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ORBITS OF DECOMPOSABLE 7-DIMENSIONAL

LIE ALGEBRAS WITH sl(2) SUBALGEBRA

A.V. ATANOV

Abstract. The problem on complete classification of holomorphically homogeneous real
hypersurfaces in two-dimensional complex spaces was resolved by E. Cartan in 1932. A
similar description in the three-dimensional case was recently obtained by A. Loboda. In
this work we discuss a part of classification of locally holomorphic homogeneous hypersur-
faces in 4-dimensional complex space being orbits in C4 by one family of 7-dimensional
Lie algebra. As it was shown in works by Beloshapka, Kossovskii, Loboda and other, the
ideas by E. Cartan allow one to obtain rather simply the descriptions of the orbits for the
algebras having Abelian ideals for rather large dimensions. In particular, the presence of a
4-dimensional Abelian ideal in 7-dimensional Lie algebra of holomorphic vector fields in C4

often gives rise to the tubularity property for all orbits of such algebra. The Lie algebras
in the family we consider are direct sums of the algebra sl(2) and several 4-dimensional
Lie algebras and they have at most 3-dimensional Abelian subalgebras. By means of a
technique of the simultaneous «flattening» of vector field we obtain a complete description
of all Levi non-degenerate holomorphically homogeneous hypersurfaces being the orbits of
the considered algebras in C4. Many of the obtained homogeneous hypersurfaces turn out
to be tubular manifolds. At the same time, the issue on possible reduction of other hy-
persurfaces to tubes requires further studying. As an effective tool for such study, as well
as for a detailed investigation of issues on holomorphic equivalent of the obtained orbits,
the technique of Moser normal forms can serve. By means of this technique, we study the
issue on the sphericity for representatives of one of the obtained family of hypersurfaces.
However, the application of the method of normal forms for the hypersurfaces in complex
spaces of dimension 4 and higher requires a further developing of this technique.
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1. Introduction

The problem of local description of real hypersurfaces in complex spaces homogeneous with
respect to holomorphic transformation was completely solved in C2 by E. Cartan, see [1]. A
similar classification in C3 consists of two big fragments, one of which provides the description of
all Levi degenerate homogeneous hypersurfaces in C3, while the other contains the description
of non-degenerate hypersurfaces, see [3]–[8].
Since the classification of holomorphically homogeneous hypersurfaces in C3 is complete, there

arises a natural interest to obtaining similar descriptions in the spaces of higher dimensions, in
particular, in C4. Apart of obvious tubes over affine homogeneous hypersurfaces in R4, see, for
instance, [9]–[11], only particular examples of holomorphically homogeneous hypersurfaces are
known in C4, see [12], [13].
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Similar to the three-dimensional case, it is reasonable to split the problem on classification
of holomorphically homogeneous hypersurfaces in C4 into two pieces, namely, the description
of Levi degenerate and non-degenerate hypersurfaces. We recall that by the Levi degeneracy
(at the point 0) of a smooth hypersurface 𝑀 ⊂ C4 containing the origin and defined by the
equation Im 𝑧4 = 𝐹 (𝑧1, 𝑧2, 𝑧3,Re 𝑧4), 𝑑𝐹 (0) = 0 we mean the vanishing at the point 0 of the
determinant of the Hessian matrix (𝜕2𝐹/𝜕𝑧𝑘𝜕𝑧𝑙) (𝑘, 𝑙 ∈ {1, 2, 3}).
The aim of the present work is to construct a complete description of all Levi non-degenerate

homogeneous hypersurfaces being the orbits in C4 of four decomposable 7-dimensional algebras

r𝑘 = h𝑘 ⊕ sl(2),

where 3-dimensional algebra sl(2) is determined by commutation relations

[𝑒1, 𝑒2] = 𝑒1, [𝑒1, 𝑒3] = 2𝑒2, [𝑒2, 𝑒3] = 𝑒3,

while the commutation relations for 4-dimensional algebras h𝑘 (𝑘 = 1, . . . , 4) are given in the
following table (|ℎ| ⩽ 1, 𝑝 ⩾ 0) [14]:

Table 1.1

Algebras [𝑒1, 𝑒3] [𝑒1, 𝑒4] [𝑒2, 𝑒3] [𝑒2, 𝑒4] [𝑒3, 𝑒4]
h1 2𝑒1 𝑒1 𝑒2 𝑒2 + 𝑒3
h2 (ℎ+ 1)𝑒1 𝑒1 𝑒2 ℎ𝑒3
h3 2𝑝𝑒1 𝑒1 𝑝𝑒2 − 𝑒3 𝑒2 + 𝑝𝑒3
h4 𝑒1 −𝑒2 𝑒2 𝑒1

The choice of exactly such algebras for studying is explained by the fact that the maximal
dimension of their Abelian subalgebras is equal to three. It follows from works [7], [12], [15]
that the presence of an Abelian subalgebra of dimension 𝑛 in the algebra of vector fields in C𝑛

simplifies essentially the study of such algebras and often leads either to the Levi degeneracy
of these orbits or to their tubular structure. And the most interesting Levi non-degenerate
homogeneous surfaces arose while considering the algebras with Abelian subalgebras of small
dimensions, see [7], [15].
We note that among decomposable seven-dimensional Lie algebras possessing no Abelian

subalgebras of dimension 4, only eight types of such algebras are direct sums of four-dimensional
and three-dimensional terms. Four of these eight types are the algebras r𝑘 = h𝑘 ⊕ sl(2),
(𝑘 = 1, . . . , 4), considered in the text. Extra four types are the algebras s𝑘 = h𝑘 ⊕ su(2)
(𝑘 = 1, . . . , 4) with the same four-dimensional terms h𝑘 as in the first case. The study of the
orbits of the algebras s𝑘 is not completed by the author yet.
In order to describe all Levi non-degenerate homogeneous hypersurfaces being the orbits in

C4 of 7-dimensional algebras r𝑘 (𝑘 = 1, . . . , 4), we employ the technique of realizations Lie
algebras as the algebras of holomorphic vector fields on homogeneous manifolds, see [16], and
this technique develops the ideas by E. Cartan in work [1].
The main result of the present paper is formulated in the following statement.

Theorem 1.1. Let 𝑝 be a center of the germ of a real-analytic hypersurface 𝑀 in C4, and
𝑔(𝑀) be a 7-dimensional algebras of germs of holomorphic vector fields on 𝑀 having a full rank
in 𝑝. If 𝑔(𝑀) and r1 are isomorphic as Lie algebras, then 𝑀 is necessarily Levi degenerate.
Levi non-degenerate 7-dimensional orbits of algebras r2, r3, r4 are exactly the surfaces from the
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following families (up to a locally holomorphic equivalence):

r2 : 𝑦4 = 𝑦3(𝑦1 + ln 𝑦3 + 𝐴 ln 𝑦2), 𝐴 ∈ R ∖ {0}, (1.1)

r2, r3 : 𝑦4 = 𝐴 ln 𝑦1 − ln
(︀
𝑦2 ± 𝑦23

)︀
, 𝐴 ∈ R ∖ {0}, (1.2)

(𝑦4 ± 𝑦23)𝑦2 + 𝑦1 = 𝐴|𝑧1|, 𝐴 ∈ R ∖ {±1}, (1.3)

r4 : 𝑦2 = |𝑧1||𝑦3 + 𝑖𝑦4|𝐴𝑒𝐵 arg(𝑦3+𝑖𝑦4), (𝐴,𝐵) ∈ R2 ∖ {(0, 0)}, (1.4)

(𝑥1 − 𝑦2𝑦4)
2 + (𝑦1 − 𝑦3𝑦4)

2 = (1− 𝐴)|𝑧1|2, 𝐴 < 1, 𝐴 ̸= 0, (1.5)

𝑦1𝑦4 + 𝑥1𝑦3 = |𝑧1|2(ln 𝑦2 + 𝐴 arg 𝑧1), 𝐴 ∈ R, (1.6)

where 𝑧1, 𝑧2, 𝑧3, 𝑧4 are variables in C4, 𝑥𝑘 = Re 𝑧𝑘, 𝑦𝑘 = Im 𝑧𝑘, 𝑘 = 1, . . . , 4.

Remark 1.1. Equations (1.2) and (1.3) in the above list are associated simultaneously with
two families of algebras r2, r3. Such writing means that each family of hypersurfaces defined by
equations (1.2) and (1.3) is an orbit of both r2 and r3. The coincidence of the orbits of two Lie
algebras is a rather ordinary phenomenon, in the case when these algebras are subalgebras of a
complete algebra 𝑔(𝑀) for the original orbit, see, for instance, [7]. Exactly this is the case for
surfaces (1.2) and (1.3), for each of these surfaces the dimension 𝑔(𝑀) turns out to exceed 7,
which is the dimension of each algebra of the families r2, r3.

We note that the hypersurfaces defined by equations (1.1), (1.2) are tubular manifolds, while
(1.4) is reduced to such manifold. The surfaces in the families (1.3), (1.5), (1.6), are likely to
be reduced to the tubes only for particular values of the parameters. However, in general, the
issue of such reduction is rather difficult and requires an independent study. An important
property of these hypersurfaces is their sphericity, that is, their local equivalence to a sphere or
its analogues. An example of studying the sphericity of the hypersurfaces in one of the obtained
families is given in the last section.

Remark 1.2. The issue on possible equivalence of hypersurfaces (1.1)–(1.6) for particular
values of the parameters 𝐴 and 𝐵 requires a special study and in the present work we do not
consider it.

2. Holomorphic realization of Lie algebras

There are several known approaches to constructing classification of holomorphically homo-
geneous hypersurfaces. For instance, homogeneous hypersurfaces can be described by means of
normal (canonical) Moser equations, see [17], that is, by means of finite sets of Taylor coefficients
from the equations defining these hypersurfaces. For instance, this was the way for obtaining
some of the aforementioned pieces of the classification in C3 ([3], [4]). Another approach for
describing hypersurfaces is related with employing groups acting on them and associated Lie
algebras. In work [16] there was demonstrated a technique for obtaining holomorphically ho-
mogeneous hypersurfaces in C3 on the base of constructing holomorphic realizations of abstract
Lie algebras. By means of this approach, an essential part of the results on classification of
holomorphically homogeneous hypersurfaces in the space C3, see [6], [7], [15]. It should be
noted that sometimes it is useful to apply simultaneously both aforementioned approaches, see,
for instance, [18].
Let us consider in more details the technique of constructing holomorphic realizations of Lie

algebras, which will be used later for the proving Theorem 1.1.

Definition 2.1. A real hypersurface 𝑀 ⊂ C4 is called holomorphically homogeneous at a
point 𝑝 ∈ 𝑀 if there exists the Lie algebra of holomorphic vector fields tangential to 𝑀 and
having rank 7 in the vicinity of the point 𝑝.
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We choose some real seven-dimensional Lie algebra defined by its commutations relations.
With the chosen seven-dimensional Lie algebra, we associate the set of seven germs, centered

at some point 𝑝 ∈ C4, of holomorphic vector fields

𝑒𝑘 =𝑎𝑘(𝑧1, 𝑧2, 𝑧3, 𝑧4)
𝜕

𝜕𝑧1
+ 𝑏𝑘(𝑧1, 𝑧2, 𝑧3, 𝑧4)

𝜕

𝜕𝑧2

+ 𝑐𝑘(𝑧1, 𝑧2, 𝑧3, 𝑧4)
𝜕

𝜕𝑧3
+ 𝑑𝑘(𝑧1, 𝑧2, 𝑧3, 𝑧4)

𝜕

𝜕𝑧4
, 𝑘 = 1, . . . , 7,

(2.1)

linearly independent over R. A brief writing is

𝑒𝑘 = (𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘) , 𝑘 = 1, . . . , 7,

where 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘 are the germs of holomorphic (at the point 𝑝) functions of complex variables
𝑧1, 𝑧2, 𝑧3, 𝑧4. In what follows, the real and imaginary parts of the variables 𝑧𝑗 will be denoted
respectively by 𝑥𝑗 and 𝑦𝑗, 𝑗 = 1, . . . , 4.

Definition 2.2. A Lie algebra 𝑔 of holomorphic vector fields in C4 is called a holomorphic
realization of an abstract Lie algebra g if the commutation relations of these algebras coincide.

The commutator of two fields [𝑒𝑘, 𝑒𝑗] is calculated in the following well-known way:

[𝑒𝑘, 𝑒𝑗] =

(︂
𝑎𝑘

𝜕𝑒𝑗
𝜕𝑧1

+ 𝑏𝑘
𝜕𝑒𝑗
𝜕𝑧2

+ 𝑐𝑘
𝜕𝑒𝑗
𝜕𝑧3

+ 𝑑𝑘
𝜕𝑒𝑗
𝜕𝑧4

)︂
−
(︂
𝑎𝑗
𝜕𝑒𝑘
𝜕𝑧1

+ 𝑏𝑗
𝜕𝑒𝑘
𝜕𝑧2

+ 𝑐𝑗
𝜕𝑒𝑘
𝜕𝑧3

+ 𝑑𝑗
𝜕𝑒𝑘
𝜕𝑧4

)︂
.

Employing holomorphic transformations, the functional coefficients of fields (2.1) related
with a Lie algebra can be changed and reduced to a simpler form. Here by a simpler field we
can mean a field, one or more coefficients of which vanish or depend on less variables after a
transformation. In particular, the following statement holds true, see, for instance, [12].

Lemma 2.1. If on a Levi non-degenerate hypersurface 𝑀 ⊂ C4 there is a pair of germs of
commuting holomorphic vector fields 𝑒𝑗 and 𝑒𝑘 linearly independent over R, then this pair can
be flattened, that is, to be reduced to the form

𝑒𝑗 = (0, 0, 0, 1), 𝑒𝑘 = (0, 0, 1, 0).

The simplification of even two fields to the form given in Lemma 2.1 leads to an essential
simplification of other fields due to the commutation relations between the fields. Considering if
necessary a series of subcases corresponding to vanishing or non-vanishing of several components
of several vector fields, we finally reduce the basis of the considered Lie algebra to a form
convenient for further integration, that is, for obtaining the equation of the surfaces via the
algebra of holomorphic tangential vector fields. Here we should also take into consideration
that the rank of the system of vector fields should be seven that reduces essentially the number
of the subcases to be considered.
The algebras of vector fields possess also the following property being a generalization of the

statements given in [16], [19] for C4.

Lemma 2.2. Assume that the algebra of holomorphic vector fields in C4 possesses a quadru-
ple of linearly independent vector fields, three of which read as

𝑒1 = (0, 0, 0, 1), 𝑒2 = (0, 0, 1, 0), 𝑒3 = (0, 1, 0, 0).

If the components of the fourth field, up to the terms 𝜙𝑘(𝑧1), (𝑘 = 1, 2, 3, 4), are linear functions
of other variables, then a holomorphic change of variables removes all 𝜙𝑘(𝑧1) from this field.
At the same time, the flattened form of the first triple of the fields and the linear components
of the field 𝑒4 are preserved.
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We recall that in this work we are interesting in only Levi non-degenerate holomorphic
homogeneous hypersurfaces. In view of this let us provide two statements, which in some cases
allow us to conclude on the degeneracy of the corresponding hypersurfaces by the form of vector
fields; these statements are easily extended to the case C4 from the case C3 and this is why we
provide them without proving, see [7].

Lemma 2.3. Assume that we are given a germ, centered at a point 𝑝, of a real analytic
hypersurface 𝑀 ⊂ C4 and a 7-dimensional algebra 𝑔(𝑀) of germs of holomorphic vector fields
tangential to 𝑀 and having rank 7 at the point 𝑝. If six basis holomorphic fields of the men-
tioned algebra have a zero coefficient at the same operator 𝜕

𝜕𝑧𝑘
, then the hypersurface 𝑀 is Levi

degenerate.

Lemma 2.4. Assume that we are given a germ, centered at a point 𝑝, of a real analytic
hypersurface 𝑀 ⊂ C4 and a 7-dimensional algebra 𝑔(𝑀) of germs of holomorphic vector fields
tangential to 𝑀 and having rank 7 at the point 𝑝. If a quadruple of basis holomorphic fields of
the mentioned algebra reads as

𝑒𝑗 = (0, 0, 𝑐𝑗(𝑧1, 𝑧2, 𝑧3, 𝑧4), 𝑑𝑗(𝑧1, 𝑧2, 𝑧3, 𝑧4)) , 𝑗 = 1, . . . , 4,

up to re-denoting the variables and renumerating the fields, then the hypersurface 𝑀 is Levi
degenerate.

3. Holomorphic realizations of decomposable 7-dimensional Lie algebras

with sl(2)-subalgebra

While employing the above described technique of holomorphic realizations for constructing
the classification of holomorphically homogeneous hypersurfaces in C4, one has to consider in
particular all 7-dimensional Lie algebras. However, opposite to the case C3, where 5-dimensional
algebras considered, there is no complete list of algebras having dimension 7. At present, the
descriptions of Lie algebras of dimension up to 6 are known [20], and while there are just several
tens of 5-dimensional algebras, see [20], [21], the list of 6-dimensional algebras contains already
hundreds of representatives. The classification of 7-dimensional Lie algebras is obviously much
more bulky. In view of this, it is natural to study particular classes of 7-dimensional Lie algebras
having in mind the experience of describing holomorphically homogeneous hypersurfaces in C3.
In order to prove Theorem 1.1, we shall construct holomorphic realizations of four 7-

dimensional decomposable Lie algebras being direct sums of the 3-dimensional algebra sl(2)
and several 4-dimensional algebras defined by the following commutation relations:

Table 3.1

[𝑒1, 𝑒2] [𝑒1, 𝑒3] [𝑒2, 𝑒3] [𝑒4, 𝑒6] [𝑒4, 𝑒7] [𝑒5, 𝑒6] [𝑒5, 𝑒7] [𝑒6, 𝑒7]
r1 𝑒1 2𝑒2 𝑒3 2𝑒4 𝑒4 𝑒5 𝑒5 + 𝑒6
r2 𝑒1 2𝑒2 𝑒3 (ℎ+ 1)𝑒4 𝑒4 𝑒5 ℎ𝑒6
r3 𝑒1 2𝑒2 𝑒3 2𝑝𝑒4 𝑒4 𝑝𝑒5 − 𝑒6 𝑒5 + 𝑝𝑒6
r4 𝑒1 2𝑒2 𝑒3 𝑒4 −𝑒5 𝑒5 𝑒4

In this table |ℎ| ⩽ 1, 𝑝 ⩾ 0.
We note that the maximal dimension of the Abelian subalgebras for all algebras r1, . . . , r4 is

equal to three.
We construct the holomorphic realizations for each of the mentioned algebras assuming that

their basis field are of the form

𝑒𝑗 = (𝑎𝑗(𝑧1, 𝑧2, 𝑧3, 𝑧4), 𝑏𝑗(𝑧1, 𝑧2, 𝑧3, 𝑧4), 𝑐𝑗(𝑧1, 𝑧2, 𝑧3, 𝑧4), 𝑑𝑗(𝑧1, 𝑧2, 𝑧3, 𝑧4)) , 𝑗 = 1, . . . , 7.

The study of commutation relations for the algebras r1, . . . , r4 allow us to make some pre-
liminary simplification of vector fields similar for all algebras in the list.
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Lemma 3.1. Each holomorphic realization of the algebras r1, . . . , r4 possessing Levi non-
degeberate integral hypersurfaces in C4 is reduced, up to a local holomorphic equivalence, to
algebras with bases of the following forms:

𝑒1 = (0, 1, 0, 0),
𝑒2 = (𝑎2(𝑧1), 𝑧2 + 𝑏2(𝑧1), 𝑐2(𝑧1), 𝑑2(𝑧1)),
𝑒3 = (2𝑎2(𝑧1)𝑧2 + 𝑎3(𝑧1), 𝑧

2
2 + 2𝑏2(𝑧1)𝑧2 + 𝑏3(𝑧1),

2𝑐2(𝑧1)𝑧2 + 𝑐3(𝑧1), 2𝑑2(𝑧1)𝑧2 + 𝑑3(𝑧1)),
𝑒4 = (0, 0, 0, 1),
𝑒5 = (0, 0, 1, 0),
𝑒6 = (𝑎6(𝑧1, 𝑧3, 𝑧4), 𝑏6(𝑧1, 𝑧3, 𝑧4), 𝑐6(𝑧1, 𝑧3, 𝑧4), 𝑑6(𝑧1, 𝑧3, 𝑧4)),
𝑒7 = (𝑎7(𝑧1, 𝑧3, 𝑧4), 𝑏7(𝑧1, 𝑧3, 𝑧4), 𝑐7(𝑧1, 𝑧3, 𝑧4), 𝑑7(𝑧1, 𝑧3, 𝑧4)).

(3.1)

Proof. According to Lemma 2.1, two commuting vector fields among seven fields can be flattened
for each algebra. We suppose in what follows that

𝑒4 = (0, 0, 0, 1), 𝑒5 = (0, 0, 1, 0).

The relations [𝑒1, 𝑒4] = 0, [𝑒2, 𝑒4] = 0, [𝑒3, 𝑒4] = 0 lead us to the identities(︂
−𝜕𝑎𝑗
𝜕𝑧4

,−𝜕𝑏𝑗
𝜕𝑧4

,−𝜕𝑐𝑗
𝜕𝑧4

,−𝜕𝑑𝑗
𝜕𝑧4

)︂
= (0, 0, 0, 0), 𝑗 = 1, 2, 3,

which imply that the functional coefficients of the fields 𝑒1, 𝑒2, 𝑒3 are independent of the variable
𝑧4.
Employing the identities [𝑒1, 𝑒5] = 0, [𝑒2, 𝑒5] = 0, [𝑒3, 𝑒5] = 0, in the same way we get:(︂

−𝜕𝑎𝑗
𝜕𝑧3

,−𝜕𝑏𝑗
𝜕𝑧3

,−𝜕𝑐𝑗
𝜕𝑧3

,−𝜕𝑑𝑗
𝜕𝑧3

)︂
= (0, 0, 0, 0), 𝑗 = 1, 2, 3.

Therefore, the functional coefficients of the fields 𝑒1, 𝑒2, 𝑒3 are also independent of the variable
𝑧3.
According to Lemma 2.4, for Levi non-degeberate integral hypersurfaces, at some point at

least one of the following two inequalities hold true:

(𝑎𝑘(𝑧1, 𝑧2), 𝑏𝑘(𝑧1, 𝑧2)) ̸≡ (0, 0) (𝑘 = 1, 2).

Without loss of generality we assume that (𝑎1(𝑧1, 𝑧2), 𝑏1(𝑧1, 𝑧2)) ̸≡ (0, 0). Then the field 𝑒1 can
be reduced to the form:

𝑒1 = (0, 1, 0, 0).

In view of the simplified form of the field 𝑒1, the relations [𝑒1, 𝑒6] = 0, [𝑒1, 𝑒7] = 0 lead us to
the identities: (︂

𝜕𝑎6
𝜕𝑧2

,
𝜕𝑏6
𝜕𝑧2

,
𝜕𝑐6
𝜕𝑧2

,
𝜕𝑑6
𝜕𝑧2

)︂
= (0, 0, 0, 0),(︂

𝜕𝑎7
𝜕𝑧2

,
𝜕𝑏7
𝜕𝑧2

,
𝜕𝑐7
𝜕𝑧2

,
𝜕𝑑7
𝜕𝑧2

)︂
= (0, 0, 0, 0).

This implies that the functional coefficients of the fields 𝑒6, 𝑒7 are independent of the variable
𝑧2.
Moreover, since [𝑒1, 𝑒2] = 𝑒1, then(︂

𝜕𝑎2
𝜕𝑧2

,
𝜕𝑏2
𝜕𝑧2

,
𝜕𝑐2
𝜕𝑧2

,
𝜕𝑑2
𝜕𝑧2

)︂
= (0, 1, 0, 0),

and this gives the following form of the field 𝑒2:

𝑒2 = (𝑎2(𝑧1), 𝑧2 + 𝑏2(𝑧1), 𝑐2(𝑧1), 𝑑2(𝑧1)).
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Taking into consideration the obtained simplifications, the relation [𝑒1, 𝑒3] = 2𝑒2 gives the
identity (︂

𝜕𝑎3
𝜕𝑧2

,
𝜕𝑏3
𝜕𝑧2

,
𝜕𝑐3
𝜕𝑧2

,
𝜕𝑑3
𝜕𝑧2

)︂
= (2𝑎2(𝑧1), 2𝑧2 + 2𝑏2(𝑧1), 2𝑐2(𝑧1), 2𝑑2(𝑧1)),

which allows us to transform the field 𝑒3 to the form given in the formulation of the lemma.
Let us show now that the case (𝑎1, 𝑏1) ≡ (0, 0) gives rise to a contradiction.
Let (𝑎1(𝑧1, 𝑧2), 𝑏1(𝑧1, 𝑧2)) ≡ (0, 0) at some point of the surface. As it has been mentioned

above, in this case the inequality (𝑎2(𝑧1, 𝑧2), 𝑏2(𝑧1, 𝑧2)) ̸≡ (0, 0) is necessarily satisfied. There-
fore, the field 𝑒2 can be reduced to the form

𝑒2 = (0, 1, 0, 0).

Thus, the fields 𝑒1, 𝑒2 and 𝑒3 are written as follows:

𝑒1 = (0, 0, 𝑐1(𝑧1, 𝑧2), 𝑑1(𝑧1, 𝑧2)) ,

𝑒2 = (0, 1, 0, 0) ,

𝑒3 = (𝑎3(𝑧1, 𝑧2), 𝑏3(𝑧1, 𝑧2), 𝑐3(𝑧1, 𝑧2), 𝑑3(𝑧1, 𝑧2)) .

According to the commutation relations of the algebra, the identity [𝑒1, 𝑒3] = 2𝑒2 should
hold. However, the first two components in the commutation [𝑒1, 𝑒3] are zero, while the first
two components of the field 𝑒2 read as (0, 2). Therefore, the case (𝑎1, 𝑏1) ≡ (0, 0) is impossible.
The proof is complete.

Thus, we suppose that the set of seven fields for each of the algebras r1, . . . , r4 is originally
of form (3.1).

Remark 3.1. Hereafter, while writing the coefficients of the vectors fields, by the symbols
𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘 (𝑘 = 1, . . . , 7) we denote complex constants.

3.1. Holomorphic realizations of algebra r1. By commutation relations [𝑒4, 𝑒6] = 0,
[𝑒4, 𝑒7] = 2𝑒4, [𝑒5, 𝑒6] = 𝑒4, [𝑒5, 𝑒7] = 𝑒5 we get:(︂

𝜕𝑎6
𝜕𝑧4

,
𝜕𝑏6
𝜕𝑧4

,
𝜕𝑐6
𝜕𝑧4

,
𝜕𝑑6
𝜕𝑧4

)︂
= (0, 0, 0, 0),(︂

𝜕𝑎7
𝜕𝑧4

,
𝜕𝑏7
𝜕𝑧4

,
𝜕𝑐7
𝜕𝑧4

,
𝜕𝑑7
𝜕𝑧4

)︂
= (0, 0, 0, 2),(︂

𝜕𝑎6
𝜕𝑧3

,
𝜕𝑏6
𝜕𝑧3

,
𝜕𝑐6
𝜕𝑧3

,
𝜕𝑑6
𝜕𝑧3

)︂
= (0, 0, 0, 1),(︂

𝜕𝑎7
𝜕𝑧3

,
𝜕𝑏7
𝜕𝑧3

,
𝜕𝑐7
𝜕𝑧3

,
𝜕𝑑7
𝜕𝑧3

)︂
= (0, 0, 1, 0).

These identities allow us to reduce the fields 𝑒6 and 𝑒7 to the form

𝑒6 = (𝑎6(𝑧1), 𝑏6(𝑧1), 𝑐6(𝑧1), 𝑧3 + 𝑑6(𝑧1)),

𝑒7 = (𝑎7(𝑧1), 𝑏7(𝑧1), 𝑧3 + 𝑐7(𝑧1), 2𝑧4 + 𝑑7(𝑧1)).

A further constructing of holomorphic realizations of the algebra r1 requires a consideration
of a series of cases.
Case 1. Let 𝑎2(𝑧1) ̸≡ 0. Then the field 𝑒2 in set (3.1) can be reduced to

𝑒2 = (1, 𝑧2, 0, 0) .

By identities [𝑒2, 𝑒6] = 0, [𝑒2, 𝑒7] = 0 we get the relations:

(𝑎′6(𝑧1), 𝑏
′
6(𝑧1)− 𝑏6(𝑧1), 𝑐

′
6(𝑧1), 𝑑

′
6(𝑧1)) = (0, 0, 0, 0),

(𝑎′7(𝑧1), 𝑏
′
7(𝑧1)− 𝑏7(𝑧1), 𝑐

′
7(𝑧1), 𝑑

′
7(𝑧1)) = (0, 0, 0, 0).
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Hence,

𝑎6(𝑧1) = 𝐴6, 𝑏6(𝑧1) = 𝐵6𝑒
𝑧1 , 𝑐6(𝑧1) = 𝐶6, 𝑑6(𝑧1) = 𝐷6,

𝑎7(𝑧1) = 𝐴7, 𝑏7(𝑧1) = 𝐵7𝑒
𝑧1 , 𝑐7(𝑧1) = 𝐶7, 𝑑7(𝑧1) = 𝐷7.

By identity [𝑒6, 𝑒7] = 𝑒5 + 𝑒6 we get

(0, 𝑒𝑧1(𝐴6𝐵7 − 𝐴7𝐵6), 𝐶6, 𝑧3 − 𝐶7 + 2𝐷6) = (𝐴6, 𝐵6𝑒
𝑧1 , 1 + 𝐶6, 𝑧3 +𝐷6).

Comparing the third components in the left hand side and the right hand side, we arrive at the
identity

𝐶6 = 1 + 𝐶6.

Thus, case 1 leads to a contradiction.
Case 2. Let 𝑎2(𝑧1) ≡ 0, 𝑎6(𝑧1) ̸≡ 0. Then, in view of simplified fields 𝑒6, 𝑒7, in the set (3.1)

we can get:

𝑒2 = (0, 𝑧2 + 𝑏2(𝑧1), 𝑐2(𝑧1), 𝑑2(𝑧1)) ,

𝑒6 = (1, 0, 0, 𝑧3) .

By identity [𝑒2, 𝑒6] = 0 we obtain

(0,−𝑏′2(𝑧1),−𝑐′2(𝑧1),−𝑑′2(𝑧1) + 𝑐2(𝑧1)) = (0, 0, 0, 0).

This yields
𝑏2(𝑧1) = 𝐵2, 𝑐2(𝑧1) = 𝐶2, 𝑑2(𝑧1) = 𝐶2𝑧1 +𝐷2.

The relation [𝑒2, 𝑒7] = 0 leads us to the following identity:

(0,−𝑏7(𝑧1), 𝐶2,−𝑎7(𝑧1)𝐶2 + 2𝐶2𝑧1 + 2𝐷2) = (0, 0, 0, 0).

We then get 𝐶2 = 0, 𝐷2 = 0. Thus, the fields 𝑒1 and 𝑒2 become

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (0, 𝑧2 +𝐵2, 0, 0) ,

which is impossible for a non-degenerate hypersurface.
Case 3. Let 𝑎2(𝑧1) ≡ 0, 𝑎6(𝑧1) ≡ 0, 𝑎7(𝑧1) ̸≡ 0. Then the field 𝑒7 can be reduced to the form

𝑒7 = (1, 0, 𝑧3, 2𝑧4) .

The relation [𝑒2, 𝑒3] = 𝑒3 allows to conclude immediately on the degeneracy of the hypersur-
faces in this case. Indeed, the first component of the commutator [𝑒2, 𝑒3] vanishes, while the
first component of the field 𝑒3 equals to 𝑎3(𝑧1). Thus, 𝑎3(𝑧1) ≡ 0, and all first components of
the fields 𝑒1, . . . , 𝑒6 vanish, which gives the degeneracy according to Lemma 2.3.
Thus, we conclude that the algebra r1 has no non-degenerate holomorphic realizations.

3.2. Holomorphic realization of algebra r2. Here the commutation relations are [𝑒4, 𝑒6] =
0, [𝑒4, 𝑒7] = (ℎ + 1)𝑒4, [𝑒5, 𝑒6] = 𝑒4, [𝑒5, 𝑒7] = 𝑒5. Similarly to the previous case, they give rise
to a simplified form of the fields 𝑒6 and 𝑒7:

𝑒6 = (𝑎6(𝑧1), 𝑏6(𝑧1), 𝑐6(𝑧1), 𝑧3 + 𝑑6(𝑧1)) ,

𝑒7 = (𝑎7(𝑧1), 𝑏7(𝑧1), 𝑧3 + 𝑐7(𝑧1), (ℎ+ 1)𝑧4 + 𝑑7(𝑧1)) .

Case 1. Let 𝑎2(𝑧1) ̸≡ 0. Then the field 𝑒2 can be reduced to the form

𝑒2 = (1, 𝑧2, 0, 0) .

By identities [𝑒2, 𝑒6] = 0, [𝑒2, 𝑒7] = 0 we obtain:

(𝑎′6(𝑧1), 𝑏
′
6(𝑧1)− 𝑏6(𝑧1), 𝑐

′
6(𝑧1), 𝑑

′
6(𝑧1)) = (0, 0, 0, 0),

(𝑎′7(𝑧1), 𝑏
′
7(𝑧1)− 𝑏7(𝑧1), 𝑐

′
7(𝑧1), 𝑑

′
7(𝑧1)) = (0, 0, 0, 0),
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and this yields that

𝑎6(𝑧1) = 𝐴6, 𝑏6(𝑧1) = 𝐵6𝑒
𝑧1 , 𝑐6(𝑧1) = 𝐶6, 𝑑6(𝑧1) = 𝐷6,

𝑎7(𝑧1) = 𝐴7, 𝑏7(𝑧1) = 𝐵7𝑒
𝑧1 , 𝑐7(𝑧1) = 𝐶7, 𝑑7(𝑧1) = 𝐷7.

The relation [𝑒2, 𝑒3] = 𝑒3 gives rise to the identity(︀
𝑎′3(𝑧1) + 2𝑧2, 𝑧

2
2 − 𝑏3(𝑧1) + 𝑏′3(𝑧1), 𝑐

′
3(𝑧1), 𝑑

′
3(𝑧1)

)︀
= (2𝑧2 + 𝑎3(𝑧1), 𝑧

2
2 + 𝑏3(𝑧1), 𝑐3(𝑧1), 𝑑3(𝑧1)),

which yields a simplified form of the field 𝑒3:

𝑎3(𝑧1) = 𝐴3𝑒
𝑧1 , 𝑏3(𝑧1) = 𝐵3𝑒

2𝑧1 , 𝑐3(𝑧1) = 𝐶3𝑒
𝑧1 , 𝑑3(𝑧1) = 𝐷3𝑒

𝑧1 .

The consideration of remaining relations [𝑒3, 𝑒6] = 0, [𝑒3, 𝑒7] = 0, [𝑒6, 𝑒7] = ℎ𝑒6 allow us to
obtain the following system of equations relating the coefficients of the fields and the parameter
ℎ of the algebra:

𝐴3𝐴6 + 2𝐵6 = 0, 𝐴3𝐵6 − 2𝐴6𝐵3 = 0, 𝐴6𝐶3 = 0, 𝐴6𝐷3 − 𝐶3 = 0,

𝐴3𝐴7 + 2𝐵7 = 0, 𝐴3𝐵7 − 2𝐴7𝐵3 = 0, 𝐶3(𝐴7 − 1) = 0,

𝐷3(𝐴7 − ℎ− 1) = 0, ℎ𝐴6 = 0, 𝐴6𝐵7 − 𝐴7𝐵6 −𝐵6ℎ = 0,

𝐶6(ℎ− 1) = 0, 𝐷6 − 𝐶7 = 0.

(3.2)

This system has eight solutions but only three of them give the bases of the algebra of the
holomorphic vector fields corresponding to non-degenerate hypersurfaces. These solutions are
as follows.
a) A solution of system (3.2) is

𝐵3 = −1

4
𝐴2

3, 𝐵6 = −1

2
𝐴3𝐴6, 𝐵7 = −1

2
𝐴3𝐴7,

𝐶3 = 0, 𝐶6 = 0, 𝐶7 = 𝐷6, 𝐷3 = 0, ℎ = 0.

The bases of the algebras of holomorphic vectors fields are

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (1, 𝑧2, 0, 0) ,

𝑒3 =

(︂
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 −
1

4
𝐴2

3𝑒
2𝑧1 , 0, 0

)︂
,

𝑒4 = (0, 0, 0, 1) ,

𝑒5 = (0, 0, 1, 0) ,

𝑒6 =

(︂
𝐴6,−

1

2
𝐴3𝐴6𝑒

𝑧1 , 0, 𝑧3 +𝐷6

)︂
,

𝑒7 =

(︂
𝐴7,−

1

2
𝐴3𝐴7𝑒

𝑧1 , 𝑧3 +𝐷6, 𝑧4 +𝐷7

)︂
.

(3.3)

b) A solution of system (3.2) is

𝐴6 = 0, 𝐴7 = 2, 𝐵3 = −1

4
𝐴2

3, 𝐵6 = 0, 𝐵7 = −𝐴3, 𝐶3 = 0, 𝐶7 = 𝐷6, ℎ = 1.
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The bases of the algebras of holomorphic vectors fields are

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (1, 𝑧2, 0, 0) ,

𝑒3 =

(︂
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 −
1

4
𝐴2

3𝑒
2𝑧1 , 0, 𝐷3𝑒

𝑧1

)︂
,

𝑒4 = (0, 0, 0, 1) ,

𝑒5 = (0, 0, 1, 0) ,

𝑒6 = (0, 0, 𝐶6, 𝑧3 +𝐷6) ,

𝑒7 = (2,−𝐴3𝑒
𝑧1 , 𝑧3 +𝐷6, 2𝑧4 +𝐷7) .

(3.4)

c) A solution of system (3.2) is

𝐴6 = 0, 𝐵3 = −1

4
𝐴2

3, 𝐵6 = 0, 𝐵7 = −1

2
𝐴3𝐴7, 𝐶3 = 0, 𝐶7 = 𝐷6, 𝐷3 = 0, ℎ = 1.

The bases of the algebras of holomorphic vectors fields are

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (1, 𝑧2, 0, 0) ,

𝑒3 =

(︂
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 −
1

4
𝐴2

3𝑒
2𝑧1 , 0, 0

)︂
,

𝑒4 = (0, 0, 0, 1) ,

𝑒5 = (0, 0, 1, 0) ,

𝑒6 = (0, 0, 𝐶6, 𝑧3 +𝐷6) ,

𝑒7 =

(︂
𝐴7,−

1

2
𝐴3𝐴7𝑒

𝑧1 , 𝑧3 +𝐷6, 2𝑧4 +𝐷7

)︂
.

(3.5)

Case 2. Let 𝑎2(𝑧1) ≡ 0, 𝑎6(𝑧1) ̸≡ 0. Then the field 𝑒6 can be transformed to the form

𝑒6 = (1, 0, 0, 𝑧3) .

By the relations [𝑒2, 𝑒6] = 0, [𝑒3, 𝑒6] = 0, [𝑒6, 𝑒7] = ℎ𝑒6 we obtain the identities

(0,−𝑏′2(𝑧1),−𝑐′2(𝑧1),−𝑑′2(𝑧1) + 𝑐2(𝑧1)) = (0, 0, 0, 0),

(−𝑎′3(𝑧1),−𝑏′3(𝑧1),−𝑐′3(𝑧1),−𝑑′3(𝑧1) + 𝑐3(𝑧1)) = (0, 0, 0, 0),

(𝑎′7(𝑧1), 𝑏
′
7(𝑧1), 𝑐

′
7(𝑧1), 𝑧3ℎ− 𝑐7(𝑧1) + 𝑑′7(𝑧1)) = (ℎ, 0, 0, ℎ𝑧3).

The solutions of these equations allow us to simplify the form of the fields 𝑒2, 𝑒3 and 𝑒7:

𝑒2 = (0, 𝑧2 +𝐵2, 𝐶2, 𝐶2𝑧1 +𝐷2) ,

𝑒3 =
(︀
𝐴3, 𝑧

2
2 + 2𝐵2𝑧2 +𝐵3, 2𝐶2𝑧2 + 𝐶3, 2(𝐶2𝑧1 +𝐷2)𝑧2 + 𝐶3𝑧1 +𝐷3

)︀
,

𝑒7 = (ℎ𝑧1 + 𝐴7, 𝐵7, 𝑧3 + 𝐶7, (ℎ+ 1)𝑧4 + 𝐶7𝑧1 +𝐷7) .

The commutation relation [𝑒2, 𝑒7] = 0 for the transformed fields gives the identity

(0,−𝐵7, 𝐶2, 𝐶2𝑧1 +𝐷2ℎ+𝐷2 − 𝐴7𝐶2) = (0, 0, 0, 0),

which implies that
𝐵7 = 0, 𝐶2 = 0, 𝐷2(ℎ+ 1) = 0.

As 𝐶2 = 0, the field 𝑒2 becomes 𝑒2 = (0, 𝑧2+𝐵2, 0, 𝐷2) and we assume that 𝐷2 = 0, we get a
field of form 𝑒2 = (0, 𝑧2 +𝐵2, 0, 0), which under the presence 𝑒1 = (0, 1, 0, 0) gives a degeneracy
of the hypersurface. This is why the case 𝐷2 = 0 is impossible and the identity ℎ = −1 should
hold true.
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We write the relation [𝑒3, 𝑒7] = 0 in an expanded form:

(−𝐴3, 0, 𝐶3, 𝐴3𝐶7 − 𝐶3𝐴7 + 𝐶3𝑧1) = (0, 0, 0, 0).

We then get that 𝐴3 = 0 and 𝐶3 = 0. Thus, all first and third components in the fields 𝑒1, . . . , 𝑒4
vanish and according to Lemma 2.4 this means a degeneracy of the hypersurface.
Case 3. Let 𝑎2(𝑧1) ≡ 0, 𝑎6(𝑧1) ≡ 0 and 𝑎7(𝑧1) ̸≡ 0. Then the field 𝑒7 can be reduced to the

form

𝑒7 = (1, 0, 𝑧3, (ℎ+ 1)𝑧4).

The first component in the commutation [𝑒2, 𝑒3] is obviously zero and at the same time, the
identity [𝑒2, 𝑒3] = 𝑒3 should be satisfied. Since the first component of the field 𝑒3 is equal
𝑎3(𝑧1), then we necessarily have 𝑎3(𝑧1) = 0. However in this case all first components of the
fields 𝑒1, . . . , 𝑒6 vanish and this means the degeneracy of the hypersurface by Lemma 2.3.

3.3. Holomorphic realization of algebra r3. Here by the commutation relations [𝑒4, 𝑒6] =
0, [𝑒4, 𝑒7] = 2𝑝𝑒4, [𝑒5, 𝑒6] = 𝑒4 we get:

𝑒6 = (𝑎6(𝑧1), 𝑏6(𝑧1), 𝑐6(𝑧1), 𝑧3 + 𝑑6(𝑧1)) ,

𝑒7 = (𝑎7(𝑧1, 𝑧3), 𝑏7(𝑧1, 𝑧3), 𝑐7(𝑧1, 𝑧3), 2𝑝𝑧4 + 𝑑7(𝑧1, 𝑧3)) .

We write in an expanded form the relation [𝑒5, 𝑒7] = 𝑝𝑒5 − 𝑒6:(︂
𝜕𝑎7
𝜕𝑧3

,
𝜕𝑏7
𝜕𝑧3

,
𝜕𝑐7
𝜕𝑧3

,
𝜕𝑑7
𝜕𝑧3

)︂
= (−𝑎6(𝑧1),−𝑏6(𝑧1), 𝑝− 𝑐6(𝑧1),−𝑧3 − 𝑑6(𝑧1)).

We get the following form of the field 𝑒7:

𝑒7 =

(︂
− 𝑎6(𝑧1)𝑧3 + 𝑎7(𝑧1),−𝑏6(𝑧1)𝑧3 + 𝑏7(𝑧1) ,

𝑝𝑧3 − 𝑐6(𝑧1)𝑧3 + 𝑐7(𝑧1), 2𝑝𝑧4 −
1

2
𝑧23 − 𝑑6(𝑧1)𝑧3 + 𝑑7(𝑧1)

)︂
.

Case 1. Let 𝑎2(𝑧1) ̸≡ 0, then the field 𝑒2 can be reduced to the form

𝑒2 = (1, 𝑧2, 0, 0) .

By relation [𝑒2, 𝑒6] = 0 we get the identity

(𝑎′6(𝑧1), 𝑏
′
6(𝑧1)− 𝑏6(𝑧1), 𝑐

′
6(𝑧1), 𝑑

′
6(𝑧1)) = (0, 0, 0, 0),

which allows us to simplify the form of the fields 𝑒6 and 𝑒7:

𝑒6 = (𝐴6, 𝐵6𝑒
𝑧1 , 𝐶6, 𝑧3 +𝐷6) ,

𝑒7 =

(︂
− 𝐴6𝑧3 + 𝑎7(𝑧1),−𝐵6𝑒

𝑧1𝑧3 + 𝑏7(𝑧1) ,

𝑝𝑧3 − 𝐶6𝑧3 + 𝑐7(𝑧1), 2𝑝𝑧4 −
1

2
𝑧23 −𝐷6𝑧3 + 𝑑7(𝑧1)

)︂
.

As a result, the relation [𝑒2, 𝑒7] = 0 gives rise to the identity

(𝑎′7(𝑧1), 𝑏
′
7(𝑧1)− 𝑏7(𝑧1), 𝑐

′
7(𝑧1), 𝑑

′
7(𝑧1)) = (0, 0, 0, 0),

by which we find the coefficients of the field 𝑒7. We finally obtain:

𝑒7 =

(︂
− 𝐴6𝑧3 + 𝐴7,−𝐵6𝑒

𝑧1𝑧3 +𝐵7𝑒
𝑧1 ,

𝑝𝑧3 − 𝐶6𝑧3 + 𝐶7, 2𝑝𝑧4 −
1

2
𝑧23 −𝐷6𝑧3 +𝐷7

)︂
.
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We now employ relation [𝑒2, 𝑒3] = 𝑒3:(︀
𝑎′3(𝑧1) + 2𝑧2, 𝑧

2
2 − 𝑏3(𝑧1) + 𝑏′3(𝑧1), 𝑐

′
3(𝑧1), 𝑑

′
3(𝑧1)

)︀
=

(︀
2𝑧2 + 𝑎3(𝑧1), 𝑧

2
2 + 𝑏3(𝑧1), 𝑐3(𝑧1), 𝑑3(𝑧1)

)︀
.

This gives:
𝑒3 =

(︀
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 +𝐵3𝑒
2𝑧1 , 𝐶3𝑒

𝑧1 , 𝐷3𝑒
𝑧1
)︀
.

The remaining identities [𝑒3, 𝑒6] = 0, [𝑒3, 𝑒7] = 0, [𝑒6, 𝑒7] = 𝑒5 + 𝑝𝑒6 lead us to a system of
equations similar to (3.2). Some of the solutions to this system, as in case (3.2), are associated
to the algebras having only degenerate orbits. Here we provide only solutions which generate
only more interesting for us algebras admitting Levi non-degenerate orbits.
a) 𝐴6 = 0, 𝐵3 = −1

4
𝐴2

3, 𝐵6 = 0, 𝐵7 = −1
2
𝐴3𝐴7, 𝐶3 = 0, 𝐶6 = ±𝑖, 𝐶7 = 𝐷6(𝑝∓ 𝑖),

𝐷3 = 0. The bases of the algebras of holomorphic vectors fields are

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (1, 𝑧2, 0, 0) ,

𝑒3 =

(︂
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 −
1

4
𝐴2

3𝑒
2𝑧1 , 0, 0

)︂
,

𝑒4 = (0, 0, 0, 1) ,

𝑒5 = (0, 0, 1, 0) ,

𝑒6 = (0, 0,±𝑖, 𝑧3 +𝐷6) ,

𝑒7 =

(︂
𝐴7,−

1

2
𝐴3𝐴7𝑒

𝑧1 , (𝑧3 +𝐷6)(𝑝∓ 𝑖), 2𝑝𝑧4 −
1

2
𝑧23 −𝐷6𝑧3 +𝐷7

)︂
.

(3.6)

b) 𝐴6 = 0, 𝐴7 = 2𝑝, 𝐵3 = −1
4
𝐴2

3, 𝐵6 = 0, 𝐵7 = −𝑝𝐴3, 𝐶3 = 0, 𝐶6 = ±𝑖,
𝐶7 = 𝐷6(𝑝∓ 𝑖). The bases of the algebras of holomorphic vectors fields are

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (1, 𝑧2, 0, 0) ,

𝑒3 =

(︂
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 −
1

4
𝐴2

3𝑒
2𝑧1 , 0, 𝐷3𝑒

𝑧1

)︂
,

𝑒4 = (0, 0, 0, 1) ,

𝑒5 = (0, 0, 1, 0) ,

𝑒6 = (0, 0,±𝑖, 𝑧3 +𝐷6) ,

𝑒7 =

(︂
2𝑝,−𝑝𝐴3𝑒

𝑧1 , (𝑧3 +𝐷6)(𝑝∓ 𝑖), 2𝑝𝑧4 −
1

2
𝑧23 −𝐷6𝑧3 +𝐷7

)︂
.

(3.7)

Case 2. Let 𝑎2(𝑧1) ≡ 0, 𝑎6(𝑧1) ̸≡ 0. Then the field 𝑒6 can be reduced to the form

𝑒6 = (1, 0, 0, 𝑧3) .

We write in an expanded form the relations [𝑒2, 𝑒6] = 0, [𝑒6, 𝑒7] = 𝑒5 + 𝑝𝑒6:

(0,−𝑏′2(𝑧1),−𝑐′2(𝑧1),−𝑑′2(𝑧1) + 𝑐2(𝑧1)) = (0, 0, 0, 0),

(𝑎′7(𝑧1), 𝑏
′
7(𝑧1), 𝑐

′
7(𝑧1), 𝑑

′
7(𝑧1)− 𝑐7(𝑧1) + 𝑝𝑧3) = (𝑝, 0, 1, 𝑝𝑧3).

Solving the written equations, we obtain a simplified form of the fields 𝑒2 and 𝑒7:

𝑒2 = (0, 𝑧2 +𝐵2, 𝐶2, 𝐶2𝑧1 +𝐷2) ,

𝑒7 =

(︂
𝑝𝑧1 − 𝑧3 + 𝐴7, 𝐵7, 𝑝𝑧3 + 𝑧1 + 𝐶7, 2𝑝𝑧4 −

1

2
𝑧23 +

1

2
𝑧21 + 𝐶7𝑧1 +𝐷7

)︂
.

Employing the relation [𝑒2, 𝑒7] = 0, we get

(−𝐶2,−𝐵7, 𝑝𝐶2, 𝑝𝐶2𝑧1 − 𝐴7𝐶2 + 2𝑝𝐷2) = (0, 0, 0, 0),
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and this implies

𝐶2 = 0, 𝐵7 = 0, 𝑝𝐷2 = 0.

If we assume that 𝐷2 = 0, then we get 𝑒2 = (0, 𝑧2 + 𝐵2, 0, 0), and under the presence of
the field 𝑒1 = (0, 1, 0, 0) this is possible only if the hypersurface is degenerate. Hence, we can
assume that 𝐷2 ̸= 0 and therefore, 𝑝 = 0.
By relation [𝑒3, 𝑒6] = 0 we obtain the identity

(−𝑎′3(𝑧1),−𝑏′3(𝑧1),−𝑐′3(𝑧1),−𝑑′3(𝑧1) + 𝑐3(𝑧1)) = (0, 0, 0, 0),

which allows us to get a modified form of the field 𝑒3:

𝑒3 =
(︀
𝐴3, 2𝐵2𝑧2 + 𝑧22 +𝐵3, 𝐶3, 𝐶3𝑧1 + 2𝐷2𝑧2 +𝐷3

)︀
.

Employing the identity [𝑒3, 𝑒7] = 0 written in an expanded form as

(−𝐶3, 0, 𝐴3, 𝐴3𝐶7 + 𝐴3𝑧1 − 𝐶3𝐴7) = (0, 0, 0, 0),

we get that 𝐴3 = 𝐶3 = 0, that is,

𝑒3 =
(︀
0, 𝑧22 + 2𝐵2𝑧2 +𝐵3, 0, 2𝐷2𝑧2 +𝐷3

)︀
.

Thus, in the field 𝑒1, . . . , 𝑒4 all first and third components turn out to be zero and by
Lemma 2.4 this means the degeneracy of the hypersurface.
Case 3. Let 𝑎2(𝑧1) ≡ 0, 𝑎6(𝑧1) ≡ 0 and 𝑎7(𝑧1) ̸≡ 0. Then the field 𝑒7 can be reduced to the

form

𝑒7 = (1,−𝑏6(𝑧1)𝑧3, 𝑝𝑧3 − 𝑐6(𝑧1)𝑧3, 2𝑝𝑧4 −
1

2
𝑧23 − 𝑑6(𝑧1)𝑧3).

To prove that in this case only degenerate hypersurfaces are possible, we note that the first
component in the commutator [𝑒2, 𝑒3] vanishes and the first component in the field 𝑒3 is equal
to 𝑎3(𝑧1). Since the identity [𝑒2, 𝑒3] = 𝑒3, we necessarily have 𝑎3(𝑧1) = 0 but in this case all
components of the fields 𝑒1, . . . , 𝑒6 vanish and this gives the degeneracy by Lemma 2.3.

3.4. Holomorphic realizations of algebra r4. Expanding the commutation relations
[𝑒4, 𝑒6] = 𝑒4, [𝑒4, 𝑒7] = −𝑒5, [𝑒5, 𝑒6] = 𝑒5, [𝑒5, 𝑒7] = 𝑒4, we get a simplified form of the fields
𝑒6 and 𝑒7:

𝑒6 = (𝑎6(𝑧1), 𝑏6(𝑧1), 𝑧3 + 𝑐6(𝑧1), 𝑧4 + 𝑑6(𝑧1)) ,

𝑒7 = (𝑎7(𝑧1), 𝑏7(𝑧1),−𝑧4 + 𝑐7(𝑧1), 𝑧3 + 𝑑7(𝑧1)) .

Case 1. Let 𝑎2(𝑧1) ̸≡ 0. Then, employing holomorphic change of variables, the field 𝑒2 can
be reduced to the form

𝑒2 = (1, 𝑧2, 0, 0).

The relations [𝑒2, 𝑒6] = 0, [𝑒2, 𝑒7] = 0 give rise to the identities

(𝑎′6(𝑧1), 𝑏
′
6(𝑧1)− 𝑏6(𝑧1), 𝑐

′
6(𝑧1), 𝑑

′
6(𝑧1)) = (0, 0, 0, 0),

(𝑎′7(𝑧1), 𝑏
′
7(𝑧1)− 𝑏7(𝑧1), 𝑐

′
7(𝑧1), 𝑑

′
7(𝑧1)) = (0, 0, 0, 0),

by which we get

𝑒6 = (𝐴6, 𝐵6𝑒
𝑧1 , 𝑧3 + 𝐶6, 𝑧4 +𝐷6) ,

𝑒7 = (𝐴7, 𝐵7𝑒
𝑧1 ,−𝑧4 + 𝐶7, 𝑧3 +𝐷7) .

One more relation [𝑒2, 𝑒3] = 𝑒3, implying the identity(︀
𝑎′3(𝑧1) + 2𝑧2, 𝑏

′
3(𝑧1)− 𝑏3(𝑧1) + 𝑧22 , 𝑐

′
3(𝑧1), 𝑑

′
3(𝑧1)

)︀
=

(︀
2𝑧2 + 𝑎3(𝑧1), 𝑧

2
2 + 𝑏3(𝑧1), 𝑐3(𝑧1), 𝑑3(𝑧1)

)︀
,

give the following form for the field 𝑒3:(︀
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 +𝐵3𝑒
2𝑧1 , 𝐶3𝑒

𝑧1 , 𝐷3𝑒
𝑧1
)︀
.
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The remaining relations [𝑒3, 𝑒6] = 0, [𝑒3, 𝑒7] = 0, [𝑒6, 𝑒7] = 0 here also lead to a rather bulky
system of equations for the coefficients of the fields 𝑒3, 𝑒6, 𝑒7. This system has four solutions
and three of them give the bases of the algebras of holomorphic vector fields corresponding to
non-degenerate hypersurfaces.
a) 𝐵3 = −1

4
𝐴2

3, 𝐵6 = −1
2
𝐴3𝐴6, 𝐵7 = −1

2
𝐴3𝐴7, 𝐶3 = 0, 𝐶6 = 𝐷7, 𝐶7 = −𝐷6,

𝐷3 = 0. The bases of the algebras of holomorphic vectors fields are

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (1, 𝑧2, 0, 0) ,

𝑒3 =

(︂
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 −
1

4
𝐴2

3𝑒
2𝑧1 , 0, 0

)︂
,

𝑒4 = (0, 0, 0, 1) ,

𝑒5 = (0, 0, 1, 0) ,

𝑒6 =

(︂
𝐴6,−

1

2
𝐴3𝐴6𝑒

𝑧1 , 𝑧3 +𝐷7, 𝑧4 +𝐷6

)︂
,

𝑒7 =

(︂
𝐴7,−

1

2
𝐴3𝐴7𝑒

𝑧1 ,−(𝑧4 +𝐷6), 𝑧3 +𝐷7

)︂
.

(3.8)

b) Extra two solutions unified via the sign «±»:

𝐴6 = 1, 𝐴7 = ±𝑖, 𝐵3 = −1

4
𝐴2

3, 𝐵6 = −1

2
𝐴3,

𝐵7 = ∓ 𝑖

2
𝐴3, 𝐶3 = ±𝑖𝐷3, 𝐶6 = 𝐷7, 𝐶7 = −𝐷6.

The bases of the algebras of holomorphic vectors fields are

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (1, 𝑧2, 0, 0) ,

𝑒3 =

(︂
2𝑧2 + 𝐴3𝑒

𝑧1 , 𝑧22 −
1

4
𝐴2

3𝑒
2𝑧1 ,±𝑖𝐷3𝑒

𝑧1 , 𝐷3𝑒
𝑧1

)︂
,

𝑒4 = (0, 0, 0, 1) ,

𝑒5 = (0, 0, 1, 0) ,

𝑒6 =

(︂
1,−1

2
𝐴3𝑒

𝑧1 , 𝑧3 +𝐷7, 𝑧4 +𝐷6

)︂
,

𝑒7 =

(︂
±𝑖,∓ 𝑖

2
𝐴3𝑒

𝑧1 ,−(𝑧4 +𝐷6), 𝑧3 +𝐷7

)︂
.

(3.9)

Case 2. Let 𝑎2(𝑧1) ≡ 0, 𝑎6(𝑧1) ̸≡ 0. Then the field 𝑒6 can be reduced to the form

𝑒6 = (1, 0, 𝑧3, 𝑧4) .

Employing the relations [𝑒2, 𝑒6] = 0, [𝑒6, 𝑒7] = 0, we obtain

(0,−𝑏′2(𝑧1),−𝑐′2(𝑧1) + 𝑐2(𝑧1),−𝑑′2(𝑧1) + 𝑑2(𝑧1)) = (0, 0, 0, 0),

(𝑎′7(𝑧1), 𝑏
′
7(𝑧1), 𝑐

′
7(𝑧1)− 𝑐7(𝑧1), 𝑑

′
7(𝑧1)− 𝑑7(𝑧1)) = (0, 0, 0, 0).

Hence,

𝑒2 = (0, 𝑧2 +𝐵2, 𝐶2𝑒
𝑧1 , 𝐷2𝑒

𝑧1) ,

𝑒7 = (𝐴7, 𝐵7,−𝑧4 + 𝐶7𝑒
𝑧1 , 𝑧3 +𝐷7𝑒

𝑧1) .
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The commutation relation [𝑒3, 𝑒6] = 0 yields the identity

(−𝑎′3(𝑧1),−𝑏′3(𝑧1),−𝑐′3(𝑧1) + 𝑐3(𝑧1),−𝑑′3(𝑧1) + 𝑑3(𝑧1)) = (0, 0, 0, 0),

which implies the following form for the field 𝑒3:

𝑒3 =
(︀
𝐴3, 𝑧

2
2 + 2𝐵2𝑧2 +𝐵3, (2𝐶2𝑧2 + 𝐶3)𝑒

𝑧1 , (2𝐷2𝑧2 +𝐷𝐶3)𝑒
𝑧1
)︀
.

Considering the final identities [𝑒2, 𝑒3] = 𝑒3, [𝑒2, 𝑒7] = 0, [𝑒3, 𝑒7] = 0 lead us to three admissible
sets of the coefficients of the fields 𝑒3, 𝑒6, 𝑒7. And only two of them, unified via the sign
«±», give the bases of algebras of holomorphic vector fields admitting non-degenerate integral
hypersurfaces.
The values of the coefficients

𝐴3 = 0, 𝐴7 = ±𝑖, 𝐵3 = 𝐵2
2 , 𝐵7 = 0, 𝐶2 = ±𝑖𝐷2, 𝐶3 = ±2𝑖𝐵2𝐷2, 𝐷3 = 2𝐵2𝐷2.

The bases of the algebras of holomorphic vectors fields are

𝑒1 = (0, 1, 0, 0) ,

𝑒2 = (0, 𝑧2 +𝐵2,±𝑖𝐷2𝑒
𝑧1 , 𝐷2𝑒

𝑧1) ,

𝑒3 =
(︀
0, (𝑧2 +𝐵2)

2, (±2𝑖𝐷2𝑧2 ± 2𝑖𝐵2𝐷2)𝑒
𝑧1 , 2𝐷2𝑒

𝑧1(𝑧2 +𝐵2)
)︀
,

𝑒4 = (0, 0, 0, 1) ,

𝑒5 = (0, 0, 1, 0) ,

𝑒6 = (1, 0, 𝑧3, 𝑧4) ,

𝑒7 = (±𝑖, 0, 𝐶7𝑒
𝑧1 − 𝑧4, 𝑧3 +𝐷7𝑒

𝑧1) .

(3.10)

Case 3. Let 𝑎2(𝑧1) ≡ 0, 𝑎6(𝑧1) ≡ 0 and 𝑎7(𝑧1) ̸≡ 0. Then the field 𝑒7 can be reduced to the
form

𝑒7 = (1, 0,−𝑧4, 𝑧3).

By relation [𝑒2, 𝑒6] = 0 we get

(0,−𝑏6(𝑧1), 𝑐2(𝑧1), 𝑑2(𝑧1)) = (0, 0, 0, 0),

and this yields that

𝑒2 = (0, 𝑧2 + 𝑏2(𝑧1), 0, 0).

The field 𝑒2 of such under the presence of the field 𝑒1 = (0, 1, 0, 0) is possible only for Levi
degenerate hypersurfaces.

4. Equations of hypersurfaces

The next step after finding the holomophic realizations of the Lie algebras is the obtaining
of their orbits. A necessary condition for a real hypersurface 𝑀 defined by an equation Φ = 0
to be an orbit of a holomorphic realization of an algebra g is the identity

Re (𝑒𝑘 (Φ)|𝑀) ≡ 0, (4.1)

which should be satisfied for each basis field 𝑒𝑘 of this algebra.
Thus, finding the orbits of holomorphic realizations of algebras r2, r3, r4 is reduced to solving

a system of partial differential equations. For instance, for one of realizations (3.6) we need to
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solve the system of the following form:

Re

(︂
𝜕Φ

𝜕𝑧2

)︂
= 0, Re

(︂
𝜕Φ

𝜕𝑧3

)︂
= 0, Re

(︂
𝜕Φ

𝜕𝑧4

)︂
= 0,

Re

(︂
𝜕Φ

𝜕𝑧1
+ 𝑧2

𝜕Φ

𝜕𝑧2

)︂
= 0,

Re

(︂
𝑖
𝜕Φ

𝜕𝑧3
+ (𝑧3 +𝐷6)

𝜕Φ

𝜕𝑧4

)︂
= 0,

Re

(︂
(2𝑧2 + 𝐴3𝑒

𝑧1)
𝜕Φ

𝜕𝑧1
+

(︂
𝑧22 −

𝐴2
3

4
𝑒2𝑧1

)︂
𝜕Φ

𝜕𝑧2

)︂
= 0,

Re

(︂
𝐴7

𝜕Φ

𝜕𝑧1
+

(︂
−𝐴3𝐴7

2
𝑒𝑧1

)︂
𝜕Φ

𝜕𝑧2
+ (𝑧3 +𝐷6) (𝑝− 𝑖)

𝜕Φ

𝜕𝑧3

+

(︂
2𝑝𝑧4 −𝐷6𝑧3 −

1

2
𝑧23 −𝐷6𝑧3 +𝐷7

)︂
𝜕Φ

𝜕𝑧4

)︂
= 0.

(4.2)

We note that it is often convenient to make some elementary changes in the coefficients of the
fields before writing the system of equations. For instance, in this case we can replace 𝑒𝑧1 by
𝑧*1 , which allows us to work with completely polynomial components of the fields, and at that,
in the first components of the fields an additional factor 𝑧*1 appears, while other components
remain unchanged. We specify that here and in what follows after each step of multi-level
change of variables the sign «*» is omitted.
Under the passing to real coordinates, the first three simplest identities of system (4.2) allow

us to conclude that the defining function of the hypersurface is independent of the variables
𝑥2, 𝑥3, 𝑥4. Solving other equations by standard methods, after some simple final holomorphic
transformations we obtain an equation for the hypersurface:

𝑦4 = 𝐴 ln 𝑦1 − ln
(︀
𝑦2 − 𝑦23

)︀
. (4.3)

Writing and solving systems similar to (4.2), we obtain all equations in Theorem 1.1. At the
same time, there can arise Levi degenerate hypersurfaces, which we do not consider.
Now we are going to discuss briefly the issues on studying certain properties of holomor-

phically homogeneous hypersurfaces using equation (4.3) as an example. Here we employ the
method of Moser normal forms [17].
Employing the expansion into the Taylor series, we represent the equation of a Levi non-

degenerate real-analytic hypersurface 𝑀 ⊂ C4 as

𝑦4 = 𝐻(𝑧, 𝑧) +
∑︁

𝑘,𝑙⩾2,𝑚⩾0

𝑁𝑘𝑙𝑚(𝑧, 𝑧)𝑥
𝑚
4 , (4.4)

where 𝐻(𝑧, 𝑧) is the Levi form of the hypersurface containing Hermitian terms, which are linear
in the variables 𝑧 and 𝑧; here 𝑁𝑘𝑙𝑚(𝑧, 𝑧, 𝑥4) are homogeneous polynomials of total powers 𝑘 and
𝑙 of the variables 𝑧 and 𝑧, respectively, 𝑧 = (𝑧1, 𝑧2, 𝑧3). The polynomials 𝑁22𝑘, 𝑁32𝑘, 𝑁33𝑘 obey
additional restrictions called tr-conditions, see [3], [4].
In many cases the study of lower terms in normal equation (4.4) allows one to justify or

disprove conjectures on holomorphic equivalence of various hypersurfaces. For instance, it is
known that a homogeneous real-analytic hypersurface in the space C𝑛 is spherical if and only
if the term 𝑁220(𝑧, 𝑧) in its normal Moser equation vanishes.
Let us demonstrate a calculation procedure for checking the sphericity on the example of

equation (4.3).
We shift to the point (𝑖, 𝑖, 0, 0) and write an expansion for the right hand side of the equation

𝑦4 = 𝐴 ln(𝑦1 + 1)− ln
(︀
𝑦2 + 1− 𝑦23

)︀
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into the Taylor series up to the fourth powers; according to the normalization procedure, the
terms of zero and first power can be removed:

𝑦4 = −1

2
𝐴𝑦21 +

1

2
𝑦22 + 𝑦23 +

1

3
𝐴𝑦31 −

1

3
𝑦32 − 𝑦2𝑦

2
3 −

1

4
𝐴𝑦41 +

1

4
𝑦42 + 𝑦22𝑦

2
3 +

1

2
𝑦43 + . . . . (4.5)

We pass to the complex coordinates and write the Levi form for this equation:

𝐻(𝑧, 𝑧) = −1

4
𝐴|𝑧1|2 +

1

4
|𝑧2|2 +

1

2
|𝑧3|2.

We see that as 𝐴 < 0 this form is positive definite, that this, the hypersurface is strictly
pseudoconvex, and as 𝐴 > 0 we get a sign-indefinite non-degenerate form. As 𝐴 = 0 we get a
degenerate hypersurface.
Let consider the case 𝐴 < 0. The change of variables

𝑧1 =
2√
−𝐴

𝑧*1 , 𝑧2 = 2𝑧*2 , 𝑧3 =
√
2𝑧*3

reduces the Levi form to the canonical form

|𝑧1|2 + |𝑧2|2 + |𝑧3|2.
After passing to complex variables and change of variables, expansion (4.5) becomes (we group
terms by the total powers of the polynomials involved in this expression):

𝑦4 =
∑︁
𝑘+𝑙⩾2

𝐹𝑘𝑙(𝑧, 𝑧) = (𝐹20 + 𝐹11 + 𝐹02) + (𝐹30 + 𝐹21 + 𝐹12 + 𝐹03) + . . . , (4.6)

where 𝑘, 𝑙 are the powers of the corresponding terms in the variables 𝑧 and 𝑧 respectively.
According to normalization procedure [17], by means of holomorphic change of variables, we

can remove all terms of form 𝐹𝑘0, 𝐹𝑘1 from equation (4.6) and also, by symmetry, all terms 𝐹0𝑘,
𝐹1𝑘. After the mentioned changes, equation (4.6) becomes:

𝑦4 = |𝑧1|2 + |𝑧2|2 + |𝑧3|2 +𝐻22 +𝐻32 +𝐻23 + . . . . (4.7)

In order to transform the terms while passing from equation (4.6) to (4.7), we can use the
generalization of the formulae given in works [22]. In particular,

𝐻22 = 𝐹22 − ⟨𝑓2, 𝑓2⟩, (4.8)

where 𝐹22 is the term in equation (4.6), 𝑓2 is a vector function, the components of which are
homogeneous polynomials of second order with respect to the variable 𝑧, and this function is
calculated by the formula 𝐹21 = ⟨𝑓2, 𝑧⟩. Here ⟨𝑓, 𝑔⟩ = 𝑓𝑇𝐻𝑔, where 𝑓 and 𝑔 are the vector
functions and 𝐻 is the matrix of the Hermitian Levi form.
For the considered equation we have:

𝐹22 = − 3

2𝐴
𝑧21𝑧

2
1 +

3

2
𝑧22𝑧

2
2 +

1

2
𝑧22𝑧

2
3 + 2𝑧2𝑧2𝑧3𝑧3 +

1

2
𝑧23𝑧

2
2 +

3

4
𝑧23𝑧

2
3 ,

𝑓2 =

⎛⎜⎝ − 𝑖
√
−𝐴
𝐴

𝑧21
𝑖
2
(2𝑧22 + 𝑧23)

𝑖𝑧2𝑧3

⎞⎟⎠ ,

⟨𝑓2, 𝑓2⟩ = − 1

𝐴
𝑧21𝑧

2
1 + 𝑧22𝑧

2
2 +

1

2
𝑧23𝑧

2
2 +

1

2
𝑧22𝑧

2
3 +

1

4
𝑧23𝑧

2
3 + 𝑧2𝑧3𝑧2𝑧3.

By formula (4.8) we obtain:

𝐻22 = − 1

2𝐴
|𝑧1|4 +

1

2
|𝑧2|4 +

1

2
|𝑧3|4 + |𝑧2|2|𝑧3|2. (4.9)

The polynomial 𝐻22 belongs to a 36-dimensional space of polynomials ℱ22, which is expanded
into the direct sum of 27-dimensional space 𝒩22 and 9-dimensional space ℛ22, the entries of
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which are divisible by the form |𝑧1|2+ |𝑧2|2+ |𝑧3|2. At that, the projection of 𝐻22 into the space
𝒩22 is exactly the polynomial 𝑁220 in equation (4.4).
The mentioned expansion for polynomial (4.9) can be written as

𝐻22 =𝑁220 +𝑅220

=
1

40𝐴
(𝐴− 1)(3(|𝑧1|4 − 4|𝑧1|2|𝑧2|2 + |𝑧2|4)

+ 3(|𝑧1|4 − 4|𝑧1|2|𝑧3|2 + |𝑧3|4)− (|𝑧2|4 − 4|𝑧2|2|𝑧3|2 + |𝑧3|4))

+
1

20𝐴

(︀
−(3𝐴+ 7)|𝑧1|2 + (9𝐴+ 1)|𝑧2|2 + (9𝐴+ 1)|𝑧3|2

)︀
(|𝑧1|2 + |𝑧2|2 + |𝑧3|2).

Thus,

𝑁220 =
1

40𝐴
(𝐴− 1)(3(|𝑧1|4 − 4|𝑧1|2|𝑧2|2 + |𝑧2|4)

+ 3(|𝑧1|4 − 4|𝑧1|2|𝑧3|2 + |𝑧3|4)− (|𝑧2|4 − 4|𝑧2|2|𝑧3|2 + |𝑧3|4)).

As 𝐴 < 0, the polynomial 𝑁220 is non-zero and therefore, the hypersurface described by
equation (4.3) is locally holomorphically non-equivalent to a sphere.

Remark 4.1. We note that as 𝐴 = 1, equation (4.3) can be rewritten as

𝑦1 = 𝑦23𝑒
𝑦4 + 𝑦2𝑒

𝑦4 .

This equation describes an indefinite spherical tube, see formula (7) in the main theorem in
[23].

All equations written in Theorem 1.1 can be studied in the same way. However, such study
is too bulky and goes beyond this paper.
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1. E. Cartan. Sur la géométrie pseudoconforme des hypersurfaces de l’espace de deux variables com-

plexes // Ann. Math. Pura Appl. 11, 17–90 (1933).
2. G. Fels, W. Kaup. Classification of Levi degenerate homogeneous CR-manifolds in dimension

5 // Acta Math. 201:1, 1–82 (2008).
3. A.V. Loboda. Homogeneous real hypersurfaces in 3 with two-dimensional isotropy groups // Trudy

Matem. Inst. Steklova RAN. 235, 114–142 (2001). [Proc. Steklov Inst. Math. 235, 107–135
(2001).]

4. A.V. Loboda. Homogeneous strictly pseudoconvex hypersurfaces in C3 with two-dimensional

isotropy groups // Matem. Sborn. 192:12, 3–24 (2001). [Sb. Math. 192:12, 1741–1761 (2001).]
5. B. Doubrov, A. Medvedev, D. The. Homogeneous Levi non-degenerate hypersurfaces in C3 //

Math. Zeit. 297: 1-2, 669–709 (2021).
6. I. Kossovskiy, A. Loboda. Classification of homogeneous strictly pseudoconvex hypersurfaces in

C3 // Preprint: arXiv:1906.11345 (2019).
7. A.V. Loboda Holomorphically homogeneous real hypersurfaces in C3 // Trudy MMO. 81:2, 61–

136 (2020). [Trans. Moscow Math. Soc. 81:2, 169–228 (2020).]
8. B. Doubrov, J. Merker, D. The. The classification of simply-transitive Levi non-degenerate hy-

persurfaces in C3 // Int. Math. Res. Notic. rnab147 (2021).



ORBITS OF DECOMPOSABLE 7-DIMENSIONAL LIE ALGEBRAS WITH sl(2) SUBALGEBRA 19

9. M.G. Eastwood, V.V. Ezhov. Homogeneous hypersurfaces with isotropy in affine four-space //
Trudy Matem. Inst. Steklova RAN. 235, 57–70 (2001). [Proc. Steklov Inst. Math. 235, 49–63
(2001).]

10. M.G. Eastwood, V.V. Ezhov. A classification of non-degenerate homogeneous equiaffine hyper-

surfaces in four complex dimensions // Asian J. Math. 5:4, 721–740 (2001).
11. F. Dillen, L. Vrancken. 3-dimensional affine hypersurfaces in R4 with parallel cubic form //

Nagoya Math. J. 124, 41–53 (1991).
12. A.V. Loboda, R.S. Akopyan, V.V. Krutskikh. On the orbits of nilpotent 7-dimensional lie algebras

in 4-dimensional complex space // J. Siber. Feder. Univ. Math. Phys. 13:3, 360–372 (2020). (in
Russian).

13. R.S. Akopyan, A.V. Atanov. Non-degenerate orbits in C4 of decomposable 7-dimensional Lie

algebras // in “Modern methods in theory of boundary value problems”, Proc. Int. Conf. “Voronezh
Spring Mathematical School. Pontryagin Readins – XXXI”, 30–32 (2020). (in Russian).

14. G.M. Mubarakzyanov. On solvable Lie algebras // Izv. VUZov. Matem. 1, 114–123 (1963). (in
Russian).

15. A.V. Atanov, I.G. Kossovskiy, A.V. Loboda. On orbits of action of 5-dimensional non-solvable

Lie algebras in three-dimensional complex space // Dokl. Math. 100:1, 377–379 (2019).
16. V.K. Beloshapka, I.G. Kossovskiy. Homogeneous hypersurfaces in C3, associated with a model

CR-cubic // J. Geom. Anal. 20:3, 538–564 (2010).
17. S.S. Chern, J.K. Moser. Real hypersurfaces in complex manifolds // Acta Math. 133, 219–271

(1974).
18. A.V. Atanov, A.V. Loboda. On the orbits of one non-solvable 5-dimensional Lie algebra //

Matem. Fiz. Kompyut. Model. 22:2, 5–20 (2019). (in Russian).
19. A.V. Atanov, A.V. Loboda. Decomposable five-dimensional Lie algebras in the problem of holo-

morphic homogeneity in C3 // Itogi Nauki Tekh. Ser. Sovrem. Mat. Pril. Temat. Obz. 173,
86–115 (2019).
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