expansion 𝑎 ∼
𝑎𝑚 + 𝑎𝑚−1 + . . . into the series, where the terms of the series 𝑎𝑘(𝑥, 𝜉, 𝑝) are smooth
functions homogeneous in the pair (𝜉, 𝑝) of order 𝑘 as |𝜉|2 + 𝑝2 ⩾ 1.

2. In what follows we show that the structure of the Fréchet space on Ψ𝑚
𝑝 (𝑋) is defined in

terms of the structure from Item 1. In order to show this, we fix the following objects:

∙ a finite covering 𝑋 =
⋃︀

𝑗 𝒰𝑗 of the manifold 𝑋 by coordinate charts

𝒰𝑗 ≃ Ω𝑗 ⊂ R𝑛,

where Ω𝑗 is some domain;
∙ a partition of unity {𝜙𝑗(𝑥)} on 𝑋 subordinate to the covering {𝒰𝑗}, that is,

𝜙𝑗 ∈ 𝐶∞(𝑋), 𝜙𝑗(𝑥) ⩾ 0 ∀𝑥 ∈ 𝑋, supp𝜙𝑗 ⊂ 𝒰𝑗,
∑︁
𝑗

𝜙𝑗(𝑥) ≡ 1;

∙ cut-off functions {𝜓𝑗(𝑥)}:

𝜓𝑗 ∈ 𝐶∞(𝑋), supp𝜓𝑗 ⊂ 𝒰𝑗, 𝜓𝑗(𝑥) ≡ 1 in the vicinity of the set supp𝜙𝑗;

∙ a cut-off function 𝜒(𝑥, 𝑦):

𝜒 ∈ 𝐶∞(𝑋 ×𝑋), 𝜒(𝑥, 𝑦) =

{︃
1, dist(𝑥, 𝑦) < 𝜀,

0, dist(𝑥, 𝑦) > 2𝜀

for some 𝜀 > 0, where dist is the distance function on 𝑋 ×𝑋.

3. We define the Fréchet topology on the space Ψ𝑚
𝑝 (𝑋). We consider an element 𝐴 ∈ Ψ𝑚

𝑝 (𝑋)
with the Schwartz kernel 𝐾𝐴(𝑥, 𝑦). Then we consider the expansion

𝐴 = 𝐵 + 𝐶, (2.3)

where the Schwartz kernel of the operator 𝐵 is equal to 𝐾𝐴(𝑥, 𝑦)𝜒(𝑥, 𝑦), while the Schwartz
kernel of the operator 𝐶 is equal to 𝐾𝐴(𝑥, 𝑦)

(︀
1−𝜒(𝑥, 𝑦)

)︀
. It follows from the properties of the

algebra of parameter-dependent ΨDOs that 𝐶 ∈ Ψ−∞
𝑝 (𝑋). Now we consider the operator 𝐵.

If the number 𝜀 > 0 involved in the definition of the function 𝜒 is chosen small enough, then
the identities

𝐵 = 𝐵 ·
∑︁
𝑗

𝜙𝑗 =
∑︁
𝑗

𝜓𝑗𝐵𝜙𝑗 (2.4)

hold. The operator 𝐵𝑗 = 𝜓𝑗𝐵𝜙𝑗 is a proper parameter-dependent ΨDOs in the chart 𝒰𝑗 ≃
Ω𝑗 ⊂ R𝑛. This is why it is uniquely determined by its complete symbol

𝜎(𝐵𝑗) = 𝑒−𝑖𝑥𝜉(𝐵𝑗𝑒
𝑖𝑥𝜉) ∈ 𝑆𝑚

𝑐𝑙,𝑝(R
𝑛). (2.5)

Thus, the countable set of semi-norms defining the Fréchet topology on the space Ψ𝑚
𝑝 (𝑋) is

defined for the operator 𝐴 ∈ Ψ𝑚
𝑝 (𝑋) as follows:

∙ we take the values of all semi-norms for the operator 𝐶 ∈ Ψ−∞
𝑝 (𝑋) from (2.3);

∙ we take the values of all semi-norms for complete symbols 𝜎(𝐵𝑗) ∈ 𝑆𝑚
𝑐𝑙,𝑝(R

𝑛) from (2.5).

It can be confirmed that the Fréchet topology corresponding to different initial data in Item 2
are equivalent.
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3. Algebra of operators with parameter

The following exact sequence holds:

0 −→ Ψ𝑚−1
𝑝 (𝑋) −→ Ψ𝑚

𝑝 (𝑋)
𝜎pr−→ 𝐶∞(︀𝑆(𝑇 *𝑋 ⊕R)

)︀
−→ 0, (3.1)

where 𝑇 *𝑋 is a cotangent bundle of the manifold 𝑋 and 𝑆(𝐸) is the sphere bundle of the vector
bundle 𝐸, while 𝜎pr is the mapping of taking the principal symbol of parameter-dependent
ΨDO. The right inverse mapping for the mapping 𝜎pr in (3.1) is constructed explicitly. More
precisely, we consider a function 𝑎(𝑥, 𝜉, 𝑝) ∈ 𝐶∞(𝑆(𝑇 *𝑋 ⊕ R)). Continuing this function by
the homogeneity of degree 𝑚 on the space 𝑇 *𝑋 ⊕R and multiplying by a cut-off function, we
obtain the principal symbol ̃︀𝑎, which is a homogeneous polynomial of degree 𝑚 at infinity in
𝑇 *𝑋 ⊕R. We define a continuous mapping

𝐶∞(︀𝑆(𝑇 *𝑋 ⊕R)
)︀
−→ Ψ𝑚

𝑝 (𝑋),

𝑎 ↦−→ ̂︀𝑎 =
∑︁
𝑗

𝜓𝑗̂︀𝑎𝜙𝑗,
(3.2)

where the functions {𝜓𝑗, 𝜙𝑗} have been defined in Section 1 and ̂︀𝑎 is the quantization of the
symbol ̃︀𝑎 in the chart 𝒰𝑗. Mapping (3.2) is a continuous mapping of the Fréchet space and this
is the right inverse to the mapping of the principal symbol.
We consider a quotient space

Φ𝑚
𝑝 (𝑋) = 𝒮

(︀
Z,Ψ𝑚

𝑝 (𝑋)
)︀
/𝐿

of the Fréchet space 𝒮
(︀
Z,Ψ𝑚

𝑝 (𝑋)
)︀
of rapidly decaying sequences of the operators in Ψ𝑚

𝑝 (𝑋)
with respect to the closed subspace

𝐿=
{︁
{𝐷𝑘(𝑝)} ∈ 𝒮

(︀
Z,Ψ𝑚

𝑝 (𝑋)
)︀⃒⃒⃒
𝐷𝑘 ∈ Ψ−∞

𝑝 (𝑋), ∀𝑘 ∈ Z,
∑︁
𝑘

𝐷𝑘(𝑝)𝑒
2𝜋𝑖𝑘𝑝= 0, ∀𝑝 ∈ R

}︁
.

The following composition is well-defined:

Φ𝑚
𝑝 (𝑋)× Φℓ

𝑝(𝑋) −→ Φ𝑚+ℓ
𝑝 (𝑋),

{𝐷𝑘(𝑝)}, {𝐷′
𝑘(𝑝)} ↦−→

{︃ ∑︁
𝑘1+𝑘2=𝑘

𝐷𝑘1(𝑝)𝐷
′
𝑘2
(𝑝)

}︃
.

(3.3)

To an arbitrary element 𝐷 = {𝐷𝑘(𝑝)} ∈ Φ𝑚
𝑝 (𝑋) we associate the operator

𝐷(𝑝) =
∑︁
𝑘

𝐷𝑘(𝑝)𝑒
2𝜋𝑖𝑘𝑝 : 𝐶∞(𝑋) −→ 𝐶∞(𝑋). (3.4)

It is obvious that this operator is well-defined, that is, if 𝐷 ∈ 𝐿, then 𝐷(𝑝) ≡ 0. We shall write
the elements in the space Φ𝑚

𝑝 (𝑋) in form (3.4). Under these notations, multiplication (3.3) cor-
responds to composition of operators (3.4). We introduce the notation Φ𝑝(𝑋) =

⋃︀
𝑚∈ZΦ

𝑚
𝑝 (𝑋).

Definition 3.1. We define a mapping

𝜎pr : Φ
𝑚
𝑝 (𝑋) −→ 𝐶∞(︀𝑆(𝑇 *𝑋 ⊕R)× S1

)︀
,

𝐷(𝑝) =
∑︁
𝑘∈Z

𝐷𝑘(𝑝)𝑒
2𝜋𝑖𝑘𝑝 ↦−→ 𝜎pr(𝐷(𝑝)) =

∑︁
𝑘∈Z

𝜎pr(𝐷𝑘)(𝑥, 𝜉, 𝑝)𝑧
𝑘. (3.5)

Here 𝑧 = 𝑒𝑖𝜙. The function 𝜎pr(𝐷(𝑝)) ∈ 𝐶∞(︀𝑆(𝑇 *𝑋 ⊕R)× S1
)︀
is called a principal symbol of

the parameter-dependent operator 𝐷(𝑝).

Mapping (3.5) is well-defined since the symbol of the families with smoothing coefficients van-
ishes identically.
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Proposition 3.1. There is an exact sequence of algebras

0 −→ Φ−1
𝑝 (𝑋) −→ Φ0

𝑝(𝑋)
𝜎pr−→ 𝐶∞(︀𝑆(𝑇 *𝑋 ⊕R)× S1

)︀
−→ 0. (3.6)

Proof. 1. Let us prove that 𝜎pr is homomorphism. Let 𝐷′, 𝐷′′ ∈ Φ0
𝑝(𝑋). We have

𝜎pr(𝐷
′𝐷′′) =𝜎pr

[︃(︃∑︁
𝑗

𝐷′
𝑗(𝑝)𝑒

2𝜋𝑖𝑗𝑝

)︃(︃∑︁
𝑘

𝐷′′
𝑘(𝑝)𝑒

2𝜋𝑖𝑘𝑝

)︃]︃

=𝜎pr

(︃∑︁
𝑗

∑︁
𝑘

𝐷′
𝑗(𝑝)𝐷

′′
𝑘(𝑝)𝑒

2𝜋𝑖(𝑗+𝑘)𝑝

)︃
=
∑︁
𝑗,𝑘

𝜎pr(𝐷
′
𝑗𝐷

′′
𝑘)(𝑥, 𝜉, 𝑝)𝑧

𝑗+𝑘

=

(︃∑︁
𝑗

𝜎pr(𝐷
′
𝑗)(𝑥, 𝜉, 𝑝)𝑧

𝑗

)︃(︃∑︁
𝑘

𝜎pr(𝐷
′′
𝑘)(𝑥, 𝜉, 𝑝)𝑧

𝑘

)︃
= 𝜎pr(𝐷

′)𝜎pr(𝐷
′′).

2. Let us prove that 𝜎pr is a surjection. For a given function 𝑎(𝑥, 𝜉, 𝑝, 𝑧) ∈ 𝐶∞(𝑆(𝑇 *𝑋⊕R)×S1),
its expansions into the Fourier series in the variable 𝑧 reads as 𝑎 =

∑︀
𝑘∈Z 𝑎𝑘𝑧

𝑘, where 𝑎𝑘 =
𝑎𝑘(𝑥, 𝜉, 𝑝) are rapidly decaying as 𝑘 → ∞ functions from the Fréchet space 𝐶∞(𝑆(𝑇 *𝑋 ⊕R)).
This implies that for the corresponding family of operators we have ̂︀𝑎𝑘 → 0 in the space Ψ0

𝑝(𝑋)
as 𝑘 → ∞ and this is why the operator

𝐴 =
∑︁
𝑘∈Z

̂︀𝑎𝑘𝑒2𝜋𝑖𝑘𝑝 ∈ Φ0
𝑝(𝑋)

is well-defined and the mapping 𝑎 ↦→ 𝐴 is a continuous mapping of the Fréchet spaces
𝐶∞(𝑆(𝑇 *𝑋 ⊕R)× S1) → Φ0

𝑝(𝑋) and this is the right inverse mapping for the mapping 𝜎pr.
3. The exactness of sequence (3.6) in the terms Φ−1

𝑝 (𝑋) and Φ0
𝑝(𝑋) is implied by the definition.

Theorem 3.1. A parameter-dependent 𝐷(𝑝) ∈ Φ0
𝑝(𝑋) is invertible in the algebra Φ0

𝑝(𝑋) if
and only if the following two conditions hold:

1. the principal symbol 𝜎pr(𝐷)(𝑥, 𝜉, 𝑝, 𝑧) is invertible for all (𝑥, 𝜉, 𝑝, 𝑧) ∈ 𝑆(𝑇 *𝑋 ⊕R)× S1;

2. the operator 𝐷(𝑝) : 𝐿2(𝑋) → 𝐿2(𝑋) is invertible for all 𝑝 ∈ R.

Proof. 1. Necessity. Let an element𝐷(𝑝) be invertible in the algebra Φ0
𝑝(𝑋), that is, there exists

an inverse element 𝑅(𝑝) = 𝐷−1(𝑝) ∈ Φ0
𝑝(𝑋). Then the principal symbol of their composition is

equal to
𝜎pr(𝐷𝑅) = 𝜎pr(𝐷)𝜎pr(𝑅) = 1.

This implies that the principal symbol 𝜎pr(𝐷) is invertible. It is also obvious that in this case
the operator 𝐷(𝑝) is invertible for all 𝑝 ∈ R.
2. Sufficiency. Let the principal symbol 𝜎pr(𝐷) be invertible. Then the inverse symbol

𝜎pr(𝐷)−1 is a smooth function and this is why it is represented by a power series in the variables
𝑧 (see (3.5)) with rapidly decaying coefficients. We define an exact sequence

0 −→ Ψ−∞
𝑝 (𝑋) −→ Ψ0

𝑝(𝑋)
𝜎−→ 𝒮𝑝(𝑋) −→ 0,

where 𝜎 is the mapping of taking the complete symbol and 𝒮𝑝(𝑋)
def
= Ψ0

𝑝(𝑋)/Ψ−∞
𝑝 (𝑋) is the

algebra of complete symbols. The algebra 𝒮𝑝(𝑋) is a Fréchet space. It is easy to show that
the obtained Fréchet topology on 𝒮𝑝(𝑋) is generated by the following semi-norms: in a local
chart on the manifold, with the element 𝐷(𝑝) ∈ Ψ0

𝑝(𝑋) we associate homogeneous components
𝑑𝑘(𝑥, 𝜉, 𝑝) ∈ 𝐶∞(R𝑛 × S𝑛), 𝑘 ⩽ 0, of its complete symbol in local charts and we obtain the
semi-norms

𝐷(𝑝) ↦−→ max
(𝑥,𝜉,𝑝)∈R𝑛×S𝑛

⃒⃒⃒
𝜕𝛼𝑥𝜕

𝛽
𝜉 𝜕

𝛾
𝑝𝑑𝑘(𝑥, 𝜉, 𝑝)

⃒⃒⃒
,
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where 𝛼, 𝛽 are the multi-indices and 𝛾 ⩾ 0. In particular, this implies that the sequence
of complete symbols from 𝒮𝑝(𝑋) converges if and only if the sequences of its homogeneous
components of order 𝑘 converge for all 𝑘 ⩽ 0. Now we define the complete symbol of the
operator 𝐷(𝑝) ∈ Φ0

𝑝(𝑋) by the formula

𝜎(𝐷) =
∑︁
𝑘∈Z

𝜎(𝐷𝑘)𝑧
𝑘 ∈ 𝐶∞(S1,𝒮𝑝(𝑋)).

Here the series converges and defines a smooth function since the sequence of 𝐷𝑘 decays rapidly
as 𝑘 → ∞. We obtain an exact sequence

0 −→ Ψ−∞
𝑝 (𝑋) −→ Φ0

𝑝(𝑋)
𝜎−→ 𝐶∞(S1,𝒮𝑝(𝑋)) −→ 0,

where 𝜎 is the mapping of taking the complete symbol.

Lemma 3.1. Let the principal symbol 𝜎pr(𝐷) of a parameter-dependent operator 𝐷(𝑝) ∈
Φ0

𝑝(𝑋) be invertible in the algebra 𝐶∞(𝑆(𝑇 *𝑋 ⊕ R) × S1). Then its complete symbol 𝜎(𝐷) is

invertible in the algebra 𝐶∞(S1,𝒮𝑝(𝑋)).

Proof. Let 𝑑 = 𝜎(𝐷) be the complete symbol of a parameter-dependent operator 𝐷(𝑝). Since
the principal symbol 𝜎pr(𝑑) is invertible, there exists the principal symbol 𝜎pr(𝑟), where 𝑟 ∈
𝐶∞(S1,𝒮𝑝(𝑋)), and 𝜎pr(𝑟) = 𝜎pr(𝑑)

−1. Then we have

𝜎pr(𝑑𝑟) = 1 =⇒ 𝜎pr(1− 𝑑𝑟) = 0 =⇒ 1− 𝑑𝑟 ∈ Φ−1
𝑝 (𝑋)/Ψ−∞

𝑝 (𝑋).

Denoting 𝑐 = 1− 𝑑𝑟, we obtain 𝑑𝑟 = 1− 𝑐. At the same time the symbol (1− 𝑐) is invertible:
the inverse to the symbol (1− 𝑐) is given by the Neumann series

(1− 𝑐)−1 def
= 1 + 𝑐+ 𝑐2 + 𝑐3 + · · · .

This series converges in the Fréchet space 𝐶∞(S1,𝒮𝑝(𝑋)) since the order of the symbol 𝑐 does
not exceed −1. We define an element

𝑑−1 =
∑︁
𝑗⩾0

𝑟𝑐𝑗.

Then we have 𝑑𝑑−1 = 𝑑𝑟(1− 𝑐)−1 = (1− 𝑐)(1− 𝑐)−1 = 1. It remains to prove identity 𝑑−1𝑑 = 1.
We have

𝑑−1𝑑 = 𝑟
(︁∑︁

𝑗⩾0

𝑐𝑗
)︁
𝑑 =

∑︁
𝑗⩾0

𝑟(1− 𝑑𝑟)𝑗𝑑 =
∑︁
𝑗⩾0

(1− 𝑟𝑑)𝑗𝑟𝑑 = (𝑟𝑑)−1𝑟𝑑 = 1.

The proof is complete.

Applying Lemma 3.1, we obtain the complete symbol 𝜎(𝐷) is invertible in the algebra
𝐶∞(S1,𝒮𝑝(𝑋)). This is why there exists a parameter-dependent 𝐵(𝑝) such that 𝜎(𝐵) = 𝜎(𝐷)−1;
in particular, 𝐵(𝑝) is an elliptic parameter-dependent operator. It follows from [2, Cor. 5.1]
that the operator 𝐵(𝑝) is Fredhold for all 𝑝 and there exists a constant 𝑀 > 0 such that the
operator 𝐵(𝑝) is invertible for all 𝑝 obeying the inequality |𝑝| > 𝑀 . We claim that there exists
a finite-dimensional family 𝐵𝜀(𝑝) ∈ Ψ−∞

𝑝 (𝑋) vanishing as 𝑝 /∈ [−𝑀,𝑀 ] such that the sum
𝐵(𝑝) + 𝐵𝜀(𝑝) is invertible. Indeed, by construction, an obstacle for constructing the family
𝐵𝜀(𝑝) is the 𝐾-group with a compact support 𝐾0

𝑐 (R) (see, for instance, [15]), which is trivial
and this is why the obstacle is absent. Hence, we can suppose that the parameter-dependent
operator 𝐵(𝑝) is invertible for all 𝑝 ∈ R. We then obtain

𝐷(𝑝)𝐵(𝑝) = 1 +𝐾(𝑝), where 𝐾(𝑝) ∈ Ψ−∞
𝑝 (𝑋).

It is well-known that the latter family is invertible in Ψ0
𝑝(𝑋) if and only if the family 1 +

𝐾(𝑝) : 𝐿2(𝑋) → 𝐿2(𝑋) is invertible for all 𝑝.
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4. Difference differentiation

By 𝑆𝑎𝑠(R) ⊂ 𝐶∞(R) we denote the space of all functions 𝑓(𝑥) possessing an asymptotic
expansion of the form

𝑓(𝑥) ∼
∑︁
𝑖⩽𝑁

𝑐±𝑖 (𝑥)𝑥
𝑖 +

𝑁∑︁
𝑗=0

𝑑±𝑗 (𝑥)𝑥
𝑗 ln |𝑥| as 𝑥→ ±∞ (4.1)

for some 𝑁 ∈ Z+, where 𝑐
±
𝑖 , 𝑑

±
𝑗 are smooth periodic functions. Hereinafter we assume that

the period is equal to one. We suppose that asymptotic expansion (4.1) can be differentiated
infinitely many times.

Theorem 4.1. The mapping of difference differentiation

𝛿 : 𝑆𝑎𝑠(R) −→ 𝑆𝑎𝑠(R)

𝑓(𝑥) ↦−→ (𝛿𝑓)(𝑥) = 𝑓(𝑥+ 1)− 𝑓(𝑥)
(4.2)

is well-defined and is an isomorphism of linear spaces

𝛿 : 𝑆𝑎𝑠(R)/ ker 𝛿 −→ 𝑆𝑎𝑠(R),

where ker 𝛿 is the space of smooth periodic functions.

Proof. 1. We first prove that operator (4.2) is well-defined. We consider the behavior of the
function 𝑓(𝑥 + 1) as 𝑥 → +∞. As 𝑥 → −∞, the proof is similar. Let a function 𝑓(𝑥) possess
asymptotics (4.1). Then

𝑓(𝑥+ 1) ∼
∑︁
𝑖⩽𝑁

𝑐+𝑖 (𝑥)(𝑥+ 1)𝑖 +
𝑁∑︁
𝑗=0

𝑑+𝑗 (𝑥)(𝑥+ 1)𝑗 ln (𝑥+ 1)

∼
∑︁
𝑖⩽𝑁

𝑐+𝑖 (𝑥)
+∞∑︁
𝑘=0

(︂
𝑖

𝑘

)︂
𝑥𝑖−𝑘 +

𝑁∑︁
𝑗=0

𝑑+𝑗 (𝑥)

𝑗∑︁
ℓ=0

(︂
𝑗

ℓ

)︂
𝑥𝑗−ℓ ln

(︂(︂
1 +

1

𝑥

)︂
𝑥

)︂

∼
∑︁
𝑖⩽𝑁

𝑐′+𝑖 (𝑥)𝑥𝑖 +
𝑁∑︁
𝑗=0

𝑑′+𝑗 (𝑥)𝑥𝑗

(︃
∞∑︁
𝑘=1

(−1)𝑘−1

𝑘𝑥𝑘
+ ln𝑥

)︃

∼
∑︁
𝑖⩽𝑁

𝑐′′+𝑖 (𝑥)𝑥𝑖 +
𝑁∑︁
𝑗=0

𝑑′+𝑗 (𝑥) ln |𝑥|, where

(︂
𝑖

𝑘

)︂
=

1

𝑘!

𝑘−1∏︁
𝑟=0

(𝑖− 𝑟).

(4.3)

It is easy to make sure that expansion (4.3) is differentiable. It follows from (4.3) that the
function 𝛿𝑓 possesses asymptotics (4.1) as 𝑥→ +∞.
2. The kernel of the operator 𝛿 obviously consists of periodic functions.
3. The equation 𝛿𝑢 = 𝑓 can be easily solved. Indeed, for a function 𝑓 ∈ 𝐶∞(R) we consider

the function

𝑢(𝑥) = −
∑︁
𝑖⩾0

𝑓(𝑥+ 𝑖)(1− 𝜒(𝑥+ 𝑖)) +
∑︁
𝑗⩾1

𝑓(𝑥− 𝑗)𝜒(𝑥− 𝑗), (4.4)

where the function 𝜒 ∈ 𝐶∞(R) satisfies the relation

𝜒(𝑥) =

{︃
1 as 𝑥 > 1,

0 as 𝑥 < 0.
(4.5)
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It follows from (4.5) that in (4.4) for a fixed 𝑥 the sums involve finitely many non-zero terms.
We claim that that function (4.4) solves equation 𝛿𝑢 = 𝑓 . Indeed,

(𝛿𝑢)(𝑥) =−
∑︁
𝑖⩾0

𝑓(𝑥+ 𝑖+ 1)(1− 𝜒(𝑥+ 𝑖+ 1)) +
∑︁
𝑗⩾1

𝑓(𝑥− 𝑗 + 1)𝜒(𝑥− 𝑗 + 1)

+
∑︁
𝑖⩾0

𝑓(𝑥+ 𝑖)(1− 𝜒(𝑥+ 𝑖))−
∑︁
𝑗⩾1

𝑓(𝑥− 𝑗)𝜒(𝑥− 𝑗)

= 𝑓(𝑥)(1− 𝜒(𝑥)) + 𝑓(𝑥)𝜒(𝑥) = 𝑓(𝑥).

We note that if 𝑓(𝑥) = 𝑂((1 + |𝑥|)−2), then as a function 𝜒 in (4.4) we can take an arbitrary
smooth function, for instance, 𝜒 ≡ 0 or 𝜒 ≡ 1. In this case we obtain a converging series
in (4.4).
4. Before proceeding to proving that the operator 𝛿 is surjective, we first prove two auxiliary

statements.

Lemma 4.1. Let 𝑓(𝑥) ∈ 𝐶∞(R) ∩ 𝑂
(︀
(1 + |𝑥|)−𝑀

)︀
, where 𝑀 ⩾ 2, and the same estimate

holds for the derivatives of arbitrary orders. Then the function

𝑢(𝑥) =
∑︁
𝑗⩾1

𝑓(𝑥− 𝑗)

is defined by the converging series, is a smooth function and satisfies the equation 𝛿𝑢 = 𝑓 , and
the following expansion holds as 𝑥→ +∞

𝑢(𝑥) = 𝑢∞(𝑥) +𝑂
(︀
(1 + |𝑥|)−𝑀+1

)︀
, (4.6)

where 𝑢∞(𝑥) =
∑︀

𝑗∈Z 𝑓(𝑥− 𝑗) is a smooth periodic function. Moreover, identity (4.6) holds for
the derivatives of all orders.

Proof. The properties of the functions 𝑢 and 𝑢∞, except for expansion (4.6), are obtained
straightforwardly.
Let us prove expansion (4.6). As 𝑥→ +∞ we have

|𝑢∞(𝑥)− 𝑢(𝑥)| =

⃒⃒⃒⃒
⃒∑︁
𝑗⩽0

𝑓(𝑥− 𝑗)

⃒⃒⃒⃒
⃒ ⩽ 𝐶

∑︁
𝑗⩽0

(1 + |𝑥− 𝑗|)−𝑀 = 𝐶
∑︁
𝑗⩾0

(1 + 𝑥+ 𝑗)−𝑀 (4.7)

for some constant 𝐶. The latter expression has the order of the integral∫︁ ∞

0

𝑑𝑦

(1 + 𝑥+ 𝑦)𝑀
= 𝑂

(︀
(1 + 𝑥)−𝑀+1

)︀
. (4.8)

Now by (4.7) and (4.8) we obtain (4.6). Expansions of the form (4.6) for the derivatives 𝑢(𝑥)
can be obtained in the same way.

Lemma 4.2. Let for large |𝑥| a function 𝑓 ∈ 𝐶∞(R) be equal to a finite sum

𝑓(𝑥) =
𝑁∑︁

𝑖=−𝑀+1

𝑐±𝑖 (𝑥)𝑥
𝑖 +

𝑁∑︁
𝑗=0

𝑑±𝑗 (𝑥)𝑥
𝑗 ln |𝑥|

with smooth periodic coefficients 𝑐±𝑖 , 𝑑
±
𝑗 , where 𝑀 ⩾ 2, 𝑁 ⩾ 0. Then there exists a functioñ︀𝑢 ∈ 𝑆𝑎𝑠(R) satisfying the equation

𝛿̃︀𝑢 = 𝑓 + 𝑓𝑀 , where 𝑓𝑀 ∈ 𝐶∞(R) ∩𝑂
(︀
(1 + |𝑥|)−𝑀

)︀
. (4.9)

At the same time, relation (4.9) holds for the derivatives of all orders.
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Proof. It is sufficient to solve equation (4.9) for sufficiently large |𝑥|. Since the cases 𝑥→ +∞
and 𝑥→ −∞ are similar, in what follows we consider the case 𝑥→ +∞. We seek the unknown
function ̃︀𝑢 as

̃︀𝑢(𝑥) = 𝑢1(𝑥) + 𝑢2(𝑥) =
−1∑︁

𝑖=−𝑀+2

𝑎𝑖(𝑥)𝑥
𝑖 +

𝑁+1∑︁
𝑗=0

(︀
𝑎𝑗(𝑥)𝑥

𝑗 + 𝑏𝑗(𝑥)𝑥
𝑗 ln |𝑥|

)︀
. (4.10)

Hereafter, for the sake of brevity, we shall write the periodic coefficients 𝑎𝑗, 𝑏𝑗, 𝑐
+
𝑗 , 𝑑

+
𝑗 without

the variables meaning at the same time its dependence on 𝑥.
For the function 𝑢2 we have

𝛿𝑢2(𝑥) =
𝑁+1∑︁
𝑗=0

(︁
𝑎𝑗
[︀
(𝑥+ 1)𝑗 − 𝑥𝑗

]︀
+ 𝑏𝑗

[︀
(𝑥+ 1)𝑗 ln(𝑥+ 1)− 𝑥𝑗 ln𝑥

]︀)︁

=
𝑁+1∑︁
𝑗=0

(︃
𝑎𝑗

𝑗∑︁
𝑘=1

(︂
𝑗

𝑘

)︂
𝑥𝑗−𝑘 + 𝑏𝑗

[︃
𝑥𝑗 ln

(︂
1 +

1

𝑥

)︂
+

𝑗∑︁
ℓ=1

(︂
𝑗

ℓ

)︂
𝑥𝑗−ℓ

(︂
ln𝑥+ ln

(︂
1 +

1

𝑥

)︂)︂]︃)︃

=
𝑁+1∑︁
𝑗=0

(︃
𝑎𝑗

𝑗∑︁
𝑘=1

(︂
𝑗

𝑘

)︂
𝑥𝑗−𝑘 + 𝑏𝑗

[︃
𝑥𝑗

∞∑︁
𝑟=1

(−1)𝑟−1

𝑟𝑥𝑟
+

𝑗∑︁
ℓ=1

(︂
𝑗

ℓ

)︂
𝑥𝑗−ℓ

(︃
ln𝑥+

∞∑︁
𝑟=1

(−1)𝑟−1

𝑟𝑥𝑟

)︃]︃)︃
.

Substituting 𝑢 = 𝑢1+𝑢2 into (4.9), we first find the coefficients at the leading power of 𝑥 (as
𝑗 = 𝑁 + 1, 𝑘 = ℓ = 𝑟 = 1). We obtain the relation

𝑎𝑁+1(𝑁 + 1)𝑥𝑁 + . . .+ 𝑏𝑁+1(𝑥
𝑁 + (𝑁 + 1)𝑥𝑁 ln𝑥) + . . . = 𝑐+𝑁𝑥

𝑁 + 𝑑+𝑁𝑥
𝑁 ln𝑥+ . . . ,

where by . . . the terms of lower degrees are denoted. This gives a system of equations for the
coefficients:

𝑎𝑁+1(𝑁 + 1) + 𝑏𝑁+1 = 𝑐+𝑁 , 𝑏𝑁+1(𝑁 + 1) = 𝑑+𝑁 .

Its solution is the pair

𝑎𝑁+1 =
1

𝑁 + 1

(︂
𝑐+𝑁 − 1

𝑁 + 1
𝑑+𝑁

)︂
, 𝑏𝑁+1 =

1

𝑁 + 1
𝑑+𝑁 ,

where 𝑐+𝑁 and 𝑑+𝑁 are known. Then we find the solutions for the terms containing the powers of
𝑥 of the next degree and so forth. At the same, lessening 𝑗 by 1 at each step and reproducing
the arguing, we can successively find all coefficients 𝑎𝑗, 𝑏𝑗, 0 ⩽ 𝑗 ⩽ 𝑁 , expressing them in
terms 𝑐+𝑗 , 𝑑

+
𝑗 and 𝑎𝑗+1, 𝑏𝑗+1 found at the previous step. Thus, we have constructed a function

𝑢2 from (4.10) such that the function 𝛿𝑢2 − 𝑓 has the asymptotics only with negative powers
of 𝑥.
For the function 𝑢1 we have

𝛿𝑢1(𝑥) =
−1∑︁

𝑖=−𝑀+1

(︁
𝑎𝑖
[︀
(𝑥+ 1)𝑖 − 𝑥𝑖

]︀)︁
=

−1∑︁
𝑖=−𝑀+1

𝑎𝑖

∞∑︁
𝑗=1

(︂
𝑖

𝑗

)︂
𝑥𝑖−𝑗 =

∑︁
𝑖⩽−1

𝑎𝑖𝑥
𝑖.

Here the coefficients 𝑎𝑖 with 𝑖 ⩽ −1 can be chosen so that 𝑎 is equal to the coefficient at 𝑥𝑖 in
asymptotic expansions of the function 𝛿𝑢2 − 𝑓 for all −𝑀 + 1 ⩽ 𝑖 ⩽ −1. Then we obviously
can let

𝑓𝑀
def
= 𝛿𝑢1 + 𝛿𝑢2 − 𝑓 ∈ 𝐶∞(R) ∩𝑂

(︀
(1 + |𝑥|)−𝑀

)︀
.
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5. Let us confirm that 𝑢(𝑥) ∈ 𝑆𝑎𝑠(R) if 𝑓(𝑥) ∈ 𝑆𝑎𝑠(R) and 𝛿𝑢 = 𝑓 . We fix an arbitrary
integer number 𝑀 ⩾ 2. We shall make use of the expansion 𝑓 = 𝑓0 + 𝑓1, where

𝑓0(𝑥) =

(︃
𝑁∑︁

𝑖=−𝑀+1

𝑐+𝑖 (𝑥)𝑥
𝑖 +

𝑁∑︁
𝑗=0

𝑑+𝑗 (𝑥)𝑥
𝑗 ln |𝑥|

)︃
𝜒(𝑥)

+

(︃
𝑁∑︁

𝑖=−𝑀+1

𝑐−𝑖 (𝑥)𝑥
𝑖 +

𝑁∑︁
𝑗=0

𝑑−𝑗 (𝑥)𝑥
𝑗 ln |𝑥|

)︃
(1− 𝜒(𝑥)),

𝑓1(𝑥) = 𝑂
(︀
(1 + |𝑥|)−𝑀

)︀
.

Then we obtain the expansion 𝑢 = 𝑢0 + 𝑢1. We fix a solution of equation 𝛿𝑢1 = 𝑓1 in the
form (4.4), where we let 𝜒(𝑥) ≡ 1. Applying Lemma 4.1 to the function 𝑓1, we obtain the
solution 𝑢1 = 𝑢1,∞(𝑥) +𝑂

(︀
(1 + |𝑥|)−𝑀+1

)︀
, where 𝑢1,∞ is a smooth periodic function. Then we

apply Lemma 4.2 to the function 𝑓0 and obtain a function ̃︀𝑢0 ∈ 𝑆𝑎𝑠(R) such that

𝛿̃︀𝑢0 = 𝑓0 + 𝑓𝑀 , wnere𝑓𝑀 ∈ 𝐶∞(R) ∩𝑂
(︀
(1 + |𝑥|)−𝑀

)︀
.

Then for the difference 𝑢− ̃︀𝑢0 we have
𝛿(𝑢− ̃︀𝑢0) = 𝛿(𝑢)− 𝛿(̃︀𝑢0) = 𝑓 − 𝑓0 − 𝑓𝑀 = 𝑓1 − 𝑓𝑀 = 𝑂

(︀
(1 + |𝑥|)−𝑀

)︀
.

Finally, applying Lemma 4.1 to the function 𝑓1 − 𝑓𝑀 , we obtain:

𝑢− ̃︀𝑢0 = 𝑢2,∞ +𝑂
(︀
(1 + |𝑥|)−𝑀+1

)︀
. (4.11)

Since ̃︀𝑢0, 𝑢2,∞ ∈ 𝑆𝑎𝑠(R) and the number 𝑀 in (4.11) can be chosen arbitrarily large, it follows
from (4.11) that 𝑢 ∈ 𝑆𝑎𝑠(R). The proof of Theorem 4.1 is complete.

5. Regularized trace

In order to define a regularized trace of a parameter-dependent operator 𝐷(𝑝) ∈ Φ𝑚
𝑝 (𝑋), we

shall need the following lemma.

Lemma 5.1. Let 𝐷(𝑝) ∈ Φ𝑚
𝑝 (𝑋). Then 𝛿𝐷(𝑝) = 𝐷(𝑝+ 1)−𝐷(𝑝) ∈ Φ𝑚−1

𝑝 (𝑋).

Proof. We consider a parameter-dependent operator

𝐷(𝑝) =
∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝𝐷𝑘(𝑝), (5.1)

where 𝐷𝑘(𝑝) ∈ Ψ𝑚
𝑝 (𝑋), and the semi-norms ‖𝐷𝑘(𝑝)‖𝑗 decay rapidly as 𝑘 → ∞ for all 𝑗 ∈ Z.

We then have

𝛿𝐷(𝑝) = 𝐷(𝑝+ 1)−𝐷(𝑝) =
∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝
[︀
𝐷𝑘(𝑝+ 1)−𝐷𝑘(𝑝)

]︀
=
∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝𝛿𝐷𝑘(𝑝).

Let us show that the operator 𝛿𝐷𝑘(𝑝) ∈ Ψ𝑚−1
𝑝 (𝑋) and the semi-norms ‖𝛿𝐷𝑘(𝑝)‖𝑗 decay rapidly

as 𝑘 → ∞ for all 𝑗. The complete symbol of ΨDO 𝐷𝑘(𝑝) possesses the asymptotic expansion

𝑎(𝑥, 𝜉, 𝑝) ∼
∑︁
𝑗⩾0

𝑎𝑚−𝑗(𝑥, 𝜉, 𝑝),

where the function 𝑎𝑗(𝑥, 𝜉, 𝑝) is homogeneous of degree 𝑗 with respect to the pair of variables
(𝜉, 𝑝), that is, 𝑎𝑗(𝑥, 𝜆𝜉, 𝜆𝑝) = 𝜆𝑗𝑎𝑗(𝑥, 𝜉, 𝑝) for all 𝜆 > 0 and (𝑥, 𝜉, 𝑝) ∈ (𝑇 *𝑋 ⊕ R) ∖ 0. We
expand the function 𝑎𝑗(𝑥, 𝜉, 𝑝+ 1) into the Taylor series about the point 𝑝:

𝑎𝑗(𝑥, 𝜉, 𝑝+ 1) ∼
∑︁
𝑖⩾0

(︂
𝜕

𝜕𝑝

)︂𝑖

𝑎𝑗(𝑥, 𝜉, 𝑝) ∼
∑︁
𝑖⩾0

𝑎𝑗,𝑖(𝑥, 𝜉, 𝑝),
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where 𝑎𝑗,𝑖 is a homogeneous function of degree 𝑗 − 𝑖. Then, in view of the latter equation, the
complete symbol of ΨDO 𝛿𝐷𝑘(𝑝) possesses the expansion

𝛿𝑎(𝑥, 𝜉, 𝑝) ∼
∑︁
𝑗⩽𝑚

[︀
𝑎𝑗(𝑥, 𝜉, 𝑝+ 1)− 𝑎𝑗(𝑥, 𝜉, 𝑝)

]︀
∼
∑︁
𝑗⩽𝑚

∑︁
𝑖⩾1

𝑎𝑗,𝑖(𝑥, 𝜉, 𝑝) ∼
∑︁

𝑘⩽𝑚−1

(︃ ∑︁
𝑘+1⩽𝑗⩽𝑚

𝑎𝑗,𝑗−𝑘(𝑥, 𝜉, 𝑝)

)︃
.

The order of the latter symbol is equal to 𝑚− 1. Therefore, the order of the operator 𝛿𝐷𝑘(𝑝)
is equal to 𝑚− 1.
It remains to show that the semi-norms ‖𝛿𝐷𝑘(𝑝)‖𝑗 decay rapidly as 𝑘 → ∞. Indeed, we

have:
‖𝛿𝐷𝑘(𝑝)‖𝑗 ⩽ ‖𝐷𝑘(𝑝+ 1)‖𝑗 + ‖𝐷𝑘(𝑝)‖𝑗

is the sum of rapidly decaying as 𝑘 → ∞ semi-norms.

Lemma 5.2. Let 𝐷(𝑝) ∈ Φ𝑚
𝑝 (𝑋), where 𝑚 < − dim𝑋. Then the operator 𝐷(𝑝) is of trace

class, the trace tr𝐷(𝑝) is a smooth function and as 𝑝→ ±∞, the following asymptotic expansion

holds:

tr𝐷(𝑝) ∼
∑︁

𝑗⩽𝑚+𝑛

𝑐±𝑗 (𝑝)|𝑝|𝑗, (5.2)

where 𝑐±𝑗 are smooth periodic functions. Expansion (5.2) can be differentiated with respect to

the parameter 𝑝.

Proof. Let 𝐷(𝑝) be an operator of form (5.1). Since 𝑚 < −𝑛, we have:

tr𝐷(𝑝) = tr

(︃∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝𝐷𝑘(𝑝)

)︃
=
∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝 tr𝐷𝑘(𝑝). (5.3)

By the results of work [11, Lm. 1], the following asymptotic expansion holds:

tr𝐷𝑘(𝑝) ∼
∑︁

𝑗⩽𝑚+𝑛

𝛼±
𝑘,𝑗|𝑝|

𝑗 as |𝑝| → ∞, (5.4)

where the coefficients 𝛼±
𝑘,𝑗 ∈ C rapidly decay as 𝑘 → ∞ and the estimate holds:

tr𝐷𝑘(𝑝)−
∑︁

−𝑁⩽𝑗⩽𝑚+𝑛

𝛼±
𝑘,𝑗|𝑝|

𝑗 = 𝑂
(︀
|𝑝|−𝑁−1(1 + |𝑘|)−𝐿

)︀
∀𝐿 ⩾ 0.

Now we substitute asymptotic expansion (5.4) into (5.3) and interchange the summations in 𝑘
and 𝑗. We obtain the asymptotic expansion:

tr𝐷(𝑝) ∼
∑︁

𝑗⩽𝑚+𝑛

(︃∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝𝛼±
𝑘,𝑗

)︃
|𝑝|𝑗,

where the coefficients 𝑐±𝑗 (𝑝) =
∑︀

𝑘 𝑒
2𝜋𝑖𝑘𝑝𝛼±

𝑘,𝑗 are smooth functions.
It is easy to see that the previous proof also gives the differentiability of expansion (5.2) with

respect to the parameter. In order to do this, it is sufficient to make the following modifications
in the above proof. It follows from [11, Lm. 1] that expansion (5.4) can be differentiated in 𝑝:

tr𝐷′
𝑘(𝑝) ∼

∑︁
𝑗⩽𝑚+𝑛

𝛼±
𝑘,𝑗𝑗|𝑝|

𝑗−1 sgn 𝑝. (5.5)

Substituting (5.5) into the expression

tr𝐷′(𝑝) =
∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝
(︀
tr𝐷′

𝑘(𝑝) + 2𝜋𝑖𝑘 tr𝐷(𝑝)
)︀
,
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we obtain the asymptotic expansion

tr𝐷′(𝑝) ∼
∑︁

𝑗⩽𝑚+𝑛

(︃∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝𝛼±
𝑘,𝑗2𝜋𝑖𝑘

)︃
|𝑝|𝑗 +

∑︁
𝑗⩽𝑚+𝑛

(︃∑︁
𝑘

𝑒2𝜋𝑖𝑘𝑝𝛼±
𝑘,𝑗𝑗 sgn 𝑝

)︃
|𝑝|𝑗−1.

In the same way we establish that the asymptotic expansion for the derivative tr𝐷(𝑗)(𝑝) of
order 𝑗 is obtained by 𝑗-multiple differentiation of expansion (5.2).

By 𝒫 ⊂ 𝑆𝑎𝑠(R) we denote the subspace

𝒫 =

{︃
𝑓(𝑝) ∈ 𝐶∞(R)

⃒⃒⃒⃒
𝑓(𝑝) =

𝑁∑︁
𝑗=0

𝑓𝑗(𝑝)𝑝
𝑗

}︃
,

where 𝑓𝑗(𝑝) are smooth periodic functions. It is easy to make sure that

𝒫 =
⋃︁
𝑗⩾0

ker 𝛿𝑗. (5.6)

It follows from Theorem 4.1 that the operator 𝛿 induces an isomorphism

𝑆𝑎𝑠(R)/𝒫 −→ 𝑆𝑎𝑠(R)/𝒫 ,
[𝑓 ] ↦−→ [𝛿𝑓 ],

(5.7)

where by [𝑓 ] we denote the equivalence class of a function 𝑓 . Mapping (5.7) will be also denoted
by the symbol 𝛿. In particular, for each ℓ ⩾ 0 the mapping 𝛿−ℓ : 𝑆𝑎𝑠(R)/𝒫 → 𝑆𝑎𝑠(R)/𝒫 is well-
defined.

Definition 5.1. We define a regularized trace of a parameter-dependent operator 𝐷(𝑝) ∈
Φ𝑚

𝑝 (𝑋) by the formula

(TR𝐷)(𝑝) = 𝛿−ℓ
[︀
tr(𝛿ℓ𝐷(𝑝))

]︀
∈ 𝑆𝑎𝑠(R)/𝒫 , (5.8)

where ℓ > 𝑚+ dim𝑋.

Proposition 5.1 (Properties of regularized trace).

1. For a parameter-dependent operator 𝐷(𝑝) ∈ Φ𝑚
𝑝 (𝑋), regularized trace (5.8) is well-defined,

that is, it is independent of the choice of the number ℓ.
2. The mapping TR: Φ𝑝(𝑋) → 𝑆𝑎𝑠(R)/𝒫, 𝐷(𝑝) ↦→ (TR𝐷)(𝑝) satisfies the cyclic property

TR(𝐴𝐵) = TR(𝐵𝐴) for all 𝐴,𝐵 ∈ Φ𝑝(𝑋).

Proof. 1. Let us prove that regularized trace (5.8) is well-defined. It follows from Lemma 5.1
that 𝛿ℓ𝐷(𝑝) ∈ Φ𝑚−ℓ

𝑝 (𝑋). Then for ℓ > 𝑚 + 𝑛 the trace of the parameter-dependent operator

𝛿ℓ𝐷(𝑝) is well-defined and tr[𝛿ℓ𝐷(𝑝)] ∈ 𝑆𝑎𝑠(R), see Lemma 5.2. It follows from Theorem 4.1
that (TR𝐷)(𝑝) ∈ 𝑆𝑎𝑠(R)/𝒫 . We state that the traces (TR𝐷)(𝑝) corresponding to different ℓ
differ by elements of the space 𝒫 . Indeed,

𝛿−ℓ−1
[︀
tr
(︀
𝛿ℓ+1𝐷(𝑝)

)︀]︀
= 𝛿−ℓ

(︀
𝛿−1
[︀
tr 𝛿
(︀
𝛿ℓ𝐷(𝑝)

)︀]︀)︀
= 𝛿−ℓ

(︀
𝛿−1𝛿

[︀
tr
(︀
𝛿ℓ𝐷(𝑝)

)︀]︀)︀
= 𝛿−ℓ

[︀
tr
(︀
𝛿ℓ𝐷(𝑝)

)︀ ]︀
∈ 𝑆𝑎𝑠(R)/𝒫 .

2. Let us prove the identity TR(𝐴𝐵) = TR(𝐵𝐴).
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Lemma 5.3. For arbitrary families 𝐴(𝑝), 𝐵(𝑝) the following difference Leibniz formulae

hold:

𝛿ℓ(𝐴(𝑝)𝐵(𝑝)) =
ℓ∑︁

𝑗=0

(︂
ℓ

𝑗

)︂
𝛿ℓ−𝑗𝐴(𝑝) · 𝛿𝑗𝐵(𝑝+ ℓ− 𝑗), (5.9)

𝛿ℓ(𝐴(𝑝)𝐵(𝑝)) =
ℓ∑︁

𝑗=0

(︂
ℓ

𝑗

)︂
𝛿𝑗𝐴(𝑝+ ℓ− 𝑗) · 𝛿ℓ−𝑗𝐵(𝑝). (5.10)

Proof. The proofs of formulae (5.9) and (5.10) are similar and this is why we provide only the
proof of the first formula. We prove it by the induction. As ℓ = 1, the formula is valid:

𝛿
(︀
𝐴(𝑝)𝐵(𝑝)

)︀
= 𝐴(𝑝+ 1)𝐵(𝑝+ 1)− 𝐴(𝑝)𝐵(𝑝) = 𝛿𝐴(𝑝) ·𝐵(𝑝+ 1) + 𝐴(𝑝)𝛿𝐵(𝑝).

Assume that this formula holds for some ℓ. Then for ℓ+ 1 we have:

𝛿𝛿ℓ
(︀
𝐴(𝑝)𝐵(𝑝)

)︀
=

ℓ∑︁
𝑗=0

(︂
ℓ

𝑗

)︂
𝛿
(︀
𝛿ℓ−𝑗𝐴(𝑝) · 𝛿𝑗𝐵(𝑝+ ℓ− 𝑗)

)︀
=

ℓ∑︁
𝑗=0

(︂
ℓ

𝑗

)︂(︀
𝛿(ℓ+1)−𝑗𝐴(𝑝) · 𝛿𝑗𝐵(𝑝+ (ℓ+ 1)− 𝑗) + 𝛿ℓ−𝑗𝐴(𝑝) · 𝛿𝑗+1𝐵(𝑝+ ℓ− 𝑗)

)︀
=

ℓ∑︁
𝑗=0

(︂
ℓ

𝑗

)︂
𝛿(ℓ+1)−𝑗𝐴(𝑝) ·

(︀
𝛿𝑗+1𝐵(𝑝+ ℓ− 𝑗) + 𝛿𝑗𝐵(𝑝+ ℓ− 𝑗)

)︀
+

ℓ∑︁
𝑗=0

(︂
ℓ

𝑗

)︂
𝛿ℓ−𝑗𝐴(𝑝) · 𝛿𝑗+1𝐵(𝑝+ ℓ− 𝑗) =

ℓ∑︁
𝑗=0

(︂
ℓ

𝑗

)︂
𝛿(ℓ+1)−𝑗𝐴(𝑝) · 𝛿𝑗𝐵(𝑝+ ℓ+ 1− 𝑗)

+
ℓ+1∑︁
𝑗=1

(︂
ℓ

𝑗 − 1

)︂
𝛿ℓ+1−𝑗𝐴(𝑝) · 𝛿𝑗𝐵(𝑝+ ℓ+ 1− 𝑗) = 𝛿ℓ+1𝐴(𝑝) ·𝐵(𝑝+ ℓ+ 1) + 𝐴(𝑝)𝛿ℓ+1𝐵(𝑝)

+
ℓ∑︁

𝑗=1

[︂(︂
ℓ

𝑗

)︂
+

(︂
ℓ

𝑗 − 1

)︂]︂
𝛿ℓ+1−𝑗𝐴(𝑝) · 𝛿𝑗𝐵(𝑝+ ℓ+ 1− 𝑗)

=
ℓ+1∑︁
𝑗=0

(︂
ℓ+ 1

𝑗

)︂
𝛿(ℓ+1)−𝑗𝐴(𝑝) · 𝛿𝑗𝐵(𝑝+ (ℓ+ 1)− 𝑗).

Here we have used the identity 𝐵(𝑝+ 1) = 𝛿𝐵(𝑝) +𝐵(𝑝).

Now we are going to prove the identity

tr
(︀
𝛿ℓ
(︀
𝐴(𝑝)𝐵(𝑝)

)︀)︀
= tr

(︀
𝛿ℓ
(︀
𝐵(𝑝)𝐴(𝑝)

)︀)︀
. (5.11)

According to (5.9), we transform the right hand side in (5.11) to the form

tr
(︀
𝛿ℓ
(︀
𝐵(𝑝)𝐴(𝑝)

)︀)︀
=tr

(︃
ℓ∑︁

𝑗=0

(︂
ℓ

𝑗

)︂
𝛿ℓ−𝑗𝐵(𝑝) · 𝛿𝑗𝐴(𝑝+ ℓ− 𝑗)

)︃

=tr

(︃
ℓ∑︁

𝑗=0

(︂
ℓ

𝑗

)︂
𝛿𝑗𝐴(𝑝+ ℓ− 𝑗) · 𝛿ℓ−𝑗𝐵(𝑝)

)︃
= tr

(︀
𝛿ℓ
(︀
𝐴(𝑝)𝐵(𝑝)

)︀)︀
.

(5.12)

Here in the second identity we have employed the cyclic property of the trace tr. The cyclic
property can be applied since the composition 𝛿ℓ𝐴(𝑝 + ℓ − 𝑗)𝛿ℓ−𝑗𝐵(𝑝) is of order ⩽ ord𝐴 +
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ord𝐵 − ℓ and has the trace if the number ℓ is large enough. The latter identity in (5.12) is
implied by formula (5.10). Now the desired identity of the regularized traces follows from (5.11):

TR(𝐴𝐵) = 𝛿−ℓ
[︀
tr
(︀
𝛿ℓ(𝐴𝐵)

)︀]︀
= 𝛿−ℓ

[︀
tr
(︀
𝛿ℓ(𝐵𝐴)

)︀]︀
= TR(𝐵𝐴).

Relation with Melrose’s regularized trace. It turns out that in the case of usual
parameter-dependent ΨDOs the introduced regularized trace is equal to the Melrose regularized
trace, see [11, Sect. 4]. We recall the definition of the latter. The Melrose regularized trace for
parameter-dependent ΨDO 𝐷(𝑝) ∈ Ψ𝑚

𝑝 (𝑋) is defined by the expression

(TR𝑀 𝐷)(𝑝) =

∫︁ 𝑝

0

∫︁ 𝑝ℓ−1

0

· · ·
∫︁ 𝑝1

0

tr

(︃(︂
𝑑

𝑑𝑞

)︂ℓ

𝐷(𝑞)

)︃
𝑑𝑞𝑑𝑝1 . . . 𝑑𝑝ℓ−1, (5.13)

where ℓ > 𝑚+ 𝑛. Expression (5.13) is independent of ℓ up to the elements of the space 𝒫 .

Proposition 5.2. For each parameter dependent operator 𝐷(𝑝) ∈ Ψ𝑚
𝑝 (𝑋) the identity holds

TR𝐷 = TR𝑀 𝐷 ∈ 𝑆𝑎𝑠(R)/𝒫 . (5.14)

Proof. We need to prove the identity

𝛿−ℓ
[︀
tr
(︀
𝛿ℓ𝐷(𝑝)

)︀]︀
=
[︀
TR𝑀 𝐷(𝑝)

]︀
for an operator 𝐷(𝑝) ∈ Ψ𝑚

𝑝 (𝑋), or equivalently,[︀
tr
(︀
𝛿ℓ𝐷(𝑝)

)︀]︀
= 𝛿ℓ

[︀
TR𝑀 𝐷(𝑝)

]︀
. (5.15)

Identity (5.15) is obvious for 𝑚 + 𝑛 < 0 since in this case we can take ℓ = 0. For 𝑚 + 𝑛 ⩾ 0

we consider the operator ̃︀𝐷(𝑝) ∈ Ψ𝑚
𝑝 (𝑋)/Ψ−𝑛−1

𝑝 (𝑋). It is sufficient to prove identity (5.14) for̃︀𝐷(𝑝) locally, that is, we suppose that its complete symbol 𝑎(𝑥, 𝜉, 𝑝) is supported in a local chart.
We consider a parameter-dependent ΨDO 𝐷(𝑝), the complete symbol of which equals 𝑎(𝑥, 𝜉, 𝑝).
We substitute the operator 𝐷(𝑝) into the right hand side of (5.15). Then as 𝑚 − ℓ < −𝑛 we
have

𝛿ℓ
[︀
TR𝑀 𝐷(𝑝)

]︀
=𝛿ℓ

∫︁ 𝑝

0

∫︁ 𝑝ℓ−1

0

· · ·
∫︁ 𝑝1

0

∫︁
R𝑛×R𝑛

(︂
𝜕

𝜕𝑞

)︂ℓ

𝑎(𝑥, 𝜉, 𝑞)𝑑𝑥𝑑𝜉𝑑𝑞𝑑𝑝1 . . . 𝑑𝑝ℓ−1

=𝛿ℓ
∫︁
R𝑛×R𝑛

∫︁ 𝑝

0

∫︁ 𝑝ℓ−1

0

· · ·
∫︁ 𝑝1

0

𝑎(ℓ)(𝑥, 𝜉, 𝑞)𝑑𝑞𝑑𝑝1 . . . 𝑑𝑝ℓ−1𝑑𝑥𝑑𝜉

=𝛿ℓ
∫︁
R𝑛×R𝑛

(︃
𝑎(𝑥, 𝜉, 𝑝)−

ℓ−1∑︁
𝑘=0

1

𝑘!
𝑎(𝑘)(𝑥, 𝜉, 0)𝑝𝑘

)︃
𝑑𝑥𝑑𝜉

=

∫︁
R𝑛×R𝑛

(︃
𝛿ℓ𝑎(𝑥, 𝜉, 𝑝)− 𝛿ℓ

(︂ ℓ−1∑︁
𝑘=0

1

𝑘!
𝑎(𝑘)(𝑥, 𝜉, 0)𝑝𝑘

)︂)︃
𝑑𝑥𝑑𝜉

=

∫︁
R𝑛×R𝑛

𝛿ℓ𝑎(𝑥, 𝜉, 𝑝)𝑑𝑥𝑑𝜉 =
[︀
tr
(︀
𝛿ℓ𝐷(𝑝)

)︀]︀
.

(5.16)

Here 𝑎(𝑘)(𝑥, 𝜉, 𝑞) is the 𝑘th derivative of the function 𝑎 with respect to the parameter 𝑞. Rela-
tions (5.16) imply needed identities (5.15) and (5.14).
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6. Regularized integral

The regularized trace TR𝐷(𝑝) can increase as 𝑝 → ∞. For integrating such functions over
the real line we employ some regularization of the integral.

Proposition 6.1. Let 𝑓(𝑝) ∈ 𝑆𝑎𝑠(R). Then, as 𝑇 → +∞, the asymptotic expansion holds:∫︁ 𝑇

−𝑇

𝑓(𝑝)𝑑𝑝 ∼
∑︁
𝑗⩽𝑁

𝑐𝑗(𝑇 )𝑇
𝑗 +

∑︁
0⩽𝑟⩽𝑁

𝑑𝑟(𝑇 )𝑇
𝑟 ln𝑇 , (6.1)

where 𝑐𝑗(𝑇 ), 𝑑𝑟(𝑇 ) are smooth periodic functions.

Proof. It is sufficient to obtain asymptotic expansion of the form (6.1) for the integral over the
segment [1, 𝑇 ]. If the function 𝑓(𝑝) possesses asymptotic expansion (4.1), then we consider the
function

𝑓0(𝑝) = 𝑓(𝑝)−

(︃
𝑁∑︁

𝑗=−1

𝑐+𝑗 (𝑝)𝑝
𝑗 +

𝑁∑︁
𝑟=0

𝑑+𝑟 (𝑝)𝑝
𝑟 ln |𝑝|

)︃
∼
∑︁
𝑗⩽−2

𝑐+𝑗 (𝑝)𝑝
𝑗. (6.2)

By (6.2) we get∫︁ 𝑇

1

𝑓(𝑝)𝑑𝑝 =

∫︁ 𝑇

1

𝑓0(𝑝)𝑑𝑝+

∫︁ 𝑇

1

(︃
𝑁∑︁

𝑗=−1

𝑐+𝑗 (𝑝)𝑝
𝑗 +

𝑁∑︁
𝑟=0

𝑑+𝑟 (𝑝)𝑝
𝑟 ln |𝑝|

)︃
𝑑𝑝. (6.3)

Let us show that each term in (6.3) has asymptotics (6.1).
1. Since 𝑓0(𝑝) = 𝑂(𝑝−2) as 𝑝→ ∞, we have∫︁ 𝑇

1

𝑓0(𝑝)𝑑𝑝 =

∫︁ ∞

1

𝑓0(𝑝)𝑑𝑝−
∫︁ ∞

𝑇

𝑓0(𝑝)𝑑𝑝. (6.4)

Let us prove that there exists the asymptotic expansion∫︁ ∞

𝑇

𝑓0(𝑝)𝑑𝑝 ∼
∑︁
𝑗⩽−2

𝑎𝑗(𝑇 )𝑇
𝑗 (6.5)

with some smooth periodic functions 𝑎𝑗(𝑇 ). We fix a number 𝑀 ⩾ 3. Then we have⃒⃒⃒⃒
⃒
∫︁ +∞

𝑇

𝑓0(𝑝)𝑑𝑝−
−2∑︁

𝑗=−𝑀+1

∫︁ ∞

𝑇

𝑐+𝑗 (𝑝)𝑝
𝑗𝑑𝑝

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
∫︁ +∞

𝑇

(︃
𝑓0(𝑝)−

−2∑︁
𝑗=−𝑀+1

𝑐+𝑗 (𝑝)𝑝
𝑗

)︃
𝑑𝑝

⃒⃒⃒⃒
⃒

⩽
∫︁ +∞

𝑇

⃒⃒⃒⃒
⃒𝑓0(𝑝)−

−2∑︁
𝑗=−𝑀+1

𝑐+𝑗 (𝑝)𝑝
𝑗

⃒⃒⃒⃒
⃒ 𝑑𝑝 ⩽

∫︁ +∞

𝑇

𝐶𝑀 |𝑝|−𝑀𝑑𝑝 = 𝐶 ′
𝑀𝑇

−𝑀+1,

(6.6)

where we have used the fact that formula (6.2) is an asymptotic expansion, that is, the estimate⃒⃒⃒⃒
⃒𝑓0(𝑝)−

−2∑︁
𝑗=−𝑀+1

𝑐+𝑗 (𝑝)𝑝
𝑗

⃒⃒⃒⃒
⃒ ⩽ 𝐶𝑀 |𝑝|−𝑀

holds with some constant 𝐶𝑀 > 0.

Lemma 6.1. Let 𝑐(𝑝) be a smooth periodic function. Then for each 𝑗 ⩽ −2 there exists an

asymptotic expansion ∫︁ ∞

𝑇

𝑐(𝑝)𝑝𝑗𝑑𝑝 ∼
∑︁

𝑘⩽𝑗+1

𝑐𝑘(𝑇 )𝑇
𝑘 (6.7)

with smooth periodic coefficients 𝑐𝑘(𝑇 ).
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Proof. We define an expansion 𝑐(𝑝) = 𝑐+̃︀𝑐(𝑝), where 𝑐 = ∫︀ 1

0
𝑐(𝑝)𝑑𝑝. Then, integrating by parts,

we obtain:∫︁ ∞

𝑇

𝑐(𝑝)𝑝𝑗𝑑𝑝 =

∫︁ ∞

𝑇

(𝑐+ ̃︀𝑐(𝑝))𝑝𝑗𝑑𝑝 = 𝑐

∫︁ ∞

𝑇

𝑝𝑗𝑑𝑝+

∫︁ ∞

𝑇

̃︀𝑐(𝑝)𝑝𝑗𝑑𝑝
=

𝑐

𝑗 + 1
𝑝𝑗+1

⃒⃒⃒⃒∞
𝑇

+

∫︁ ∞

𝑇

𝑝𝑗𝑑(𝑣(𝑝)) = − 𝑐

𝑗 + 1
𝑇 𝑗+1 − 𝑇 𝑗𝑣(𝑇 )−

∫︁ ∞

𝑇

𝑗𝑣(𝑝)𝑝𝑗−1𝑑𝑝.

(6.8)

Here 𝑣(𝑝) =
∫︀ 𝑝

0
̃︀𝑐(𝑞)𝑑𝑞 is a periodic function since

∫︀ 1

0
̃︀𝑐(𝑞)𝑑𝑞 = 0. This arguing can be applied

to the latter integral in (6.8) and by induction we prove the validity of expansion (6.7).

Thus, asymptotic expansion (6.7) and estimate (6.6) yield the existence of sought asymptotic
expansion (6.5) for integral (6.4). This gives asymptotic expansion (6.1).
2. Let us prove that the second term in (6.3) has asymptotic expansion of form (6.1) for large

𝑇 . Indeed, integrating by parts as in Lemma 6.1, we obtain the needed asymptotic expansion:∫︁ 𝑇

1

(︃
𝑁∑︁

𝑗=−1

𝑐+𝑗 (𝑝)𝑝
𝑗 +

𝑁∑︁
𝑟=0

𝑑+𝑟 (𝑝)𝑝
𝑟 ln 𝑝

)︃
𝑑𝑝 ∼

∑︁
𝑗⩽𝑁+1

𝑐𝑗(𝑇 )𝑇
𝑗 +

𝑁+1∑︁
𝑟=0

𝑑𝑟(𝑇 )𝑇
𝑟 ln𝑇 , (6.9)

where 𝑐𝑗, 𝑑𝑗 are some periodic functions. The proof is complete.

Definition 6.1. A regularized integral of the function 𝑓 ∈ 𝑆𝑎𝑠(R) is the mean value of the

coefficient 𝑐0(𝑇 ) in asymptotic expansion (6.1) and it is denoted by

−
∫︁
R

𝑓(𝑝)𝑑𝑝
def
=

∫︁ 1

0

𝑐0(𝑇 )𝑑𝑇.

Proposition 6.2 (Properties of the regularized integral).

1. If 𝑓 ∈ 𝑆𝑎𝑠(R) ∩𝑂
(︀
(1 + |𝑝|)−2

)︀
, then

−
∫︁
R

𝑓(𝑝)𝑑𝑝 =

∫︁
R

𝑓(𝑝)𝑑𝑝;

2. If 𝑓 ∈ 𝒫, then −
∫︀
R
𝑓(𝑝)𝑑𝑝 = 0;

3. If a function 𝑓 is odd, then −
∫︀
R
𝑓(𝑝)𝑑𝑝 = 0.

Proof. 1. Since 𝑓 ∈ 𝑆𝑎𝑠(R)∩𝑂
(︀
(1+ |𝑝|)−2

)︀
, then function

∫︀ 𝑇

−𝑇
𝑓(𝑝)𝑑𝑝 as 𝑇 → +∞ converges to

the integral over the entire line R. Therefore, the coefficient 𝑐0(𝑇 ) in expansion (6.1) is equal
to the integral

∫︀
R
𝑓(𝑝)𝑑𝑝, and its mean value coincides with itself.

2. In view of the continuity, it is sufficient to prove the identity −
∫︀
R
𝑓(𝑝)𝑑𝑝 = 0 for 𝑓(𝑝) =

𝑒2𝜋𝑖𝑘𝑝𝑝𝑗, where 𝑘 ∈ Z, 𝑗 ⩾ 0. For 𝑘 = 0 this identity can be checked straightforwardly. As

𝑘 ̸= 0, the integral
∫︀ 𝑇

−𝑇
𝑒2𝜋𝑖𝑘𝑝𝑝𝑗𝑑𝑝 is of the form 𝑒2𝜋𝑖𝑘𝑇𝑃 (𝑇 ) + 𝑒−2𝜋𝑖𝑘𝑇𝑄(𝑇 ), where 𝑃 (𝑇 ), 𝑄(𝑇 )

are some polynomials. This is why we obtain the needed identity −
∫︀
R
𝑒2𝜋𝑖𝑘𝑝𝑝𝑗𝑑𝑝 = 0 since the

mean values of the functions 𝑒±2𝜋𝑖𝑘𝑇 are zero.
3. Since 𝑓(−𝑝) = −𝑓(𝑝), we obtain ∫︁ 𝑇

−𝑇

𝑓(𝑝)𝑑𝑝 = 0.

By Proposition 5.2 we obtain the following corollary.

Corollary 6.1. A functional Tr: Φ𝑝(𝑋) → C defined by the formula

Tr𝐷
def
= −
∫︁
R

TR𝐷(𝑝)𝑑𝑝,
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is a trace, that is, Tr(𝐴𝐵) = Tr(𝐵𝐴) for all 𝐴,𝐵 ∈ Φ𝑝(𝑋).

7. Eta-invariant

Definition 7.1. Let 𝐷(𝑝) ∈ Φ𝑚
𝑝 (𝑋) be an invertible element, that is, there exists an inverse

element 𝐷−1(𝑝) ∈ Φ−𝑚
𝑝 (𝑋), see Theorem 3.1. Then the number

𝜂(𝐷)
def
=

1

2𝜋𝑖
Tr

(︂
𝐷−1𝑑𝐷

𝑑𝑝

)︂
(7.1)

is called 𝜂-invariant of the element 𝐷(𝑝).

Proposition 7.1 (Properties of 𝜂-invariant).

1. 𝜂-invariant has the logarithmic property

𝜂(𝐴𝐵) = 𝜂(𝐴) + 𝜂(𝐵)

for all invertible elements 𝐴,𝐵 ∈ Φ𝑝(𝑋);
2. 𝜂-invariant (7.1) is a generalization of the Melrose 𝜂-invariant, namely, if 𝐷(𝑝) ∈ Ψ𝑝(𝑋)

is an invertible parameter-dependent ΨDO, then

𝜂(𝐷) = 𝜂𝑀(𝐷), where 𝜂𝑀(𝐷) =
1

2𝜋𝑖
−
∫︁
R

TR𝑀

(︂
𝐷−1𝑑𝐷

𝑑𝑝

)︂
𝑑𝑝.

Proof. 1. Let us prove the logarithmic property:

2𝜋𝑖𝜂(𝐴𝐵) =Tr

(︂
(𝐴𝐵)−1𝑑(𝐴𝐵)

𝑑𝑝

)︂
= Tr

(︂
𝐵−1𝐴−1

(︂
𝑑𝐴

𝑑𝑝
𝐵 + 𝐴

𝑑𝐵

𝑑𝑝

)︂)︂
=Tr

(︂
𝐵−1𝐴−1𝑑𝐴

𝑑𝑝
𝐵

)︂
+ Tr

(︂
𝐵−1𝐴−1𝐴

𝑑𝐵

𝑑𝑝

)︂
=Tr

(︂
𝐵𝐵−1𝐴−1𝑑𝐴

𝑑𝑝

)︂
+ Tr

(︂
𝐵−1𝑑𝐵

𝑑𝑝

)︂
= 2𝜋𝑖

(︀
𝜂(𝐴) + 𝜂(𝐵)

)︀
.

Here we have employed the cyclic property of the trace Tr.
2. On the subalgebra Ψ𝑝(𝑋) the regularized trace coincides with the Melrose regularized

trace, see (5.14). This yields:

𝜂(𝐷) =
1

2𝜋𝑖
−
∫︁
R

TR

(︂
𝐷−1𝑑𝐷

𝑑𝑝

)︂
𝑑𝑝 =

1

2𝜋𝑖
−
∫︁
R

TR𝑀

(︂
𝐷−1𝑑𝐷

𝑑𝑝

)︂
𝑑𝑝 = 𝜂𝑀(𝐷).

Variation of 𝜂-invariant.

Proposition 7.2. Let 𝐷𝑡(𝑝) ∈ Φ𝑚
𝑝 (𝑋), 𝑡 ∈ [0, 1], be a smooth homotopy of a family of

parameter-dependent invertible operators. Then

1. The derivative of the 𝜂-invariant of the family 𝐷𝑡 with respect to the parameter 𝑡 is

𝑑

𝑑𝑡
𝜂(𝐷𝑡) =

1

2𝜋𝑖
Tr

(︂
𝜕

𝜕𝑝

(︂
𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑡

)︂)︂
; (7.2)

2. The compositioñ︁Tr def
= Tr ∘ 𝜕

𝜕𝑝
is a trace on the algebra Φ𝑝(𝑋), that is, ̃︁Tr(𝐴𝐵) =̃︁Tr(𝐵𝐴);

3. For the parameter-dependent operator 𝐷(𝑝) =
∑︀

𝑘𝐷𝑘(𝑝)𝑒
2𝜋𝑖𝑘𝑝 ∈ Φ𝑚

𝑝 (𝑋) we have

̃︁Tr𝐷(𝑝) =

∫︁
𝑇 *𝑋

[𝑑0,−𝑛(𝑥, 𝜉, 1)− 𝑑0,−𝑛(𝑥, 𝜉,−1)]
𝜔𝑛

𝑛!
, 𝑛 = dim𝑋, (7.3)



ETA-INVARIANT FOR PARAMETER-DEPENDENT FAMILIES. . . 53

where (𝑥, 𝜉) ∈ 𝑇 *𝑋, 𝜔 =
∑︀
𝑑𝑥𝑗 ∧ 𝑑𝜉𝑗 is a symplectic form on 𝑇 *𝑋, and 𝑑0,𝑗 is a homoge-

neous component of degree 𝑗 in the complete symbol of parameter-dependent ΨDO 𝐷0(𝑝),
and the integral in (7.3) converges absolutely.

Proof. 1. The left hand side in (7.2) is equal to

𝑑

𝑑𝑡
𝜂(𝐷𝑡) =

1

2𝜋𝑖
Tr

(︂
𝜕

𝜕𝑡

(︂
𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑝

)︂)︂
=

1

2𝜋𝑖
Tr

(︂
−𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑡
𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑝
+𝐷−1

𝑡

𝜕2𝐷𝑡

𝜕𝑡𝜕𝑝

)︂
. (7.4)

The right hand side in (7.2) is equal to

1

2𝜋𝑖
Tr

(︂
𝜕

𝜕𝑝

(︂
𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑡

)︂)︂
=

1

2𝜋𝑖
Tr

(︂
−𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑝
𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑡
+𝐷−1

𝑡

𝜕2𝐷𝑡

𝜕𝑝𝜕𝑡

)︂
=

1

2𝜋𝑖
Tr

(︂
−𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑡
𝐷−1

𝑡

𝜕𝐷𝑡

𝜕𝑝
+𝐷−1

𝑡

𝜕2𝐷𝑡

𝜕𝑡𝜕𝑝

)︂
.

(7.5)

The latter identity is implied by the cyclic property of the trace Tr. Since the expressions
in (7.4) and (7.5) coincide, we see that the left hand side and the right hand side in (7.2)
coincide.
2. Let us prove the cyclic property of the trace ̃︁Tr:

̃︁Tr(𝐴𝐵) = Tr

(︂
𝑑

𝑑𝑝
(𝐴𝐵)

)︂
= Tr

(︂
𝑑𝐴

𝑑𝑝
𝐵 + 𝐴

𝑑𝐵

𝑑𝑝

)︂
= Tr

(︂
𝑑𝐵

𝑑𝑝
𝐴+𝐵

𝑑𝐴

𝑑𝑝

)︂
=̃︁Tr(𝐵𝐴).

The pre-last identity follows from the cyclic property of the trace Tr.
3. Let us establish formula (7.3). We have:

̃︁Tr𝐷(𝑝) = −
∫︁
R

TR

(︂
𝑑

𝑑𝑝
𝐷(𝑝)

)︂
𝑑𝑝 =

∑︁
𝑘∈Z

−
∫︁
R

𝑒2𝜋𝑖𝑘𝑝TR

(︂
2𝜋𝑖𝑘𝐷𝑘(𝑝) +

𝑑

𝑑𝑝
𝐷𝑘(𝑝)

)︂
𝑑𝑝. (7.6)

We claim that

−
∫︁
R

𝑒2𝜋𝑖𝑘𝑝
(︂
2𝜋𝑖𝑘TR𝐷𝑘(𝑝) + TR

(︂
𝑑

𝑑𝑝
𝐷𝑘(𝑝)

)︂)︂
𝑑𝑝 = 0 as 𝑘 ̸= 0.

Indeed, by formula (5.16) and Proposition 5.2 on coinciding of the regularized trace TR and
the Melrose regularized trace, in the local coordinates we obtain:

TR𝐷𝑘(𝑝) =

∫︁
R𝑛×R𝑛

(︃
𝑑𝑘(𝑥, 𝜉, 𝑝)−

𝑁∑︁
𝑗=0

1

𝑗!
𝑑
(𝑗)
𝑘 (𝑥, 𝜉, 0)𝑝𝑗

)︃
𝑑𝑥𝑑𝜉,

TR

(︂
𝑑

𝑑𝑝
𝐷𝑘(𝑝)

)︂
=

∫︁
R𝑛×R𝑛

(︃
𝜕

𝜕𝑝
𝑑𝑘(𝑥, 𝜉, 𝑝)−

𝑁−1∑︁
𝑗=0

1

𝑗!
𝑑
(𝑗+1)
𝑘 (𝑥, 𝜉, 0)𝑝𝑗

)︃
𝑑𝑥𝑑𝜉,

(7.7)

where 𝑑𝑘(𝑥, 𝜉, 𝑝) is the complete symbol of the operator 𝐷𝑘(𝑝), and 𝑑
(𝑗)
𝑘 is its 𝑗th derivative with

respect to the variable 𝑝. We note that the regularized traces TR and TR𝑀 coincide modulo
the elements in the space 𝒫 . However, such functions make no contribution to the regularized
integral, see Proposition 6.2. These integrals in (7.7) converge absolutely. By (7.7) and the
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Newton-Leibniz formula we obtain:∫︁ 𝑇

−𝑇

𝑒2𝜋𝑖𝑘𝑝
(︂
2𝜋𝑖𝑘TR𝐷𝑘(𝑝) + TR

[︂
𝜕

𝜕𝑝
𝐷𝑘(𝑝)

]︂)︂
𝑑𝑝

=

∫︁
R𝑛×R𝑛

𝑒2𝜋𝑖𝑘𝑝

(︃
𝑑𝑘(𝑥, 𝜉, 𝑝)−

𝑁∑︁
𝑗=0

1

𝑗!
𝑑
(𝑗)
𝑘 (𝑥, 𝜉, 0)𝑝𝑗

)︃
𝑑𝑥𝑑𝜉

⃒⃒⃒⃒
⃒
𝑇

𝑝=−𝑇

= 𝑒2𝜋𝑖𝑘𝑇
∫︁
R𝑛×R𝑛

(︃
𝑑𝑘(𝑥, 𝜉, 𝑇 )−

𝑁∑︁
𝑗=0

1

𝑗!
𝑑
(𝑗)
𝑘 (𝑥, 𝜉, 0)𝑇 𝑗

)︃
𝑑𝑥𝑑𝜉

− 𝑒−2𝜋𝑖𝑘𝑇

∫︁
R𝑛×R𝑛

(︃
𝑑𝑘(𝑥, 𝜉,−𝑇 )−

𝑁∑︁
𝑗=0

1

𝑗!
𝑑
(𝑗)
𝑘 (𝑥, 𝜉, 0)(−𝑇 )𝑗

)︃
𝑑𝑥𝑑𝜉.

(7.8)

The integrals in the latter formula are smooth functions of the variable 𝑇 and have expansion
of form (4.1) with constant coefficients. Substituting these expansions into formula (7.8) and
extracting the constant term in the asymptotic expansion, we see that this coefficient vanishes
for all 𝑘 ̸= 0.
Thus, by formula (5.14), it follows from (7.6) that

̃︁Tr𝐷 = −
∫︁
R

TR

[︂
𝑑

𝑑𝑝
𝐷0(𝑝)

]︂
𝑑𝑝 = −

∫︁
R

TR𝑀

[︂
𝑑

𝑑𝑝
𝐷0(𝑝)

]︂
𝑑𝑝. (7.9)

Trace (7.9) was calculated in [11, Prop. 6]. Applying the cited result to the right hand side
in (7.9) gives desired formula (7.3).
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