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ON DISCRETE SPECTRUM OF
ONE TWO-PARTICLE LATTICE HAMILTONIAN

Yu.Kh. ESHKABILOV, D.J. KULTURAEV

Abstract. Linear self-adjoint operators in the Friedrichs models arise in various fields, for
instance, in the perturbation theory of spectra of self-adjoint operators, in the quantum
field theory, in theory of two- and three-particle discrete Schrédinger operators, in hydrody-
namics, etc. An operator H in the Friedrichs model is a sum of two operators in the Hilbert
space Lo(R2), that is, H = Hy+¢K, ¢ > 0, where Hj is the operator by multiplication by a
function and K is a compact integral operator. For the operators in the Friedrichs models
we need to solve the following problems:

1) Under which conditions the discrete spectrum is an empty set?

2) Under which conditions the discrete spectrum is a non-empty set?

3) Find conditions ensuring that an operator in the Friedrichs model is a finite set;

4) Find sufficient conditions guaranteeing that an operator in the Friedrichs model is an
infinite set.

It is known that if a kernel of an integral operator in the model is degenerate, then
the discrete spectum of the correponding operator in the Friedrichs model is a finite set.
Therefore, a necessary condition for the operator in the Friedrichs model to possess an
infinite discrete spectrum is the non-degeneracy of the integral operator in the model. In
the paper we consider linear bounded self-adjoint operator in the Friedrichs model, for which
the integral operator has a non-degenerate kernel. In this work, we study the first and the
fourth questions. We obtain one sufficient condition guaranteeing that the operators in
Friedrichs model possesses an infinite discrete spectrum. We study the spectrum of one
two-particle discrete Schrodinger operator @(¢) on the lattice Z¥ x Z¥, in which the Fourier
transform of the operator Q(e) is represented as H = Hp + ¢K, € > 0. It is shown that
the structure of the Schrodinger operator @Q(¢) highly depends on the dimension v of the
lattice. It is proven that in the case v = 1,2, for all € > 0 the discrete spectrum of the
Schrodinger operator Q(e) is infinite, while in the case v > 3, for sufficiently small € > 0,
the discrete spectrum of the Schrédinger operator Q(e) is an empty set.

Keywords: Friedrichs model, two-partical Hamiltonian, self-adjoint operator, spectrum,
essential spectrum, discrete spectrum, non-degenerate kernel.
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1. INTRODUCTION

The studying of spectra is the main problem in the theory of Schrodinger operators. Let
u(x) be a real-valued continuous function on €2, = [0,1]”, ¥ € N, K be an integral operator in
the Hilbert space Ly(€2,) with the kernel k(z, s) € Lo(Q?), where k(x,s) = k(s,z). A series of
questions in quantum mechanics and statistical physics (see [I]-[5]) lead to studying a discrete
spectrum of an operator H in a Hilbert space Lo(€2,) acting by the rule:

H=H, - K, (1.1)
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where

(Hofa) = @) (o), (KD)@) = [ Kes)f(s)du(s)
Q
Here the integral is treated in the Lebesgue sense, u(-) is the Lebesgue measure on R”. The
classical Weyl theorem on a compact perturbation [6] yields that the essential spectrum o.ss(H)
of the operator H coincides with the set of the values of the function u(z), that is, o.ss(H) =
[Umins Umaz], Where Uy, = ;relgl w(x), Umaz = max u(z).

v

An operator of form is called an operator in the Friedrichs model. It should be noted
that the Friedrichs model is applied in various fields of science. In 1937, in work [7], K. Freidrichs
proposed to consider this model in the perturbation theory of essential spectra of self-adjoint
operators. Then K. Friedrichs showed [§] that the studying of a one-particle Schrodinger opera-
tor is reduced to studying the operator in the Friedrichs model. In paper [2], while studying the
spectra of stochastic operators arising the lattice gas models, properties of the operators in the
Friedrichs model were used. Moreover, solving problems related with waves propagation and
tsunami problem, is reduced to studying the spectra of the operators in the Friedrichs model
[9]. The spectral properties of self-adjoint operators in the Friedrichs models are widely used in
studying spectra of two-particle and three-particle discrete Schrodinger operators [5], [10]-[12]
and so forth.

A series of publications is devoted to studying the spectra of the operators in the Friedrichs
model, see, for instance, [13]-|20] and others. By the minimax and maximin principle, it was
proved in [I4] that if the kernel of the integral operator K degenerates, then the discrete
spectrum in Friedrichs model is finite. This implies that in order to the operator in model
to have an infinite discrete spectrum, the kernel of the integral operator K should be
non-degenerate.

In the present paper we consider a two-particle Hamiltonian Q(¢), € > 0 on the lattice Z" x 7",
where Z is an v-dimensional integer lattice. The Fourier transform of the Hamiltonian Q(¢)
is a self-adjoint operator in the Friedrichs model with a non-degenerate kernel. In the case
v = 1,2, for all € > 0 we prove the existence of infinitely many negative eigenvalues of the
Hamiltonian @Q(¢). In the case v > 3 we prove that for sufficiently small ¢, the Hamiltonian
(Q(e) possesses no negative eigenvalues.

2. FORMULATION OF PROBLEM AND AUXILIARY STATEMENTS

Let H be a separable Hilbert space, A : H — H be a linear bounded self-adjoint operator.
By 0(A), 0ess(A) and o45.(A) we respectively denote the spectrum, essential spectrum and
discrete spectrum of an operator A, see [21]. We also introduce the following notations:

Emin(A) =inf{\ : X € 0ess(A)},  Eax(A) = sup{: X € 0.55(A4)}.

A number E,;,(A) (a number E,,..(A)) is called the bottom (top) of the essential spectrum
of an operator A.

By {1n(A)}new we denote a bounded increasing sequence of real numbers constructed by
the minimax principle for a given self-adjoint operator A, see [14]. Then each number pu,(A),
n € IN, is an eigenvalue of the operator A and nlggo tn(A) = Enin(A), that is,

{1n(A) }new = Oaisc(A) N (=00, Enin(A)),

or there exists ng € IN such that each number px(A), k € {1,2,...,n0} is an eigenvalue of the
operator A and py(A) = Enin(A) for all k > ng, that is,

{11(A), 12(A), - ping (A)} = Gdise(A) N (=00, Epin(A)).
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A linear bounded self-adjoint operator A is called positive if (Az,z) > 0 for all z € H; we
write thisas A > 0 or 0 < A.

Lemma 2.1 ([6], [14]). Let A,B : H — H be linear bounded self-adjoint operators,
Erin(A) = Epin(B) and A < B. Then p,(A) < pu,(B), n € N, where
prp(A) = sup inf (Az,z), keN.

LCH, dim L=k—1 [lz[=1, zLL
In a Hilbert space Ly(€2, X §2,) we consider an operator H; in the Friedrichs model
Hy = Ho - K, (2.1)

where

(Hof) (e ) = ule, ) fa,y),  (Kf)(a,y) = / / B,y 5.0) £ (s, )dpu(s)du(t).

Here u(z,y) € C(2, x ,) is non-negative and 0 € Ran(u), k(z,y;s,t) € Lo(Q? x Q2) and
k(z,y;s,t) = k(s, t;z,y).

Let the operator K possess infinitely many positive eigenvalues n; > 1, > ... > n, > ...,
M, — 0, n — oo and {g,(z,y)}nenw be an associated sequence of orthonormalized eigenfunc-
tions. The self-adjointness of the operator Hy implies that o(H;) C R, while the positivity
of the operator K yields that o(H;) N (tpax, 00) = 0. This is why the discrete spectrum of the
operator H; can be located only in the half-line (—o0, 0).

For each £ < 0 we define integral operators

P(§) = Kiro(©K?,  R(E) = Kir§ (€),
where 79(&) is the resolvent of the multiplier Hy. The representation P(£) = R(£)(R(§))* yields

the positivity of the operator P(£). The solution fy of the equation H; f = £f and fixed points
¢ of the operator P(§) are related by the identities

fo=m©)Kzp, p=K:f, (2.2)

Lemma 2.2 ([20]). A number & < 0 is an eigenvalue of the operator Hy if and only if the
number A = 1 is an eigenvalue of the operator P(§).

It follows from Lemma [2.2 n 2| that dim Ker(H; — £I) = dim Ker(P (&) — I), £ < 0. We let

// dzdy - £ <0,

Theorem 2.1. Let u(x,y) = uo(y) and k(z,y;s,t) = ko(x, s) in the model Hy .
[f{lign()@(f) = M < +oo and for some index ng € N the condition Mn,, > 1 holds, then
50—

the operator Hy (2.1) possesses ng negative eigenvalues & < & < ... < &y, no € N, and the
associated eigenfunctions are of the form:

0
gr()
fulz,y) = —22 B e {1,2,.. . ng). 2.3
o) = I ke (L2 m) 23)
Proof. In the case £ < 0 for the kernel p(&,z;s) of the integral operator P(&) the identity
p(&;x, s) = P(E)ko(x, s) holds. Therefore,
P(&) = B()K. (2.4)
This means that the eigenfunctions of the operator K are also the eigenfunctions of the operator

P(&). Under the assumptions of Theorem , non-zero eigenvalues of the operator K are the
numbers 7,,, n € N, and the associated eigenfunctions as ¢, (z,y) = ¢°(z) € L2(9,), n € IN.
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Then it follows from (2.4) that the numbers
M(§) =, 2(8), nel, (2.5)

are the eigenvalues of the operator P(§).
By Lemma [2.2] we obtain:

1
¢)=—, nel. (2.6)
Mn
It is clear that the function ®() is positive and increases on (—o0,0) since

Ven dy
¥ = / (aoly) =27 =

Moreover,
lim ®(&) = M, Elim d(&) = 0.
——00

£—0-0
If Mn,, > 1, then equation has ny negative solutions & < & < ... < &, < 0.
Lemma implies that each of the numbers &, k € {1,2,...,ng} is an eigenvalue of the
operator H;. Since the operator P(¢) has the eigenfunctions g (z,y) = g%(z), k € {1,2,...,ng},
by relation (2.2)) we conclude that with an eigenvalue &, k € {1,2,...,ng} of the operator Hy,
the eigenfunctions fi(z,%) of form are associated. O

Theorem [2.1] implies the following proposition.

Proposition 2.1. Let u(z,y) = uo(y) and k(z,y; s,t) = ko(z, s) in model (2.1)).
a) IfglignO(I)(f) = +o00, then the operator H, possesses infinitely many negative eigenvalues
_> —

&n, n e N
b) Iféli(r)nofb(f) = M < oo and Mn,, < 1, then the operator Hy possesses no negative
50—

eigenvalues.

On (—o00,0) we define the following functions

dirdys . . . dy,
Oy (v;€) :/ Y1092 i where T = [—m, 7.

o Yo (1 —cosyg) —&
k=1
Employing the properties of the trigonometrci function cosy, we prove the following:
Lemma 2.3. o) If v = 1,2, then Eli{)nocbl(y;{') = 400.
ﬁ J—

b) If v > 3, then lim ®(v;¢) < oc.
£-0-0

3. DESCRIPTION OF TWO-PARTICLE LATTICE HAMILTONIAN ()(¢) ON LATTICE Z" X Z"

We consider a two-particle lattice Hamiltonian [22]

Q(e) = Qo —eQ1, £>0, (3.1)

acting in the space lo(Z" x Z) (v € IN), where the kinetic energy @)y is defined by a convolution
with a function of general form:

(Qud)(m,n) = Y wo(m —k,n — Dok, 1),

while the potential energy ()1 equals
(Q1¢) (m7 n) =0 <m7 n>¢(m7 n)
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Let the kinetic energy reads as vo(m,n) = ui(m)us(n), where
—2a1v as m =0,
ur(m) = aq as |m| =1,
0 for other values m € 7",
—2aov as n =0,
us(n) = as as |n| =1,
0 for other values n € Z”,
where a1, ay > 0 and |m| = |mq| + [me| + ...+ |m,|, m € Z".
We define a potential function
ag as m=mn =0,
B, as m=0, n€ {£qe;}, ¢ N,
a, as m € {xpe;}, n=0,pe NN,

vi(m,n) =

0 for other values m,n € 7",

where o, v, B, > 0, p,q € IN, a, <00, Y B, <00, e;=(0,0,...,1,0,0,...,0) € Z".
05 %py Mg p%\l P q%\l q J ( A )
j
Let T = (—m, 7] and F : [o(Z¥ x ZV) — Lo(T” x T") be a Fourier transform, under which
the functions ¢(m,n) on lattice Z* x Z¥ are transformed into functions f(x,y) on TV x T" by
the rule

f(,y) = — > oW, ¢Meap(il(p™, x) + (@, ).

(2m)v p(D) ,qMezv

Lemma 3.1. The Fourier transform Hay(e) of the operator Q(c) acts in Lo(T” x T")
by formula

Hy(e) f(2,y) = H f (@, y) — eKa [ (2,y), (3:2)
here
HéQ)f(xv y) = u((f)(x,y)f(x, y)7 KQf(‘ra y) = //kﬁg(fﬁ, Y; S7t)f(3a t)d‘Sdt
Tv Tv
and
uég) (x,y) = dayaz Z(l — oS Ty) Z(l — COS Yg),
k=1 k=1
the kernel ko(z,y; s,t) is non-degenerate:
Fa(2, 3 5,8) = Xowo (@, y) + DA D ol (@)l (s:) + Z A Z D (x:)pP (1)
p=1 i=1 =1

+ZWZ% yi)e +ZAQ>Zw )o@ (1),

where
Ao = (27)" v, /\1(,1) = (2m)*ay, )\((]2) = (2m)* B,
1 1 COS px; 9 sin px; ,
wo(T,y) (27r)V’ %)( z):m7 @p)( z)zma i =1,2, »V
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Proof. 1. We first consider the Fourier transform of the operator Q:
F:Qo— H.
We let
oAl 2)+ (M )]

Q0¢<m>n) = wl(ma n)a ¢1<m7n) € ZZ(ZV X ZV)) Cp(1)7q(1)($7 y) =

Then we have:

1 iltoM )4 (o)
F: 7701 (/)n7 n) —0 (fL‘, y) = (27r)u Z ¢(p(1)’ (](1))6 (P ,2)+(a') y)]
p(1>7q(1)EZV

= 1 Z [ Z Uo(p(l) —k, q(l) —Do(k, l)] gp(l)vq(l)(l’, Y)

(2m)¥
p(1)7q(1)€ZV klezv

= Z Z vo(p™ — k, ¢V 1) //f(SJ)Ck,z(S,t)det G g (2, Y)

P qWezy kIeZY o T

://f(s,t) Z Z Uo(p(l) — k,qM — D¢ g0 (2, Y)Cra(s, t)dsdt

Tv Tv p(1)7q(1)€ZV kJEZV

://f(s,t) Z Z vo(p(l) — k,qM — D¢ g (2, y)Cra(s, t)dsdt

p(1)7q(1)€Z” p(l)fk:(]
qM—1=0
k,lez”

+ / / fs,t) > > w@ = kg = DG g0 (2, ) Crals, t)dsdt

Tv Tv pD,qWezv [pM)—k|=1
¢V —1=0
klez”

s [0 XY w k= DGl Ddsde

Tv Tv pM,gMezy p—k=0
lg—1|=1
k,lez”

—|—//f(s,t) Z Z vo(p(l) — k,qM — DG g0 (2, y)Cra(s, t)dsdt

p(1>7q(1)€ZV ‘p(1)7k|:1
lg™) —1|=1
kleZ”

:Tlf(xay) + TQf(xvy) + T3f($,y) + T4f(l'7y), f S LQ(TV X TV)

Tv Tv

TV Tv

Here by T}, T5, T3, Ty we denote the operators involved in the latter expression according the
orders in the terms. For each operator Ty, k = 1,2, 3,4, the following identity holds:

14

Tif(x,y) = 4ara90” f(z,y), Tof(z,y) = —4dajasv Z coszif(x,y),

k=1

Tgf($, y) = —4a1a2UZCOS ykf(xay)v T4f(ZL‘, y) = 4dayay <Z COS xk) (Z COS yk) f(:E,y)

k=1 k=1 k=1
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Therefore,

124 12
g1(z,y) = (4a1a21/2 — 4ayasv g cos T — 4ajasv E COS Y
k=1 k=1

+ 4ayas Z COS T, Z coS yk) f(z,y)
k=1 k=1
=4ajay Z(l — oS Ty) Z(l — cosyx) f(x,y).
k=1 k=1

IT. We consider the Fourier transform of the operator Q;:
F Ql — Kg.

We let Q19(m,n) = a(m,n), Ya(m,n) € lo3(Z” x 7). Then we have:

1 il )+ (gD
F iha(m,n) — gao(w,y) = (2m)v Z G(pW, g V)P I+
p(l)’q(l)GZV

_ D) MDYl 6D )+ )]
ny vi(p, ¢Vt ¢ e

p<1>,q<1>EZV
= Z Ul(p(l),q(l)) //f(s’t)e—i[(p(l),s)-‘r(q(l),t)]dsdt 6i[(p(1)’x)+(q(l>7y)]
pM,gWezr Tv Tv

= > nalp g 0T s dsy

Tv Tv p(l),q(l)GZV

_ / / k(2. y: 5, 1) (s, 1) dsdt.

TV T¥

For the kernel ky(x,y; s,t) of the integral operator Ky we obtain:

ko(z,y;8,t) = Z o (pD) D) =) =il =)
p(1)7q(1)€Zu

o0 o0
—i(£qej,t— —i(+pej,s—
:&0+§ Bye i(+qej,t—y) _,_E e i(+pej,s—)
g=1 p=1

=ag + Li(y, t) + L(z, 5),

where

Li(y,t) = Z ﬁqe’i(iqej’t’y) =2 Z By Z COS q; cos qt; + 2 Z By Z sin qy; sin gt;,
q=1 g=1 i=1 g=1 i—1

o0 o0 v o0 v
Ly(z,s) = E ozpe_z(ipej’s_”’c) =2 E a, E COS PI; COS PS; + 2 E a, g sin pzx; sin ps;.
p=1 p=1 i=1 p=1 =1
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We therefore have:

ko(x,y;8,t) = Nowo(x,y) + Z)\S) Z%(’l)( x;) )+ ZA ZSO () 905,2) (5)

p=1 i=1

o0

+ZA(2)Z% Uiy +ZA2’290 (t:).

Thus, the Fourier transform Hy(e) of the operator Q(e) : Io(Z¥ x Z¥) — 1y(Z¥ x ZV) acts in
Lo(T” x T”) by formula (3.2)). The proof is complete. O

4. DISCRETE SPECTRUM OF HAMILTONIAN Hj(¢)

According Lemma, the discrete Schrédinger operator H2 . is an operator in the
Friedrichs model Wlth a non-degenerate kernel. We have o..(Ha(e )) [0, 16a;aav?].

Theorem 4.1. Letv = 1,2. For alle > 0 the two-particle Hamiltonian H2 (.) poSsesses
infinitely many eigenvalues.

Proof. Let £ be an arbitrary positive number, for which § > 8vajas. In the space Lo(TY x TV)
we define the operator H;(¢) in the Friedrichs model as follows:

Hi(e) = HY — ¢K,. (4.1)
Here
Hf(.9) = 530 = cosu) ). Kifloow) = [ [ hataso)fs.opdsit,
k=1 Tv Tv
where
ki(z;s) = Xowol(z) + Z )\1(,1) Z @él)(mi )+ Z )\1(01 Z xl)goz(f)( i)
p=1 i=1 =1 i=1

Let v = 1,2. It is obvious that E,,(Hi(e)) = Emm(Hz(c)) = 0. According to Lemma
and by Proposition , the operator Hi () 1} has infinitely many negative eigenvalues since

dy

5h[r)no ” = +00
ﬁ —
v B2 (1—cosyr) —§
k=1
and dimRan K; = co. On the other hand, Hy(¢) < Hi(¢). By Lemma this implies the
statement of the theorem. ]

For each £ < 0 in the Hilbert space Lo(T” x T") we define an integral operator W (¢):
k2 (il?, Y; s, t)

W({)f(x,y)://krg(x,y;s,t)f(s,t)dsdt, where k‘g(m,y;s,t)zm.
(s 1) —

Tv Tv
We consider the equation for the eigenvalues ¢ < 0:

ﬁ%wﬁ@w—g//mmwawwwwmzw@ﬁ,f@w#u
Tv Tv

fzy

We define a function g(z,y) = D€ © Ly(9?). We obtain

h
W(&g(z,y) = g(z,y),
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that is, the number A = 1 is an eigenvalue of the operator eW (¢).
We define a sequence of continuous functions on (T*)¥", n € N

ke(wi,yiisi,t) oo ke(@1, 915 Sn, )
P £$1,$2--~,$m Y925 Un | _ | Ke(w2, 925 51, 11) ke(22, Y25 Sns tn) (4.2)
S1,82...,8n, tl,tg,tn
k£<xmyn;817t1) kﬁ(l‘n’yn;smtn)
and we let
do(€) = F, (e|052 s Intaentn]) g gor  dsadtidts. .. dt
" " 51,82 ...,8n, tl,tg...,tn 1oz nEAER2 e B
(Tv)™ (Tv)™
The following expression
A(a;g):HZ(Tdn(g), € € C\Oess(Ha(e)) (4.3)
n=1 ’

is the Fredholm determinant for the operator I — eW (&), where [ is the identity mapping.

Lemma 4.1 ([23]). The number & € C\oess(Ha(€)) is an eigenvalues of the operator Hy(e)
if and only if A(g;8) = 0.

For £ € (—00,0) we define the following functions:

Oy (v;€) = — dxdyy , where T =[—m, .

to v 4darag Y (1 —cosxg) Y (1 —cosyg) — &
k=1 k=1

Let v > 3. Then by employing Lemma one can prove that gli[r)n chg(y; ) < .
50—
We let:

M, = 221/ 17'('21/ (ZA +Z/\ > ) AV :gg{)rioq)z(y,g)

p=1

Then we have ®5(v;&) < A, for all £ < 0.

Theorem 4.2. Let v > 3. Ife <
spectrum.

Proof. Let £ < 0. We have

ik then the operator Hy(e) (3.9) has no discrete

Ale:€) =1+ Ale:€), where Afe;€) = f:

n=1

nl
For the kernel ky(x,y; s,t) of the operator Ky the inequality
ko(x,y;s,t) < M, Vx,y,s,t € T” (4.4)
holds. Employing Hadamard inequality and (4.4)), we obtain
) <£ 0109 . ..0, o (M,/n)"

TP (s tr) — &) T1 WP (s, t) — &)
0; = \/kg(a:i,yi; S1,t1) + k3 (i, yis S, t2) + - o+ K3(24, Ui Sns tn), i=1,2,...,n.

Y

L1, T2y Tny Y1,Y2--+,Yn
51,82 ...,8n, t17t2...7tn

k=1 k=1

where
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Therefore,

M, n

14, (€)] < / / VA" sy dsadbdts . dt,
2

(T#)m (T#)n H( & (su,t) =€)

(M) // dsidt; // dsadts // ds,dt,
2, Uo (s1,t1) — Ug (89,t2) — Uo (8p,tn) — &
< (Mo,

For a scalar sequence ¢, =
inequality, we find:

% the inequality 1 > ¢, > ¢,41, n € N, holds. Employing this

i (5141/]\;[1'/\/5)” < io:(sAyMu)n.
n=1 ’ n=1

o
then the series > (¢A,M,)" is the sum of a decaying geometric progression.
n=1

Let6<2AM7

Therefore, we obtain

= n cA,M,
Z(‘SAVMV) == m < 1.

n=1
Thus,
’Z(E;f)‘ <1, V¢ € (—00,0).
AL M , then A(g;&) # 0 for all £ < 0. Then according Lemma , the

operator Hg(s) has no negative eigenvalues. The proof is complete. O]

This implies that if £ <

BIBLIOGRAPHY

1. L.D. Faddeev. On a model of Friedrichs in the theory of perturbations of the continuous spectrum
// Trudy MIAN AN SSSR. 73, 292-313 (1964). [Amer. Math. Soc. Transl. Ser. 2. 62, 177-203
(1967).]

2. R. A. Minlos, Ya. G. Sinai. Spectra of stochastic operators arising in lattice models of a gas //
Teor. Matem. Fiz. 4:2, 230-243 (1970). [Theor. Math. Phys. 2:2, 167-176 (1970).]

3. K.O. Friedrichs. Perturbation of spectra in Hilbert space. Amer. Math. Soc. Providence, R.I.
(1965).

4. S.N. Lakaev, R.A. Minlos. Bound states of a cluster operator // Teor. Matem. Fiz. 39:1, 83-93
(1979). [Theor. Math. Phys. 39:1, 336-342 (1979).]

5. S.N. Lakaev. On Efimov’s effect in a system of three identical quantum particles // Funkts. Anal.
Pril. 27:3, 15-28 (1993). [Funct. Anal. Appl. 27:3, 166-175 (1993).]

6. M. Reed, B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic
Press, San Diego (1978).

7. K.O. Friedrichs. Uber die Spectralzerlegung eines Integral operators // Math. Ann. 115:2,
249-300 (1938).

8. K.O. Friedrichs. On the perturbation of continuous spectra // Comm. Pure appl. Math. 1:4
361-406 (1948).

9. M.A. Lavrentiev, B.V. Shabat. Hydrodynamics problems and their mathematical models. Nauka,
Moscow (1973).

10. Sh.S. Mamatov, R.A. Minlos. Bound states of two-particle cluster operator // Teor. Matem. Fiz.
79:2, 163-179 (1989). [Theor. Math. Phys. 79:2, 455-466 (1989).]

11. Yu.Kh. Eshkabilov. A discrete “three-particle” Schrédinger operator in the Hubbard model / / Teor.
Matem. Fiz. 149:2, 228-243 (2006). [Theor. Math. Phys. 149:2, 1497-1511 (2006).]



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

ON DISCRETE SPECTRUM. .. 107

M.E. Muminov, A.M. Khurramov. Spectral properties of two particle Hamiltonian on one-
dimensional lattice // Ufimskij Matem. Zh. 6:4, 102-110 (2014). [Ufa Math. J. 6:4, 99-107
(2014).]

Yu.Kh. Eshkabilov. On one operator in Friedrichs model // Uzbek. Matem. Zh. 3, 85-93 (1999).
(in Russian).

Yu.Kh. Eshkabilov. On infinity of the discrete spectrum of operators in the Friedrichs model //
Matem. Trudy. 14:1, 195-211 (2011). [Siber. Adv. Math. 22:1, 1-12 (2012) ]

Yu.Kh. Eshkabilov. On infinite number of negative eigenvalues of the Friedrichs model //
Nanosystems: Phys. Chem. Math. 3:6, 16-24 (2012). (in Russian.)

Yu.Kh. Eshkabilov, D.Zh. Kulturaev. On infiniteness of discrete spectra of operators in multi-
dimensional Friedrichs model // UzMU Habarlari. 1, 83-89 (2014). (in Russian).

S.A. Imomkulov, S.N. Lakaev. Discrete spectrum of one-dimensional Friedrichs model // Dokl.
AN UzSSR. 7, 9-11 (1988). (in Russian).

S.N. Lakaev. On discrete spectrum of generalized Friedrichs model // Dokl. AN UzSSR. 4, 9-10
(1979). (in Russian).

S.N. Lakaev. Some special properties of the generalized Friedrichs model // Trudy Semin. I.G.
Petrovskogo. 11, 210-238 (1986). |J. Soviet Math. 45:6, 1540-1565 (1989).]

Zh.I. Abdullaev. Figenvalues of two-particles Schrédinger operator on two-dimensional lattice //
Uzbek. Matem. Zh. 1, 3-11 (2005).

K. Pankrashkin. Introduction to the spectral theory. University Paris-Sud, Orsay (2014).

Y.V. Zhukov. The Iorio-O’Carroll theorem for an N -particle lattice Hamiltonian // Teor. Matem.
Fiz. [Theor. Math. Phys. 107:1, 478-486 (1996).]

F.G. Tricomi. Integral equations. Interscience Publ., New York (1957).

Yusup Khalbaevich Eshkabilov,
Karshi State University,
Kuchabag str. 17,

180100, Kasrshi, Uzbeskistan
E-mail: yusup62@mail.ru

Davron Zhuraevich Kulturaev,
Karshi State University,
Kuchabag str. 17,

180100, Kasrshi, Uzbeskistan



