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ULTRAPRODUCTS OF QUANTUM MECHANICAL SYSTEMS

S.G. HALIULLIN

Abstract. The study of ultraproducts for various spaces is motivated by an interest in
methods of non-standard mathematical analysis, which operates on infinitesimal (or in-
finitely large) sequences as if they were numbers. Onone hand, a space obtained as a
set-theoretic ultraproduct of a sequence of spaces becomes very «rich». On the other hand,
it loses some attractive properties of factors. In particular, it has no a natural Hausdorff
topology generated by its factors, and the natural 𝜎-algebra of its measurable subsets is not
countably generated.

If a space «is embedded» into its ultrapower with the preservation of required proper-
ties, then the usage of the ultraproduct technique gives some advantages in proving many
«standard» assertions.

In order to preserve various properties of factors, we need to change the construction of
an ultraproduct. For example, by changing the construction of an ultraproduct, it becomes
possible to preserve the Hausdorff topology, the structure of a normed space, the structure
of operator algebras, von Neumann algebras, and so on.

In this paper we discuss the stochastic properties of the so-called quantum mechanical
systems in a rather abstract form. Such systems (structures) arise in probability theory,
in the theory of operator algebras and in the theory of topological vector spaces. The
ultraproducts for sequences of such structures are also defined, and certain properties of
these ultraproducts are investigated.

The notion of an observable on an event structure is an analogue of a random variable
defined on a probability space. An observable is naturally given in the ultraproduct of quan-
tum mechanical systems which is defined in the present paper. We study its probabilistic
characteristics. Moreover, ultraproducts of quantum logics are also considered within the
framework of ultraproducts for quantum mechanical systems.
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1. Introduction

In this paper, the events of some physical system are considered as simple axiomatic elements.
Events correspond to physical phenomena that may or may not occur with some probability. We
study the stochastic properties of quantum mechanical systems as properties of some abstract
structure, which can cover many well-known structures in various areas of mathematics. In
particular, quantum logics describing quantum mechanical systems are considered in this paper
as a structure of events endowed with an additional, completely natural structure.
In what follows ℰ is an arbitrary set of elements called events. An event 𝑎 ∈ ℰ occur or does

not occur subject to the state of a system 𝑠 ∈ 𝑆, where 𝑆 is the set of the states of the system.
Since in the quantum mechanics one can only predict the probability of an event 𝑎, the states
𝑠 can be treated as functions acting from ℰ on the unit interval [0, 1], while the value 𝑠(𝑎) is to
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be interpreted as the probability of the event 𝑎 if the system is in state 𝑠. If at the same time
𝑠(𝑎) = 1, then the event 𝑎 necessarily occurs once the system in the corresponding state.
The work is devoted to defining and studying ultraproducts of such abstract structures.

The technique of ultraproducts allows one to consider certain properties of the spaces with
various structures as the properties of «factors» if it is possible to embed these spaces into
some ultraproduct preserving main structures.

2. Structures of event. Preliminaries

Definition 2.1 (see, for instance, [3]). Let ℰ be a non-empty set, 𝑆 be a set of function
mapping ℰ into the unit interval [0, 1]. A pair (ℰ , 𝑆) is called a structure of events if the
following two axioms are satisfied:

A1. If 𝑠(𝑎) = 𝑠(𝑏) for each 𝑠 ∈ 𝑆, then 𝑎 = 𝑏;
A2. If 𝑎1, 𝑎2, · · · ∈ ℰ satisfy the condition 𝑠(𝑎𝑖) + 𝑠(𝑎𝑗) ⩽ 1, 𝑖 ̸= 𝑗 for each 𝑠 ∈ 𝑆, then there

exists an element 𝑏 ∈ ℰ such that

𝑠(𝑏) + 𝑠(𝑎1) + 𝑠(𝑎2) + . . . = 1

for each 𝑠 ∈ 𝑆.

Let (ℰ , 𝑆) be a structure of event. We call the elements of the set ℰ events, while the elements
of the set 𝑆 are called states. For 𝑎, 𝑏 ∈ ℰ , we define a relation 𝑎 ⩽ 𝑏 if 𝑠(𝑎) ⩽ 𝑠(𝑏) for each
𝑠 ∈ 𝑆. It is easy to show that ⩽ is a partial order relation and this is why (ℰ , 𝑆) is a partially
ordered set. If 𝑎 ∈ ℰ , since 𝑠(𝑎) ⩽ 1 for each 𝑠 ∈ 𝑆, by Axiom 𝐴2 there exists an element 𝑏 ∈ ℰ
such that 𝑠(𝑏) = 1− 𝑠(𝑎) for each 𝑠 ∈ 𝑆. In what follows we write 𝑏 = 𝑎′ and we call the event
𝑏 an orthocomplement of the event 𝑎. We can interpret 𝑎′ as an event which occurs if and only
if the event 𝑎 does not occur. We denote by 0 an event which never occurs and 1 is an event,
which always occurs. If 𝑎 ⩽ 𝑏′, we say that 𝑎 and 𝑏 are orthogonal and we write 𝑎 ⊥ 𝑏.
It is easy to see that if the operation 𝑎 → 𝑎′ is an orthocomplement on (ℰ , 𝑆), then 𝑎′′ = 𝑎

for each 𝑎 ∈ ℰ ; if 𝑎 ⩽ 𝑏, then 𝑏′ ⩽ 𝑎′; and 𝑎∨𝑎′ = 1 for each 𝑎 ∈ ℰ , where 𝑎∨ 𝑏 = sup{𝑎, 𝑏}. We
shall write 𝑎 ∧ 𝑏 instead of inf{𝑎, 𝑏}. Such partially ordered set (ℰ , 𝑆) will be called a partially
ordered set with an orthocomplement and it will be denoted by (ℰ , ⩽, ′).
A partially ordered set with an orthocomplement (𝒫 , ⩽, ′) is called 𝜎-complete if for each

sequence 𝑎1, 𝑎2, . . . , 𝑎𝑖 ∈ 𝒫 , 𝑎𝑖 ⊥ 𝑎𝑗, 𝑖 ̸= 𝑗, there exists a supremum
∞⋁︀
𝑖=1

𝑎𝑖. A partially ordered

set with an orthocomplement (𝒫 , ⩽, ′) is called orthomodular if 𝑎 ⩽ 𝑏 implies 𝑏 = 𝑎 ∨ (𝑏 ∧ 𝑎′).

Definition 2.2. Two events 𝑎, 𝑏 ∈ ℰ are called compatible (𝑎 ↔ 𝑏) if there exist two mutually
orthogonal events 𝑎1, 𝑏1, 𝑐 ∈ ℰ such that 𝑎 = 𝑎1 ∨ 𝑐, 𝑏 = 𝑏1 ∨ 𝑐.

We observe that if 𝑎 ⊥ 𝑏, then 𝑎 ↔ 𝑏 and 0 ↔ 𝑎, 1 ↔ 𝑎 for all 𝑎 ∈ ℰ .

Definition 2.3. A quantum logic a 𝜎-complete orthomodular partially ordered set with an
orthocomplement.

Definition 2.4. A system of probability measures ℳ on a 𝜎-complete partially ordered set
with an orthocomplement (𝒫 , ⩽, ′) defines an order if 𝑚(𝑎) ⩽ 𝑚(𝑏) for each 𝑚 ∈ ℳ implies
𝑎 ⩽ 𝑏.

Remark 2.1. It is easy to see that if we equip a quantum logic by a system of probability
measures defining an order, then we obtain a structure of events.

An analogue of a measurable function related with a structure of events is a notion of an
observable.
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Definition 2.5. Let (ℰ , 𝑆) be a structure of events, (R,ℬ(R)) be a Borel line. A mapping
𝑥 : ℬ(R) → ℰ is called observable if the following conditions hold:

1. 𝑥(R) = 1;
2. If 𝐸 ∩ 𝐹 = ∅, then 𝑥(𝐸) ⊥ 𝑥(𝐹 );
3. If 𝐵𝑛 ∈ ℬ(R), 𝑛 ∈ N, are mutually disjoint sets, then

𝑥

(︃
∞⋃︁
𝑛=1

𝐵𝑛

)︃
=

∞⋁︁
𝑛=1

𝑥 (𝐵𝑛) .

Observables 𝑥 and 𝑦 are compatible if the events 𝑥(𝐸) and 𝑦(𝐹 ) are compatible for all
𝐸,𝐹 ∈ ℬ(R).

Definition 2.6. A spectrum 𝜎(𝑥) of an observable 𝑥 is called a smallest closed subset Λ ∈ R
such that 𝑥(Λ) = 1. An observable 𝑥 is called bounded if its spectrum is a bounded set in R,
that is, it is contained in some finite interval. A smallest positive number 𝑁 such that |𝑡| ⩽ 𝑁
for all 𝑡 ∈ 𝜎(𝑥) is called a norm of the observable 𝑥 and is denoted by ‖𝑥‖.

Each bounded observable 𝑥 naturally induces the probability distribution for an arbitrary
state 𝑠 ∈ 𝑆 on the Borel 𝜎-algebra ℬ(R):

𝑠𝑥(𝐵) = 𝑠(𝑥(𝐵)), 𝐵 ∈ ℬ(R).

Therefore, we can defined a mathematical expectation 𝑚𝑠(𝑥) for an observable 𝑥 at a state 𝑠:

𝑚𝑠(𝑥) =

∫︁
R

𝑡𝑑𝑠𝑥(𝑡).

This integral exists since 𝑠𝑥 is a probability measure supported on a finite interval.
Assume now that our system satisfies the following condition:
Condition M. If 𝑚𝑠(𝑥) = 𝑚𝑠(𝑦) for all states 𝑠, then 𝑥 = 𝑦.
Then for any two given bounded observables 𝑥 and 𝑦 there exists at most one observable 𝑧

such that 𝑚𝑠(𝑧) = 𝑚𝑠(𝑥) + 𝑚𝑠(𝑦) for all states 𝑠. If the observable 𝑧 exists, it is naturally
called a sum 𝑥+ 𝑦 of the observables 𝑥 and 𝑦.
It is known, see, for instance, [3], [5], that if the observables 𝑥 and 𝑦 are compatible and

bounded, then the sum exists. It is easy to see that then bounded observables form a linear
normed space. We denote this space by 𝑂𝑏(ℰ).
We provide a simplest example of the structure of events generalizing the classical probability

theory.

Example 2.1. Let (Ω,ℱ) be some measurable space and 𝑆 be a set of probability measures
on ℱ . It is easy to confirm that (ℱ , 𝑆) is a structure of events.

Let 𝑥 be an observable. Then it follows from Sikorsky-Varadarayan theorem that there exists
a random variable 𝜉 such that 𝑥(𝐸) = 𝜉−1(𝐸) for each 𝐸 ∈ ℬ(R). Since the opposite also holds,
there exists a natural correspondence between observables and random variables. It is easy to
confirm that in such case all events and all observables are compatible.

3. Ultraproducts

Definition 3.1. Let 𝐴𝑛 (𝑛 ∈ N) be arbitrary non-empty set, 𝒰 be a non-trivial ultrafilter
in the set N. The quotient set of the Cartesian product of the sets 𝐴𝑛 with respect to the
equivalence relation

(𝑎𝑛) ∼𝒰 (𝑏𝑛) ⇔ {𝑛 ∈ N : 𝑎𝑛 = 𝑏𝑛} ∈ 𝒰
is called a theoretic-set ultraproduct of the families (𝐴𝑛) and it is denoted by (𝐴𝑛)𝒰 , the elements
of the ultraproduct are denoted by (𝑎𝑛)𝒰 .
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Here we observe that if corresponding structures are given in the factors, then the ultra-
product is closed with respect to the relations of order, orthocomplement and finitely many
operations of taking supremums and infimums but is not closed with respect to countably many
operations. More precisely,

∞⋁︁
𝑘=1

(𝑎𝑘𝑛)𝒰 ⩽

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
𝒰

,
∞⋀︁
𝑘=1

(𝑎𝑘𝑛)𝒰 ⩾

(︃
∞⋀︁
𝑘=1

𝑎𝑘𝑛

)︃
𝒰

.

The theoretic-set ultraproduct not always preserves the structures, by which the factors are
equipped. This is why the construction of the ultraproduct goes through some changes. The
details can be found in works [1], [2], [4], [6], [8].

Definition 3.2. Let (ℰ𝑛, 𝑆𝑛) be a sequence of the structures of events, 𝒰 be an arbitrary
nontrivial ultrafilter in the set of natural numbers N. Let

∏︀∞
𝑛=1 ℰ𝑛 be the Cartesian product of

the sequence (ℰ𝑛). We let

(𝑎𝑛) ∼ (𝑏𝑛) ⇔ lim
𝒰

𝑠𝑛(𝑎𝑛) = lim
𝒰

𝑠𝑛(𝑏𝑛) for all (𝑠𝑛), 𝑠𝑛 ∈ 𝑆𝑛.

In the quotient set (ℰ𝑛)𝒰 of the Cartesian product with respect to this equivalence relation we
define the set of the states as follows:

𝑆𝒰 = {𝑠𝒰 : 𝑠𝒰(𝑎𝑛)𝒰 = lim
𝒰

𝑠𝑛(𝑎𝑛), 𝑠𝑛 ∈ 𝑆𝑛}.

A couple ((ℰ𝑛)𝒰 , 𝑆𝒰) is called an ultraproduct of a sequence of structures of events.

Theorem 3.1. Let (ℰ𝑛, 𝑆𝑛)𝑛⩾1 be a sequence of the structure of events, 𝒰 be a non-trivial
ultrafilter in the set of natural numbers N. Then the ultraproduct ((ℰ𝑛)𝒰 , 𝑆𝒰) is a structure of
events.

Proof. Let us show first that if (ℰ , 𝑆) is a structure of events, then each state 𝑠 ∈ 𝑆 is a
probability measure, that is,

𝑠

(︃
∞⋁︁
𝑖=1

𝑎𝑖

)︃
=

∞∑︁
𝑖=1

𝑠(𝑎𝑖), 𝑠 ∈ 𝑆.

We consider a sequence of events (𝑎𝑖) such that 𝑠(𝑎𝑖) + 𝑠(𝑎𝑗) ⩽ 1, 𝑖 ̸= 𝑗. It is easy to show
that in this case 𝑎𝑖 ⊥ 𝑎𝑗, 𝑖 ̸= 𝑗. Indeed, 𝑠(𝑎𝑖) ⩽ 1 − 𝑠(𝑎𝑗) = 𝑠(𝑎′𝑗), 𝑖 ̸= 𝑗, and hence, 𝑎𝑖 ⩽ 𝑎′𝑗,
that is, 𝑎𝑖 ⊥ 𝑎𝑗, 𝑖 ̸= 𝑗. Now Axiom A2 implies that there exists an element 𝑏 ∈ ℰ such that
𝑠(𝑏) + 𝑠(𝑎1) + 𝑠(𝑎2) + . . . = 1 for each 𝑠 ∈ 𝑆. Then 1 − 𝑠(𝑏) = 𝑠(𝑏′) =

∑︀
𝑠(𝑎𝑖), therefore,

𝑏′ ⩾ 𝑎𝑖, 𝑖 = 1, 2, . . . . This means that the event 𝑏′ is the supremum of the family (𝑎𝑖). Let us

show that the event 𝑏′ is the surpremum of the family (𝑎𝑖): 𝑏
′ =

∞⋁︀
𝑖=1

𝑎𝑖. It is easy to see that if

𝑏1 is some other supremum (𝑎𝑖), that is, 𝑏1 ⩾ 𝑎𝑖, 𝑖 = 1, 2, . . . , then 𝑏1 ⩾ 𝑏′. Hence, 𝑏′ =
∞⋁︀
𝑖=1

𝑎𝑖

and 𝑠(
∞⋁︀
𝑖=1

𝑎𝑖) =
∞∑︀
𝑖=1

𝑠(𝑎𝑖), 𝑠 ∈ 𝑆.

We are going to check the axioms of the structure of the events for the ultraproducts
((ℰ𝑛)𝒰 , 𝑆𝒰). The first axiom is immediately satisfied by the defintion 3.2. To check Axiom 𝐴2,
we first show that 𝑠𝒰 is a probability measure on (ℰ𝑛)𝒰 .
Let 𝑎𝑘 ∈ (ℰ𝑛)𝒰 (𝑘 = 1, 2, . . . ), 𝑎𝑘 ⊥ 𝑎𝑙, 𝑘 ̸= 𝑙, and let 𝑎 =

∞⋁︀
𝑘=1

𝑎𝑘. It is sufficient to show that

𝑠𝒰(𝑎) ⩽
∞∑︁
𝑘=1

𝑠𝒰(𝑎
𝑘) + 𝜀

for each 𝜀 > 0.
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Let the events 𝑎𝑘 possess the following representation: 𝑎𝑘 = (𝑎𝑘𝑛)𝒰 . Then there exists an
element 𝑈0 ∈ 𝒰 such that

𝑠𝑛(𝑎
𝑘
𝑛) ⩽ 𝑠𝒰(𝑎

𝑘) +
𝜀

2𝑘
, 𝑛 ∈ 𝑈0.

In the representation 𝑎𝑘 we let 𝑎𝑘𝑛 = 0 if 𝑛 /∈ 𝑈0. This yields

𝑠𝑛

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
⩽

∞∑︁
𝑘=1

𝑠𝑛(𝑎
𝑘
𝑛) ⩽

∞∑︁
𝑘=1

𝑠𝒰(𝑎
𝑘) + 𝜀.

Hence,

𝑠𝒰

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
𝒰

= lim
𝒰

𝑠𝑛

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
⩽

∞∑︁
𝑘=1

𝑠𝒰(𝑎
𝑘) + 𝜀.

On the other hand, by the properties of the theoretical-set ultraproduct,

𝑎 =
∞⋁︁
𝑘=1

𝑎𝑘 ⩽

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
𝒰

.

Then

𝑠𝒰(𝑎) ⩽ 𝑠𝒰

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
𝒰

⩽
∞∑︁
𝑘=1

𝑠𝒰(𝑎
𝑘) + 𝜀.

Hence,

𝑠𝒰

(︃
∞⋁︁
𝑘=1

𝑎𝑘

)︃
=

∞∑︁
𝑘=1

𝑠𝒰(𝑎
𝑘).

Thus, the state 𝑠𝒰 is a probability measure. This also implies that

𝑠𝒰

(︃
∞⋁︁
𝑘=1

𝑎𝑘

)︃
= 𝑠𝒰

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
𝒰

.

Therefore,
∞⋁︁
𝑘=1

(𝑎𝑘𝑛)𝒰 =

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
𝒰

.

Now we take a sequence (𝑎𝑘) = ((𝑎𝑘𝑛)𝒰), (𝑘 = 1, 2, . . . ), of elements (ℰ𝑛)𝒰 obeying the
conditions of Axiom A2: 𝑠(𝑎𝑘) + 𝑠(𝑎𝑙) ⩽ 1, 𝑘 ̸= 𝑙. We are going to show that then 𝑎𝑘 ⊥ 𝑎𝑙,
𝑘 ̸= 𝑙 for all pairs of events. Suppose that this is not true, then there exists a pair of events
with the property 𝑎𝑖 ̸⊥ 𝑎𝑗. Then there exists 𝑈 ∈ 𝒰 such that 𝑎𝑖𝑛 ̸⊥ 𝑎𝑗𝑛 for all 𝑛 ∈ 𝑈 or, what is
the same, 𝑠𝑛(𝑎

𝑖
𝑛) + 𝑠𝑛(𝑎

𝑗
𝑛) > 1. Hence, 𝑠𝒰(𝑎

𝑖) + 𝑠𝒰(𝑎
𝑗) ⩾ 1. In the case of the strict inequality

this contradicts our assumption. In the case of identity the events 𝑎𝑖 and 𝑎𝑗 exhaust the given
sequence of events (𝑎𝑘), 𝑘 = 1, 2, . . . .

For each 𝑘 there exists 𝑏𝑛 such that 𝑏′𝑛 =
∞⋁︀
𝑖=1

𝑎𝑘𝑛. We consider

𝑏′ = (𝑏′𝑛)𝒰 =

(︃
∞⋁︁
𝑘=1

𝑎𝑘𝑛

)︃
𝒰

=
∞⋁︁
𝑖=1

𝑎𝑘.

Hence, 𝑏 = 1− 𝑏′ is an event such that 𝑠(𝑏) + 𝑠(𝑎1) + 𝑠(𝑎2) + · · · = 1.

Definition 2.2 implies immediately that the compatibility of the events is stable with respect
to the ultraproduct.
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Theorem 3.2. We define a mapping 𝑥𝒰 : ℬ(R) → (ℰ𝑛)𝒰 :

𝑥𝒰(𝐵) = (𝑥𝑛(𝐵))𝒰 , 𝐵 ∈ ℬ(R),

where 𝑥𝑛 : ℬ(R) → ℰ𝑛, (𝑛 ∈ N), are observable such that sup𝑛 ‖𝑥𝑛‖ < ∞. Then the mappign
𝑥𝒰 is a bounded observable.

Proof. The first two properties of an observable in Definition 2.5 are satisfied immediately. We
take a sequence (𝐵𝑘)𝑘⩾1 of mutually disjoint Borel sets on the real line. Then, employing the
results of Theorem 3.1, we obtain:

𝑥𝒰

(︃⋃︁
𝑘⩾1

𝐵𝑘

)︃
=

(︃
𝑥𝑛

(︃⋃︁
𝑘⩾1

𝐵𝑘

)︃)︃
𝒰

=

(︃⋁︁
𝑘⩾1

𝑥𝑛(𝐵𝑘)

)︃
𝒰

=
⋁︁
𝑘⩾1

(𝑥𝑛(𝐵𝑘))𝒰 =
⋁︁
𝑘⩾1

𝑥𝒰 (𝐵𝑘) .

It is easy to see that at the same time the observable 𝑥𝒰 is bounded:

‖𝑥𝒰‖ = lim
𝒰

‖𝑥𝑛‖ < ∞.

Remark 3.1. We call the space {𝑥𝒰 : 𝑥𝑛 ∈ 𝑂𝑏(ℰ𝑛)} an ultraproduct of the sequence of the
space of observables 𝑂𝑏(ℰ𝑛).

Since the observable 𝑥𝒰 is bounded, it induces a probability distribution for an arbitrary
state 𝑠𝒰 ∈ 𝑆𝒰 on the Borel 𝜎-algebra ℬ(R) of the real line:

(𝑠𝒰)𝑥𝒰 (𝐵) = lim
𝒰

𝑠𝑛(𝑥𝑛(𝐵)), 𝐵 ∈ ℬ(R).

We define a mathematical expectation for an observable 𝑥𝒰 at a state 𝑠𝒰 :

𝑚𝑠𝒰 (𝑥𝒰) = lim
𝒰

∫︁
R

𝑡𝑑(𝑠𝑛)𝑥𝑛
(𝑡).

Theorem 3.3. Condition M holds in the ultraproduct of the spaces of observables if and only
if there exists an element 𝑈 ∈ 𝒰 such that for all 𝑛 ∈ 𝑈 and for each 𝜀 > 0 the inequality

|𝑚𝑠𝑛(𝑥𝑛)−𝑚𝑠𝑛(𝑦𝑛)| < 𝜀,

implies that the observables 𝑥𝒰 and 𝑦𝒰 coincide.

Proof. The statement is obviously implied by the definition of the mathematical expectation
for 𝑥𝒰 .

Remark 3.2. The condition |𝑚𝑠𝑛(𝑥𝑛)−𝑚𝑠𝑛(𝑦𝑛)| < 𝜀 in Theorem 3.3 can be interpreted as
a perturbation of an observable 𝑥𝑛: 𝑦𝑛 is a perturbation of 𝑥𝑛.

The compatibility of the observables in the ultraproduct is immediately implied by the def-
inition of the compatiblity and by the fact that the compatbility is stable with respect to the
ultraproduct. This is why in the ultraproduct of the spaces of observables the structure of a
linear normed space is preserved.

Theorem 3.4. An ultraproduct of a sequence of quantum logic with a given system of prob-
ability measures defining an order is a quantum logic.

Proof. The statement of the theorem is implied by the fact that a quantum logic equipped with
a system of probability measures defining an order is a structure of events, and by Theorem 3.1.
In its turn, the structure of events a 𝜎-complete orthomodular partially ordered set with an
orthocomplement, that is, it is a quantum logic.
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