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FOURIER METHOD RELATED WITH ORTHOGONAL

SPLINES IN PARABOLIC INITIAL BOUNDARY VALUE

PROBLEM FOR DOMAIN WITH CURVILINEAR BOUNDARY

V.L. LEONTIEV

Abstract. The Fourier method allows one to find solutions to boundary value problems and
initial boundary value problems for partial differential equations admitting the separation
of variables. The application of the method for problems of many types faces significant
difficulties. One of the directions on extending the domain of applicability of the Fourier
method is to overcome the mathematical problems related with this method, for instance,
ones related with a nature of boundary conditions. Another direction concerns the usage of
special functions for the domains of classical forms defined by coordinate lines and surfaces
of orthogonal curvilinear coordinates. But in the general case of domains with curvilinear
boundaries such approach is ineffective. The directions of developing the Fourier method for
solving problems in domains with curvilinear boundary are related also, first, with develop-
ing and applying variation grid and projection grid method and second, with a modification
of the Fourier method itself. The present paper belongs to the second direction and is aimed
on extending the applicability domain of the Fourier method, which is determined by con-
structing a sequence of finite generalized Fourier series related with orthogonal splines and
giving analytic solutions to a parabolic initial boundary value problem in the domain with
a curved boundary. For such problem, we propose and study an algorithm of the Fourier
method related with the application of orthogonal splines. A sequence of finite generalized
Fourier series generated by this algorithm converges to the exact solution given by an in-
finite Fourier series at each time moment. While increasing the number of the nodes in
the grid in the considered domain with a curvilinear boundary, the structure of the finite
Fourier series approaches the structure of an infinite Fourier series being an exact solution
of initial boundary value problem. The method provides approximate analytic solutions
with an arbitrary accuracy in the form of orthogonal series, which are generalized Fourier
series, and this gives new opportunities of the classical Fourier method.

Keywords: parabolic initial boundary value problem, curved boundary, separation of vari-
ables, generalized Fourier series, orthogonal splines.
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1. Introduction

The separation of variables (the Fourier method) allows one to find particular solutions to
many boundary and initial boundary value problems for partial differential equations admitting
the separation of variables. The method is related with the Sturm-Liouville problem. The
classical Fourier method gives an opportunity to find solutions for wide classes of problems but
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its realization for problems of many types, including problems involving irregular boundary
condition faces serious difficulties even in the cases when all pieces of the boundary of a domain
are coordinate lines or surfaces.
One of the ways to expand the scope of the classical Fourier method is to overcome the

mathematical problems associated with the method, for example, those related to the nature
of the boundary conditions [2]. Special functions appear, for example, when solving the Sturm-
Liouville problem in a cylindrical or spherical coordinate system, which is useful in the case of
a region whose boundary consists of a set of coordinate lines or surfaces for such coordinate
system. In the general case of problems in domains with curvilinear boundaries, the use of
special functions is inefficient. The classical Fourier method is applicable only for solving
boundary and initial boundary problems for domains of classical shape, which is noted, for
example, in [3] while solving contact problems for elastic bodies with curvilinear boundaries.
Solutions obtained by the classical Fourier method are given, in particular, in the articles
[4]–[7], the application of the method is considered in many books, for example, in [8]. Other
directions in developing the mathematical tools for solving problems for regions with curvilinear
boundaries are associated, first, with developing and applying a number of methods other than
the Fourier method, for example, in works [9]–[12], and, second, second, with a modification
of the Fourier method itself. This article belongs to the second direction and is focused on
extending the applicability of the Fourier method, which is made by constructing a sequence
of finite generalized Fourier series associated with orthogonal splines and giving solutions to a
parabolic initial-boundary value problem in a region with a curvilinear boundary.
The Fourier method we consider is associated with orthogonal splines and it gives a convergent

sequence of approximate analytical solutions in the form of finite generalized Fourier series, the
structure of which is similar to the structure of partial sums of an infinite Fourier series being an
exact solution of the problem. The usage of orthogonal splines extends the applicability of the
Fourier method, and also brings the numerical variational grid method closer to the analytical
method of separation of variables.
The Fourier method related with orthogonal splines was proposed in [13] for solving a hy-

perbolic initial boundary value problem in a domain with a curvilinear boundary. Here, the
Fourier method related with orthogonal splines is used to solve a parabolic initial-boundary
value problem. We present the algorithm of the method and study it.

2. Formulation of parabolic initial boundary value problem for domain

with curvilinear boundary

We consider a parabolic initial boundary value problem

𝐿[𝑢] = 𝑎2∆𝑢(𝑥, 𝑦, 𝑡) = 𝑎2
(︂
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

)︂
=
𝜕𝑢

𝜕𝑡
∀(𝑥, 𝑦) ∈ 𝑆, ∀𝑡 ⩾ 0;

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝑆; 𝑢|𝜕𝑆 = 𝑢𝜕𝑆(𝑥, 𝑦) ∀ 𝑡 ⩾ 0,

(2.1)

where 𝜕𝑆 is a piece-wise smooth convex curvilinear boundary of a simply-connected planar
domain 𝑆 and 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) is a function continuous for all 𝑡 ⩾ 0 in a closed domain 𝑆 = 𝑆+𝜕𝑆,
while 𝑎2 = 𝑐𝑜𝑛𝑠𝑡 > 0. An example is a problem on stabilization of the temperature field
in the domain with the curviliear boundary 𝜕𝑆, on which a stationary variable temperature
distribution 𝑢𝜕𝑆(𝑥, 𝑦) is given.
We seek a solution to problem (2.1) as the sum 𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦)+𝑤(𝑥, 𝑦, 𝑡), the substitution

of which into (2.1) produces two problems:

∆𝑣(𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑆;

𝑣|𝜕𝑆 = 𝑢𝜕𝑆(𝑥, 𝑦)
(2.2)
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and

𝐿[𝑤] = 𝑎2∆𝑤(𝑥, 𝑦, 𝑡) =
𝜕𝑤

𝜕𝑡
∀(𝑥, 𝑦) ∈ 𝑆, for all 𝑡 ⩾ 0;

𝑤(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦)− 𝑣(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑆;

𝑤|𝜕𝑆 = 0 for all 𝑡 ⩾ 0.

(2.3)

If 𝑢𝜕𝑆(𝑥, 𝑦) = 𝑈 = 𝑐𝑜𝑛𝑠𝑡, then the solution to problem (2.2) for each curvilinear boundary 𝜕𝑆
is 𝑣(𝑥, 𝑦) ≡ 𝑈 . If the domain 𝑆 is a circle and a varying function 𝑢𝜕𝑆 can be expanded into the
Fourier series, then on the base of the known for this case exact solution (see, for instance, [14]),
via the conformal mapping of a polygonal or some other domain on the circle by means of the
Cristoffel-Schwartz integral we obtain a solution to problem (2.2) for a polygonal or some other
domain. In view of this, in what follows the main attention is paid to a method for solving
problem (2.3).

3. Fourier method

According to the Fourier method, the solution to problem (2.3) is sought as the product of
two functions

𝑤(𝑥, 𝑦, 𝑡) = 𝜙(𝑥, 𝑦) · 𝜓(𝑡), (3.1)

the substitution of which into the differential equation in problem (2.3) gives

𝐿[𝜙(𝑥, 𝑦)] · 𝜓(𝑡) = 𝜙(𝑥, 𝑦)
𝜕𝜓(𝑡)

𝜕𝑡
or

𝐿[𝜙(𝑥, 𝑦)]

𝜙(𝑥, 𝑦)
=

1

𝜓(𝑡)

𝜕𝜓(𝑡)

𝜕𝑡
= −𝜆 = 𝑐𝑜𝑛𝑠𝑡(𝑥, 𝑦, 𝑡) < 0. (3.2)

In view of (3.1) boundary condition (2.3) gives

𝜙(𝑥, 𝑦)|𝜕𝑆 = 0 (3.3)

and this is why (3.2) implies Sturm-Liouville boundary value problem

𝐿[𝜙] + 𝜆𝜙 = 𝑎2∆𝜙+ 𝜆𝜙 = 0 (𝑆),

𝜙|𝜕𝑆 = 0.
(3.4)

Having solved this problem, that is, after constructing a system of eigenvalues 𝜆𝑘 and of as-
sociated system of eigenfunction 𝜙𝑘(𝑥, 𝑦), we determine a related system of solutions 𝜓𝑘(𝑡) to
the equations

𝜕𝜓(𝑡)

𝜕𝑡
+ 𝜆𝑘𝜓(𝑡) = 0. (3.5)

Then on the base of 𝜙𝑘(𝑥, 𝑦) and 𝜓𝑘(𝑡) associated with 𝜆𝑘, in view of the initial condition we
construct a functional series, which is an exact solution to problem (2.3).

4. Fourier method related with using orthogonal splines

The first steps of the Fourier method, in which orthogonal splines are used, coincide with
similar steps in the classical Fourier method. A solution to problem (2.3) is also sought as
product (3.1) and substituting it into differential equation (2.3) leads one to equation (3.2),
while original boundary condition gives condition (3.3). There arises the same boundary value
Sturm-Liouville problem (3.4). The solution of equation (3.5) is related with that of Sturm-
Liouville problem (3.4) in view of initial condition (2.3).
Further steps in the modified Fourier method aimed on solving parabolic initial boundary

value problems in the case of curvilinear boundaries differ from the corresponding steps in the
classical algorithm since they are related with applying orthogonal splines in constructing the
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sequence of approximate analytic solutions in the form of generalized finite Fourier series and
with the limiting passage in this sequence to the exact solution to problem (2.3) given by an
infinite functional series.
Non-trivial solution to boundary value problem (3.4) are sought as

𝜙𝑁(𝑥, 𝑦) =
𝑁∑︁
𝑖=1

𝑗2(𝑖)∑︁
𝑗=𝑗1(𝑖)

𝐶𝑖𝑗�̃�𝑖(𝑥)𝛽𝑗(𝑦), (4.1)

where 𝐶𝑖𝑗 are constant coefficients, 𝑁 , 𝑗1, 𝑗2 are natural numbers, the dependence of 𝑗1, 𝑗2 on
𝑖 is determined by the sizes of the domain and the shape of the curvilinear boundary 𝜕𝑆 and
�̃�𝑖(𝑥), 𝛽𝑗(𝑦) are orthogonal splines [1]: �̃�𝑖(𝑥) = 𝜙𝑖(𝑥), 𝛽𝑗(𝑦) = 𝜙𝑗(𝑦), where

𝜙𝑖(𝑥) = (
√
2− 1)(𝑥𝑖−1 − 𝑥)ℎ−1, 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖−1 + 0.5ℎ];

𝜙𝑖(𝑥) = (
√
2 + 1)(𝑥− 𝑥𝑖)ℎ

−1 + 1, 𝑥 ∈ [𝑥𝑖−1 + 0.5ℎ, 𝑥𝑖];

𝜙𝑖(𝑥) = (
√
2− 1)(𝑥− 𝑥𝑖)ℎ

−1 + 1, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖 + 0.5ℎ];

𝜙𝑖(𝑥) = (
√
2 + 1)(𝑥𝑖+1 − 𝑥)ℎ−1, 𝑥 ∈ [𝑥𝑖 + 0.5ℎ, 𝑥𝑖+1];

𝜙𝑖(𝑥) = 0, 𝑥 ∈ (−∞, 𝑥𝑖−1) ∪ (𝑥𝑖+1,+∞),

and ℎ1 = ℎ2 = ℎ are the steps of rectangle uniform grid with nodes having coordinates (𝑥𝑖 =
𝑖ℎ, 𝑦𝑗 = 𝑗ℎ) ∈ 𝑆, 0 ⩽ 𝑖 ⩽ 𝑁 , 0 ⩽ 𝑗 ⩽𝑀 . The scalar products of splines possess the properties

(�̃�𝑖, �̃�𝑗) = ‖�̃�𝑖‖2 𝛿𝑖𝑗, (𝛽𝑖, 𝛽𝑗) =
⃦⃦⃦
𝛽𝑖

⃦⃦⃦2

𝛿𝑖𝑗,

where 𝛿𝑖𝑗 is the Kronecker delta, ‖ · ‖ is the norm in the Hilbert space of square-integrable
functions 𝐿2(𝑆) = 𝑊 1

2 (𝑆) and 𝑊 1
2 is the Sobolev space. The domain 𝑆 is inscribed in the

rectangle 𝑆1, part of points of a continuous piece-wise smooth curvilinear boundary 𝜕𝑆 lies on
the boundary of the rectangular domain 𝑆1. Compact supports of orthogonal (on each grid)

splines [�̃�𝑖(𝑥)𝛽𝑗(𝑦)] are rectangular subdomains. We note that orthogonal splines [1] admit also
using compact supports consisting of triangles. The functions

𝛼𝑖(𝑥) = �̃�𝑖(𝑥)‖�̃�𝑖(𝑥)‖−1, 𝛽𝑗(𝑦) = 𝛽𝑗(𝑦)‖𝛽𝑗(𝑦)‖−1

form two system of orthonormalized (on each grid) splines, since

(𝛼𝑖, 𝛼𝑗) = 𝛿𝑖𝑗, (𝛽𝑖, 𝛽𝑗) = 𝛿𝑖𝑗.

After a normalization, sum (4.1) is rewritten as

𝜙𝑁(𝑥, 𝑦) =
𝑁∑︁
𝑖=1

𝑗2(𝑖)∑︁
𝑗=𝑗1(𝑖)

𝐶𝑖𝑗𝛼𝑖(𝑥)𝛽𝑗(𝑦). (4.2)

Each constant coefficient 𝐶𝑖𝑗 in linear combination (4.2) or orthonormalized splines, which are
the functions in the grid Lagrangian basis of a finite-dimensional subspaces related with the
constructed grid, is equal to the value of the function 𝜙𝑁(𝑥, 𝑦) at a node (𝑥𝑖, 𝑦𝑗) of the grid
according to the properties of such splines. This is why the boundary conditions 𝜙|𝜕𝑆 = 0
are satisfied if the coefficients 𝐶𝑖𝑗 corresponding to the boundary nodes vanish. After such
satisfying the main boundary conditions, linear combination (4.2) is written as follows:

𝜙𝑁(𝑥, 𝑦) =

𝑁2∑︁
𝑖=𝑁1

𝐽2(𝑖)∑︁
𝑗=𝐽1(𝑖)

𝐶𝑖𝑗𝛼𝑖(𝑥)𝛽𝑗(𝑦), (4.3)
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where 𝑁1, 𝑁2, 𝐽1, 𝐽2 are natural numbers such that

1 ⩽ 𝑁1 < 𝑁2 ⩽ 𝑁, 𝑗1(𝑖) ⩽ 𝐽1(𝑖) < 𝐽2(𝑖) ⩽ 𝑗2(𝑖).

To determine the coefficients 𝐶𝑖𝑗 in approximate analytic solution (4.3) to boundary value
problem (3.4) we employ condition 𝛿𝑅 = 0 of stationarity of Reissner functional

2𝑅(𝜙, 𝜙1, 𝜙2) =

∫︁∫︁
𝑆

(︂
𝑎2

(︂
𝜕𝜙1

𝜕𝑥
+
𝜕𝜙2

𝜕𝑦
+ 𝜆𝜙

)︂
𝜙−

(︂
𝜕𝜙

𝜕𝑥
− 𝜙1

)︂
𝜙1 −

(︂
𝜕𝜙

𝜕𝑦
− 𝜙2

)︂
𝜙2

)︂
𝑑𝑆

+

∫︁
𝜕𝑆

𝜙(𝜙1𝑛𝑥 + 𝜙2𝑛𝑦) 𝑑𝑙,

which is equivalent to problem (3.4) in the mixed form

𝑎2
(︂
𝜕𝜙1

𝜕𝑥
+
𝜕𝜙2

𝜕𝑦

)︂
+ 𝜆𝜙 = 0,

𝜕𝜙

𝜕𝑥
= 𝜙1,

𝜕𝜙

𝜕𝑦
= 𝜙2 (𝑆);

𝜙|𝜕𝑆 = 0.

Substituting (4.3) into the stationarity condition of the Reissner functional gives a system of
finite-difference equations:

𝑎2[(𝐶𝑛+1,𝑚 − 2𝐶𝑛𝑚 + 𝐶𝑛−1,𝑚)ℎ
−2
1 + (𝐶𝑛,𝑚+1 − 2𝐶𝑛𝑚 + 𝐶𝑛,𝑚−1)ℎ

−2
2 ] + 𝜆𝑛𝑚𝐶𝑛𝑚 = 0, (4.4)

each being associated with an internal node (𝑥𝑛, 𝑦𝑚) of the grid. We have formed a homo-
geneous system of linear algebraic equations (4.4) with unknowns 𝐶𝑛𝑚. This system always
has the trivial solution. The values of 𝜆, for which it possesses non-trivial solutions, are the
eigenvalues of variational-grid operator obtained by the Reissner variational principle on the
base of the Laplace operator as well as the eigenvalues of boundary value problem (3.4), which
is approximated by system of equations (4.4). In view of the orthogonality of the used splines
system of equations (4.4) is written as

𝑀𝑋 − 𝜆𝑋 = 0, (4.5)

where 𝑀 is the square matrix of the system, 𝑋 is a column matrix the components of which
are the unknown coefficients 𝐶𝑖𝑗. By construction, the matrix 𝑀 is real and symmetric and
therefore, all eigenvalues and eigenvectors of this matrix are real-valued and all its eigenvectors
are linearly independent and mutually orthogonal including the case of multiple eigenvalues.
Let 𝜆1, 𝜆2, . . . , 𝜆𝐾 be the eigenvalues found by solving the characteristic equation of system (4.5)

and 𝐶
(𝑘)
𝑛𝑚 be the associated components of 𝑘th eigenvector 𝑋(𝑘), that is, of one of nontrivial

solutions to system of equations (4.5), while the function

𝜙
(𝑘)
𝑁 (𝑥, 𝑦) =

𝑁2∑︁
𝑖=𝑁1

𝐽2(𝑖)∑︁
𝑗=𝐽1(𝑖)

𝐶
(𝑘)
𝑖𝑗 𝛼𝑖(𝑥)𝛽𝑗(𝑦)

be a non-trivial solution to (4.3). The eigenvalues are positive since the matrix 𝑀 is not
only symmetric and real, but also is positive definite since it arises while using the variational
principle and on the base of the scalar product applied to a positive definite, in the case of the
considered boundary condition, operator (−𝐿) = −𝑎2∆.



FOURIER METHOD RELATED WITH ORTHOGONAL SPLINES. . . 61

Theorem 4.1. A function

𝑤(𝐾)(𝑥, 𝑦, 𝑡) =
𝐾∑︁
𝑘=1

[𝐴𝑘 exp(−𝜆𝑘𝑡)
𝑁2∑︁

𝑖=𝑁1

𝐽2(𝑖)∑︁
𝑗=𝐽1(𝑖)

𝐶
(𝑘)
𝑖𝑗 𝛼𝑖(𝑥)𝛽𝑗(𝑦)], (4.6)

in which

𝐴𝑘 =
1⃦⃦

𝜙
(𝑘)
𝑁

⃦⃦2

∫︁∫︁
𝑆

[𝑓(𝑥, 𝑦)− 𝑣(𝑥, 𝑦)]𝜙
(𝑘)
𝑁 (𝑥, 𝑦)𝑑𝑆, (4.7)

satisfies equation (3.4) in the variational form, equation (3.5) as well as boundary condition
(3.3) and initial condition (2.3), that is, is an approximate analytic solution to problem (2.3)
in the case of a domain with a curvilinear boundary. For each fixed time moment this sum is a
finite generalized Fourier series over the eigenfunctions of boundary value problem (3.4) in the
variational form 𝛿𝑅 = 0.

Proof. A sum

𝜙
(𝑘)
𝑁 (𝑥, 𝑦) =

𝑁2∑︁
𝑖=𝑁1

𝐽2(𝑖)∑︁
𝑗=𝐽1(𝑖)

𝐶
(𝑘)
𝑖𝑗 𝛼𝑖(𝑥)𝛽𝑗(𝑦)

is an element of the space 𝐻𝑁 ⊂ 𝑊 1
2 (𝑆), which is a linear span of the functions [𝛼𝑖(𝑥)𝛽𝑗(𝑦)]

related with the mentioned grid and satisfying boundary condition (3.3) and also is a non-trivial
solution to system of equations (4.5) satisfying boundary condition (3.3) and is associated with

the eigenvalue 𝜆𝑘, that is, 𝜙
(𝑘)
𝑁 (𝑥, 𝑦) is an eigenfunction of boundary value problem (3.4) in the

variational form 𝛿𝑅 = 0.
We consider equation (3.5) after substituting in it arbitrary found positive eigenvalue 𝜆𝑘

𝜕𝜓(𝑡)

𝜕𝑡
+ 𝜆𝑘𝜓(𝑡) = 0.

General solutions of such differential equations are of the form

𝜓𝑘(𝑡) = 𝐴𝑘 exp(−𝜆𝑘𝑡),

where 𝐴𝑘 are unknown constant coefficients. Therefore, the sum

𝐾∑︁
𝑘=1

𝜓𝑘(𝑡)𝜙
(𝑘)
𝑁 (𝑥, 𝑦) =

𝐾∑︁
𝑘=1

[𝐴𝑘 exp(−𝜆𝑘𝑡)
𝑁2∑︁

𝑖=𝑁1

𝐽2(𝑖)∑︁
𝑗=𝐽1(𝑖)

𝐶
(𝑘)
𝑖𝑗 𝛼𝑖(𝑥)𝛽𝑗(𝑦)] (4.8)

satisfies equation (3.4) in the variation form 𝛿𝑅 = 0, equation (3.5), and also boundary condition
(3.3). It remains to ensure the validity of initial condition (2.3). Substituting sum (4.8) into
initial condition, we get:

𝐾∑︁
𝑘=1

𝐴𝑘𝜙
(𝑘)
𝑁 (𝑥, 𝑦) = 𝑓(𝑥, 𝑦)− 𝑣(𝑥, 𝑦).

Multiplying both sides by 𝜙
(𝑟)
𝑁 (𝑥, 𝑦), integrating by parts over the domain 𝑆 and using orthog-

onality of the eigenfunctions, we get:

𝐴𝑘 =
1⃦⃦

𝜙
(𝑘)
𝑁

⃦⃦2

∫︁∫︁
𝑆

[𝑓(𝑥, 𝑦)− 𝑣(𝑥, 𝑦)]𝜙
(𝑘)
𝑁 (𝑥, 𝑦)𝑑𝑆.

Thus, sum (4.6), the coefficients of which are determined by formulae (4.7), satisfies equation
(3.4) in the variational form 𝛿𝑅 = 0, equation (3.5), and also boundary condition (3.3) and
initial condition (2.3), that is, it is an approximate analytic solution to problem (2.3) in the case
of the domain with a curvilinear boundary. For each fixed time, sum (4.6) is a finite generalized
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Fourier series over the eigenfunctions of boundary value problem (3.4) in the variational form.

5. Convergence of method

Theorem 5.1. As the number of the nodes in the grid grows, the approximate eigenfunctions

𝜙
(𝑘)
𝑁 (𝑥, 𝑦) converge to exact eigenfunctions 𝜙(𝑘)(𝑥, 𝑦) ∈ 𝑊 1

2 (𝑆) satisfying boundary condition
(3.3), that is, ⃦⃦

𝜙(𝑘) − 𝜙
(𝑘)
𝑁

⃦⃦2

𝑊 1
2 (𝑆)

−→
𝑁→∞

0.

Proof. As in paper [13], the proof of the convergence of approximate analytic eigenfunctions to
exact eigenfunctions is based on the fact that the stationarity condition 𝛿Φ = 0 of the functional

Φ(𝜙) =

∫︁∫︁
𝑆

[𝑎2(∇̄𝜙)2 − 𝜆𝑘𝜙
2]𝑑𝑆,

where ∇̄ is the nabla operator, under the condition that the variation of the functional is made
on the set of the functions satisfying main boundary condition (3.3) is equivalent to boundary
value problem (3.4). The value of the second variation at each stationary point is positive and
therefore, the functional has a minimum at a stationary point and this is why the solution of
such variational problem, and therefore, of boundary value problem (3.4), is unique. Moreover,
the functional at the stationary point 𝜙(𝑘) is equal to zero since on the set of the functions from
𝑊 1

2 (𝑆) satisfying boundary condition we have

Φ(𝜙(𝑘)) = −
∫︁∫︁

𝑆

[𝑎2∆𝜙(𝑘) + 𝜆𝑘𝜙
(𝑘)]𝜙(𝑘)𝑑𝑆 = 0.

This is why one can show that for each function 𝑤 ∈ 𝑊 1
2 (𝑆) satisfying boundary condition

(3.3), the functional is equal to

Φ(𝑤) =

∫︁∫︁
𝑆

[𝑎2(∇̄𝑤)2 − 𝜆𝑘𝑤
2]𝑑𝑆

=

∫︁∫︁
𝑆

[𝑎2(∇̄(𝜙(𝑘) − 𝑤))2 − 𝜆𝑘(𝜙
(𝑘) − 𝑤)2]𝑑𝑆

= [𝜙(𝑘) − 𝑤,𝜙(𝑘) − 𝑤]− 𝜆𝑘(𝜙
(𝑘) − 𝑤,𝜙(𝑘) − 𝑤),

which is the difference of the scalar product

[𝑣1, 𝑣2] =

∫︁∫︁
𝑆

𝑎2(∇̄𝑣1) · ∇̄𝑣2𝑑𝑆

in the energy space and the scalar product

(𝑣1, 𝑣2) =

∫︁∫︁
𝑆

𝑣1𝑣2𝑑𝑆

in the Hilbert space 𝑊 0
2 (𝑆). Thus, problem on finding an exact eigenfunction 𝜙(𝑘) is reduced

to the minimization problem

Φ(𝜙(𝑘)) = min
∀𝑤∈𝑊 1

2 (𝑆)
Φ(𝑤) = 0 (5.1)

on the set of the functions 𝑤 ∈ 𝑊 1
2 (𝑆) satisfying boundary condition (3.3). The inequality

holds:

|Φ(𝑤)| =
⃒⃒
[𝜙(𝑘) − 𝑤,𝜙(𝑘) − 𝑤]− 𝜆𝑘(𝜙

(𝑘) − 𝑤,𝜙(𝑘) − 𝑤)
⃒⃒

⩽
⃒⃒
[𝜙(𝑘) − 𝑤,𝜙(𝑘) − 𝑤]

⃒⃒
+ 𝜆𝑘

⃒⃒
(𝜙(𝑘) − 𝑤,𝜙(𝑘) − 𝑤)

⃒⃒
.
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Since according to the algorithm of the method and by the orthogonality of the splines each

function 𝜙
(𝑘)
𝑁 (𝑥, 𝑦) is related with the minimization of the functional Φ(𝑤) and is the best

approximation in the sense of energy norm in 𝐻𝑁 ⊂ 𝑊 1
2 (𝑆) to the function 𝜙

(𝑘), the problem on

minimization of the functional while seeking 𝜙
(𝑘)
𝑁 is reduced to the problem of the approximation

theory ⃦⃦
𝜙(𝑘) − 𝜙

(𝑘)
𝑁

⃦⃦2

𝑊 1
2 (𝑆)

= min
∀𝑤∈𝐻𝑁⊂𝑊 1

2 (𝑆)

⃦⃦
𝜙(𝑘) − 𝑤

⃦⃦2

𝑊 1
2 (𝑆)

,

that is, to the problem on approximation of exact eigenfunctions 𝜙(𝑘)(𝑥, 𝑦) by linear combina-

tions 𝜙
(𝑘)
𝑁 (𝑥, 𝑦) of orthogonal splines. Such problem was solved in work [1], where there were

provided appropriate theorems determining the approximation accuracy and the convergence
rate as the number of the nodes in the grid increases depending on the types of particular
systems of orthogonal splines.

The convergence of finite series (4.6) is determined by the convergence of approximate eigen-

values 𝜆𝑘 and functions 𝜙
(𝑘)
𝑁 (𝑥, 𝑦) to corresponding exact eigenvalues and eigenfunctions.

As the number of the nodes in the grid increases, the number of the employed orthogonal
splines does the same. The eigenvalues of homogeneous system of equations (4.5) in the case
𝑙 = 𝜋 are known, see, for instance, [1],

𝜆𝑘 = 𝜆𝑛,𝑚 = 𝑛2 +𝑚2 + (𝑛4 +𝑚4)
ℎ2

12
+𝑂

(︀
(𝑛6 +𝑚6)ℎ4

)︀
,

where 𝑛 = 1, 2, . . . , 𝑁 − 1, 𝑚 = 1, 2, . . . ,𝑀 − 1, and obviously converge as 𝑁,𝑀 → ∞, ℎ → 0
to the corresponding known exact eigenvalues [15]

𝜔𝑛,𝑚 =
𝜋2

𝑙2
(𝑛2 +𝑚2) = 𝑛2 +𝑚2

of Sturm-Liouville problem (3.4).
As the number of the nodes in the grid in the domain 𝑆 grows, according to Theorem 5.1,

the approximate solutions 𝜙
(𝑘)
𝑁 (𝑥, 𝑦) of boundary value problem (3.4), that is, approximate

eigenfunctions of this problem converge to its exact solutions, eigenfunctions 𝜙(𝑘)(𝑥, 𝑦). At the
same time, the number of the eigenvalues and eigenfunctions of the boundary value problem
posed in a mixed variational form increases, and therefore, sum (4.6) in 𝑘 over 1 to 𝐾 in
the limit becomes an infinite series over 𝑘 from 1 to ∞, which for each value 𝑡 > 0 is an
infinite Fourier series over the eigenfunctions. This series is the unique solution to problem
(2.3), which is implied by the results in [15, Ch. IV, Sect. 2] based on the Steklov theorem
[15]. A difference of this method of solving initial boundary value problems for domains with
curvilinear boundaries, for instance, from the finite elements method [12] is that in this method,
at each time, the constructed sequence of fininte Fourier series (4.6) converges to a corresponding
infinite Fourier series formed on the base of exact eigenfunctions 𝜙(𝑘)(𝑥, 𝑦) and providing the
unique exact solution to problem (2.3), which we fail to determine in the case of the curvilinear
boundary. Therefore, at each time, these finite Fourier series are approximate analytic solutions
to problem (2.3) for a domain with a curvilinear boundary, which arbitrarily close approach the
exact solution of this problem, the infinite Fourier series, and not only by quantitative criterions
but also by their analytic structure. At each time, the method provides a solution in the form of
the orthogonal series, the generalized finite Fourier series over eigenfunctions. These series are
approximate analytic solutions to problem (2.3) for the domain with the curvilinear boundary
with a prescribed accuracy, which in the limit become an exact analytic solution.
As an example demonstrating the convergence of finite orthogonal generalized Fourier series

to the exact solution, the infinite Fourier series, we consider Sturm-Liouville problem (3.4)
for the domain 𝑆, the boundary 𝜕𝑆 of which is a square with side 𝑙 = 𝜋. The convergence
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of eigenvalues and eigenfunctions, finite generalized Fourier series, ensures the convergence of
finite series (4.6) to the exact solution of problem (2.3). We use a rectangular uniform grid
with steps ℎ1 = ℎ2 = ℎ, the nodes of which have coordinates

(𝑥𝑖 = 𝑖ℎ, 𝑦𝑗 = 𝑗ℎ) ∈ 𝑆, 0 ⩽ 𝑖 ⩽ 𝑁, 0 ⩽ 𝑗 ⩽ 𝑁.

System of equations (4.4) written for internal nodes of the grid

1 ⩽ 𝑖 ⩽ 𝑁 − 1, 1 ⩽ 𝑗 ⩽ 𝑁 − 1

taking into consideration homogeneous boundary conditions (3.3), is a homogeneous system of
finite-difference equations. In the case 𝑙 = 𝜋, its non-trivial solutions are known eigenfunctions
[16]

𝜇𝑛,𝑚(𝑖, 𝑗) = sin(𝑛𝑥𝑖) sin(𝑚𝑦𝑗)

associated with exact eigenvalues [16]

𝜆𝑛,𝑚 =
4

ℎ2

[︂
sin2

(︂
𝑛ℎ

2

)︂
+ sin2

(︂
𝑚ℎ

2

)︂]︂
; 𝑛,𝑚 = 1, 2, . . . , 𝑁 − 1.

The number of these eigenfunctions is (𝑁 − 1)2, which is the number of internal nodes of
the grid. The values of the eigenfunctions 𝜇𝑛,𝑚(𝑖, 𝑗) at the nodes of the grid determine the
coefficients in sum (4.6):

𝐶
(𝑛,𝑚)
𝑖,𝑗 = sin(𝑛𝑥𝑖) sin(𝑚𝑦𝑗).

Thus, in the problem for the square domain, for each eigenvalue 𝜆𝑛,𝑚, orthogonal finite gener-
alized Fourier series are formed:

𝜙
(𝑘)
𝑁 (𝑥, 𝑦) = 𝜙

(𝑛,𝑚)
𝑁 (𝑥, 𝑦) =

𝑁−1∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

sin(𝑛𝑥𝑖) sin(𝑚𝑦𝑗)𝛼𝑖(𝑥)𝛽𝑗(𝑦),

which are approximate eigenfunctions. In this problem finite series (4.6) casts into the form

𝑤(𝑁)(𝑥, 𝑦, 𝑡) =
𝑁−1∑︁
𝑛=1

𝑁−1∑︁
𝑚=1

𝐴𝑛,𝑚 exp(−𝜆𝑛,𝑚𝑡)𝜙(𝑛,𝑚)
𝑁 (𝑥, 𝑦). (5.2)

The exact solution of Sturm-Liouville problem (3.4) for the case of square domain 𝑆 and 𝑎2 = 1
and 𝑙 = 𝜋 is determinied by the eigenvalues and eigenfunctions [15]:

Φ𝑛,𝑚(𝑥, 𝑦) = sin(𝑛𝑥) sin(𝑚𝑦), 𝜔𝑛,𝑚 = 𝑛2 +𝑚2.

In the considered case, the based on this exact solution of problem (2.3) reads as [15]

𝑤(𝑥, 𝑦, 𝑡) =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝐵𝑛,𝑚 exp(−𝜔𝑛,𝑚𝑡)Φ𝑛,𝑚(𝑥, 𝑦). (5.3)

In view of initial condition (2.3) and the orthogonality of the eigenfunctions, the coefficients
𝐵𝑛,𝑚 are determined by the formula

𝐵𝑛,𝑚 =
1

‖Φ𝑛,𝑚‖2
∫︁∫︁

𝑆

[𝑓(𝑥, 𝑦)− 𝑣(𝑥, 𝑦)]Φ𝑛,𝑚(𝑥, 𝑦)𝑑𝑆.

Hence, by the orthogonality of 𝜙
(𝑛,𝑚)
𝑁 (𝑥, 𝑦),

𝐴𝑛,𝑚 =
1⃦⃦

𝜙
(𝑛,𝑚)
𝑁

⃦⃦2

∫︁∫︁
𝑆

[𝑓(𝑥, 𝑦)− 𝑣(𝑥, 𝑦)]𝜙
(𝑛,𝑚)
𝑁 (𝑥, 𝑦)𝑑𝑆.

The accuracy of the approximation of the eigenfunctions Φ𝑛,𝑚(𝑥, 𝑦) by approximate eigenfunc-

tions 𝜙
(𝑛,𝑚)
𝑁 (𝑥, 𝑦) increases as 𝑁 → ∞. Indeed, the orthogonal splains 𝛼𝑖(𝑥), 𝛽𝑗(𝑦) are finite,

continuous and piece-wise linear and their products at the nodes of the grid are equal to one.
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This is why the values of the function 𝜙
(𝑛,𝑚)
𝑁 (𝑥, 𝑦) at the nodes of the grid are equal to the

corresponding coefficients 𝐶
(𝑛,𝑚)
𝑖,𝑗 , therefore, the values of the function 𝜙

(𝑛,𝑚)
𝑁 (𝑥, 𝑦) at the nodes

of the grid coincide with the values of exact eigenfunctions sin(𝑛𝑥) sin(𝑚𝑦) at the same nodes.

The convergence of 𝜙
(𝑛,𝑚)
𝑁 (𝑥, 𝑦) to the functions Φ𝑛,𝑚(𝑥, 𝑦) implies the convergence of 𝐴𝑛,𝑚 to

𝐵𝑛,𝑚 as 𝑁 → ∞. Moreover, 𝜆𝑛,𝑚 → 𝜔𝑛,𝑚 = 𝑛2 +𝑚2 as 𝑁 → ∞, ℎ → 0. The convergence of
the eigenvalues is characterized by the following example: 𝜆11 = 1.899 as 𝑁 = 4; 𝜆11 = 1.984 if
𝑁 = 10; 𝜆11 = 1.996 if 𝑁 = 20, that is, as 𝑁 → ∞, ℎ→ 0, the number 𝜆11 has such nature of
the convergence to the exact eigenvalue 𝜔11 = 2.
As 𝑁 → ∞, the approximation accuracy 𝑤(𝑁)(𝑥, 𝑦, 𝑡) increases, the number of the eigenvalues

involved in (5.2) increases and for each 𝑁 the values 𝜙
(𝑛,𝑚)
𝑁 (𝑥, 𝑦) at the nodes of the grid coincide

with the values of the corresponding exact eigenfunctions.
The structure of finite series (5.2) corresponds to the structure of partial sums of infinite series

(5.3) taking into consideration at the same time the number of the nodes. The considered
example supports the statements of Theorems 4.1, 5.1 and shows that the Fourier method
related with using orthogonal splines provides approximate analytic solutions in the form of
finite generalized Fourier series with any prescribed accuracy.

6. Conclusion

Extending the domain of applicability of classical analytic methods for solving initial bound-
ary value problems is a topical problem. One of the directions of developing such methods is
making applicable the method of separation of variables for domains with curvilinear bound-
aries. Special functions allow one to employ the Fourier method for the domains with curvilinear
boundaries but they should be formed by the coordinate lines or surfaces of some curvilinear
coordinate system and this restricts essentially such possibilities.
In the present paper we consider the method of separation of variables for solving parabolic

initial boundary value problems for the domains with curvilinear boundaries of a more compli-
cated geometry. The method provides a converging sequence of approximate analytic solutions
in the form of finite generalized Fourier series at each time; the structure of these series is
related with the structure of an infinite Fourier series being an exact solution of the problem.
The using of orthogonal splines extends the applicability domain of the Fourier method and
also brings variational-grid methods with analytic method of separation of variables.
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